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arbon Capture with Solid Materials

Goal: Explore and develop functional multiscale
materials to serve as reliable & regenerable
sorbents for the capture of CO, from industrial

K processes such as fossil fuel power plants.

> Issues:

o Surface Chemistry/Capacity: Can a solid-based system
be made that competes with traditional wet amine
systems?

e Thermal and Chemical Stability: Can the materials

remain durable with high reversible capacity in flue gas
conditions over long periods of time?

e Cost: Can these materials be produced and

implemented in process systems affordably on a life

Cyde basis? Parific Northwest National Laboratnry
LS. Department of Energy
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Solid vs. Liquid Capture

& Pros:

o Since all functional groups are at the surface, there is
effectively no liquid side mass transfer resistance.

o In ideal configuration, there is no downstream
purification of CO, required after regeneration.

o No liquid handling required.
»Cons:

o Not possible to store captured CO, and regenerate at
preferred times (eg., when power demand is low).

o No possibility for sorbent make up unless moving bed or
fluidized bed system is developed.
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Project Scope

» Synthesize new materials and new functional approaches

P Characterize materials in bench scale CO, capture
apparatus to assess total and working capacity

- Characterize material structure and mechanism for
adsorption (NMR, FTIR, Raman, TGA, electron microscopy)

» Understand durability of materials under repeated cycling
and exposure to potential poisons: SO,, H,S, and NOx.

» Understand the impact of water vapor on CO, capture
» Develop process concepts and flowsheets for implemention
- Perform preliminary economic analysis
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Temperature Swing Adsorption

To Compression & Storage

Off-Gas Packed Bed 5 Stack
~10% CO, Out

ey o ."./o”.',
W
Loading Regeneration
Temperature

»-Use high surface area materials — inherently high capacity.

»Large pore volume and surface functionalization useful to reduce mass
transfer resistances. This will increase operating capacity.

»Use material classes that allow facile chemical functionalization.

»-Thermal integration with power plant is critical.
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Functional Multiscale Materials

Ordered Mesoporous
Oxides & Aerogels

Applications
o Catalysis

e Gas or liquid phase
separations

e Chemical storage
e Sensors

Composites,
Carbon Fibers
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EDA Functionalized Silica

Synthesis

Condensation of an EDA-alkoxysilane and silanols on silica surface.
# Substrate: SBA-15 mesoporous silica
pore diameter 5.5-7.8 nm, surface area 700 m2/g
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R spectra — Before and after grafting
EDA ligands

(a) SBA-15

3476 cm™  free silanol OH
3432cm?  associated OH
1629 cm?  adsorbed H,0

® (b) EDA-SBA-15

Absorbance (a.u.)

3362cm?  N-Hasym. stretch
3299 cm?  N-Hsym. stretch
2931cm®  C-Hasym. stretch
2881cm®  C-Hsym. stretch

1601cm®  N-H deformation
- A : / 1457 cm®  CH, scissor
’ i
4000 3500 3000 2500 2000 1500 110em? (EDA-silane)

1346 cm™ CH, wagging
Wavenumbers (cm™')

FTIR spectra confirm presence of EDA functional groups in sorbent.
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CO, Sorption Bench

« CO, levels of 1-50% possible
* SO, examined using mixes
« CO, level measured with RGA

* AP & Isotherms easily measured

Vent

Adsorption Cell

H,0 Roughing Pump
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Breakthrough Testing

P e Type of Measurements:
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f‘ 1st 2nd A ion kinetics
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Known concentration of CO,/N, mix was flowed through
sorbent bed, followed by a TPD to release adsorbed CO,.
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Total vs. Working Capacity

EDA-SBA-15 sorbent 0.229 g

i Aava s Feed gas: 15 vol% CO, and balance
N, at 25°C

Flow rate: 40 sccm

Wheeler Eqn (Wood, 2002)
W

= 76[W —&an[ic" _Cﬂ
@(0) x. C

Capacity and Rate Coefficient
o » © @ ® w Data:

el w, = 12.1 mg/g (Wheeler equation)
k, = 414.2 min"! (Wheeler equation)
w, = 19.3 mg/g (by integration at
complete breakthrough)
w, = 10.2 mg/g (by integration at 1%
breakthrough)
Battelle T et e =

[ Amount of GO, adsorbed af complets breakivough

A Amount of CO, adsorbed when CO, concentraion
inthe eluted gas averages 1 voi%

3 Amount of CO, eluted at compete breakifrough

© Measured breakthvough curve data
—— Bostifit broakihvough using the Wheler equation




