Researchers from SMU and OSU completed a research cruise in the Beaufort Sea offshore Alaska.
The USGS, led by Principal Investigator Carolyn Ruppel, completed a research cruise on the Northern US Atlantic Margin.
In order to capitalize on this research and take advantage of DOE Office of Science research capabilities, OSU submitted a proposal entitled, Integrated biogeochemical modeling of microbial consortia mediating anaerobic oxidation of methane in dynamic methane hydrate-bearing sediments to the Joint Genome Institute–Environmental Molecular Sciences Laboratory (EMSL) Collaborative Science Initiative. The proposal, selected for award in July, 2015, will allow the project team to perform whole-genome sequencing on environmental isolates obtained from sediments, assemble the genomes for these organisms, and utilize EMSL resources to guide construction of the individual metabolic models for microorganisms involved in anaerobic methane oxidation.
In March 2014, SMU received some 2012 sparker seismic line data from the USGS that are nearly coincident with data from a 1982 industry survey line. The data will be used to develop dynamic numerical models extending from 1982 to the present. Currently, the numerical heat flow model used for 1977 seismic data heat flow modeling is being reconfigured to apply the 1982 and 2012 datasets.
In addition to developing a dynamic numerical model, SMU has integrated advective fluid flow into the model parameters to better understand the role of fluid flow in hydrate stability along the margin. Preliminary results from advection models demonstrate that the anomalously deep bottom simulating reflections observed in 1977 data along the Beaufort Margin cannot easily be explained via fluid advection from the shelf.
SMU has constrained the upper and lower boundary conditions in their methane hydrate stability model. Upper boundary conditions were based on an analysis of depth-dependent ocean temperatures over various time periods. Lower boundary conditions consider heat flow across the North Slope and Beaufort Sea, and were based on a rigorous statistical analysis of offshore seismic data and historical conductivity and temperature logs. The result is a first-of-its-kind land-sea heat flow contour map of the North Slope of Alaska to the abyssal plane of the Beaufort Sea.
The USGS completed the ship-scoping exercise. Recommendations for use of the R/V Norseman II, which provides the best platform for the coring/heat-flow study, were provided to DOE and accepted.
SMU completed a new forward time, finite difference 3-D heat flow model that utilizes parallel processing on a computational graphics processing unit (cGPU). Integrating the heat flow model with the GPU computing code dramatically increases the computational speed by ~100 times; a 3-D model that initially took ~30 days to run now takes ~7 hours. Multiple 3-D heat flow scenarios at varying resolutions for the U.S. Beaufort have been run using the new code to assess hydrate stability across the region. The results of these model runs have been documented in a draft manuscript submitted for review to the Journal of Geophysical Research: Solid Earth.