Performance — Dry vs. Wet

100% indicates capacity to full
breakthrough. 1% indicates

GA-MS Analysis: Thermal Stability

& Mass loss indicates

working capacity for total 60 e A 5
f equivalent slip of 1% CO,. ® Wet- 1% significant desorption i
» 507 W Wet-100% A B events. ?
o * Dry-1% =
» Data pertain to CO, in N,. 8 40f a pry-100% " & Mass spectrometry
2 PO, indicates what comes off
o F . sorbent.
» Wet corresponds to 2% H,0 in S % = .
gas mixture. I3 a" N ° » In He, EDA decomposes
RIS above 400°C. g i
> Little difference in capacity when o ® |n air, EDA decomposes § g
water is added to the stream 0 10 20 30 40 50 60 bove 200°C 8 E
M 0 above 5 a
indicates good selectivity. CO, Concentration, %
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FTIR - Reaction with CO, Mechanism (Ethylene Diamine)
Free amine groups are abundant in NH, NH, NH, e
regenerated sorbent. \
1602 cm™' N-H deformation vibrations: ( H*\ co. H
1449 cm™ CH2 deformation vibrations N\ 2 \ o
3 NH
! Upon exposure to CO2 at room f L b \ N—c
temperature, the sorbent forms an g |
intramolecular carbamate £ 'AO'
ammonium salt. e 0—8i—0—Si —0—Si—0 HNH*
1576 cm' NH,* deformation vibrations I I I
When exposed to CO, at higher [o] o (o] 2
temperature, the carbamate | | |
partially converts to ethylene urea.
1696 cm-! C=0 stretch (Amide | band) 1m0 te00 Tso0 1400 100 &
1491 cm' Amide Il band Wavenumber (cm’) 2
§ ) Regenerated sorbent » L .
g? band as‘SIQ:nmen;‘S are tentative. ——— After CO, adsorption at 25°C Stability of Zwitterionic compound (intramolecular carbamate)
xperiments to confirm urea ——— After reaction with CO, at 135°C i i i
G 7 S 2 governs ease of regeneration and working capacity
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FTIR — Effect of SO, exposure

(a) Sample exposed to ambient air
1578 cm'  NH,* deformation
1484 cm”  unassigned
1416 cm™  unassigned
1320cm?  CH, wagging
795.6 cm  Si-O-Si sym. stretch

7956

(b) Sample exposed to 500ppm SO,,
21% CO,, and balance N,
Band structure same as (a) except for
one new band:
619.7 cm™ SO, bending in
-NH-SO, complex'

Absorbance (a.u.)

1800 1600 1400 1200 1000 800 600 400

Wevenmbss(omy) Wasilev et al. (1995) Thin Solid Film, 261, 296-298

Itis believed that SO, reacts with secondary amine to form a charge-
transfer complex. Determination of the fate of the SO, adduct upon heating
is likely reversible based on Diaf, Garcia, and Beckman (1994).
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Parallel Bed: Thermal Swing
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Economics

& It is essential to perform economic analysis in
tandem with technical discovery and development
in order to guide work in direction of commercial
viability.

& Preliminary economics suggest approach could be
attractive with future expected improvements.

& Preliminary model is based on adaptation of
carbon adsorber model available from EPA for
VOC capture.

& Expecting posting of a new solid-based capture
model from NETL soon.

f
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Future Work
Continue to develop additional amine-modified
materials.

o Fill in operating temperature gaps in order to make
3 applicable to many streams.

B Complete economic analysis and use as a basis
for R&D targets.

> Look at steam regeneration.

Trend of higher working capacity

_

Also trend of more difficult regeneration

=) ~70 110
1 1 1 T.°C
2-Acylaminopyridine Propylamine* EDA
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Various Approaches Possible

HN; S
« Target ligands result in facile IN NH, ot
proton transfer during H uptake N\ - ON
5 * Multifunctional ligands also
i attractive.
* Polymeric and dendrimeric b o N
functionality are being examined 07)~0” ot oo

NH ?/NH NH
|

~o—f=0" ~o-$0" ~0-$=0"  ~o-Si-0" No-$~0" ~o-$~0” ~o-f0” oS0
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Immediate Targets

NHz

NH2 ﬁNH
H/ NQ
( NH
Propyl Amine Piperazine (
(verify comparison (determine impact
to NETL literature) of ligand rigidity
and amine degree)

Propylene Diamine
(determine impact of
carbamate ring size)

NH2

N Various Polymeric Species

(multifunctional approach)
Aminomethyl Imidazole

(examine cyclic compounds
with potential multifunction)
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