Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Sort descending Opportunity
Method for Producing Hydrogen from Coal and Natural Gas U.S. Patent Pending

Research is active on a method to produce hydrogen from coal and natural gas via chemical looping fuel gasification and steam oxidation with novel metal oxides. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Efficient Processes for the Conversion of Methane to Syngas U.S. Patent Pending

Research is active on a method to convert methane into synthesis gas using a mixture of metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Cyber-Physical System Model for Monitoring and Control U.S. Patent Pending

Research is active on the design of a cyber-physical system to monitor and exert control over multistage networked plants and processes such as multistage chemical processing plants and power generation facilities. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Laser Ignition Technology U.S. Patent Pending

This technology uses composite lasers to produce multiple temporal ignition pulses, which can be used to improve the efficiency of both laser ignition systems for natural gas fueled engines as well as laser-induced breakdown spectroscopy (LIBS) sensors. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas-fueled engines help to reduce transportation and energy costs, fuel consumption and harmful emissions compared to conventional gasoline engines. One reason for these improvements is because combustion in a natural gas fueled engine takes place in what is called a lean burn mode, in which fuel is burned with excess of air. However, this lean burn mode may lead to unnecessary misfire when the ignition spark occurs but fails to properly ignite the fuel and air mixture.

Optical Sensing Materials Comprising Metal Oxide Nanowires U.S. Patent Pending

The invention consists of the application of metal oxide nanowire-based sensor layers to optical sensing platforms such as optical fiber-based sensor devices. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Thin film and thick film metal oxide based materials are typically employed as the active layer in harsh environment chemical sensing. However, these sensing layers do not have sufficient sensitivity and chemical selectivity in many applications because of their microstructure and the lack of a sufficiently large surface area.

Producing Hydrogen from Coal Via Catalytic/Chemical Looping Processes U.S. Patent Pending

This invention describes a novel catalytic method combined with a chemical looping process to produce a hydrogen (H2)-rich synthesis gas (syngas) stream free of the nitrogen from coal. The catalytic process uses reduced metal oxide/coal/steam to produce a H2-rich syngas stream that is free of nitrogen (N2) from coal while the chemical looping combustion (CLC) of fuel with the metal oxide is used for production of the heat required for the catalytic process. CLC processes also produce a concentrated stream of carbon dioxide (CO2) that is ready for sequestration. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Traditional coal gasification requires an expensive air separation unit to produce N2-free syngas. However, NETL’s novel catalytic process using reduced metal oxide/coal/steam does not require an air separation unit for production of nitrogen free syngas stream. Heat is traditionally produced via fuel combustion, which generates a CO2 stream mixed with N2. This stream requires expensive separation technologies for CO2 sequestration. The novel catalytic process uses the heat from CLC of fuel, which generates a sequestration ready CO2 stream. Integration of the processes, addressing contaminant issues and scaling up the technology for commercialization are necessary.

Regenerable Non-Aqueous Basic Immobilized Amine Slurries for Removal of Carbon Dioxide (CO2) from a Gaseous Mixture U.S. Patent Pending

The innovation represents a BIAS particle sorbent suspended in a non-aqueous fluid carrier (slurry) that is capable of CO2 sorption, is easy to incorporate into established power plants, and can minimize energy and infrastructure requirements.

Challenge

Carbon sequestration can reduce the emissions of CO2 from large point sources and holds potential to provide deep reductions in greenhouse gas emissions. Amine-based solid sorbents are effective and economical agents for CO2 capture from gaseous mixtures. However, because of the high concentration of CO2 in many feed streams, a large quantity of the gas often reacts with the sorbent exothermically to produce excessive heat, which must be removed from the sorbent to prevent temperature instability within the reactor and to eliminate potential degradation of the sorbent. Reducing the damage to sorbents with this technology and method can increase efficiency and reduce replacement costs faced by 

Plasmonic Heating for Catalytic Co2 Conversion and Utilization U.S. Patent Pending

Research is active on the patent pending technology titled, "Method of Conducting a Thermally Driven Reaction Using Plasmonic Heating." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Corrosion Detection Sensors for Use in Natural Gas Pipelines U.S. Patent Pending

This invention describes a system and method for detecting corrosion in natural gas pipelines using an optical platform or a wireless platform. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

The U.S. Energy Information Administration states that natural gas accounts for nearly 30 percent of energy consumption in the United States. More than 300,000 miles of natural gas transmission and gathering lines deliver this valuable energy source to consumers. Like any energy infrastructure, this network of pipelines requires significant maintenance costs. In the case of natural gas pipelines, corrosion accounts for around 25 percent of incidents over the last 30 years, 61 percent of which was caused by internal corrosion.

The corrosion-related annual cost for such incidents amounts to $6 to $10 billion in the United States each year. Therefore, a need exists to monitor corrosion inside of the gas pipelines to implement corrosion mitigation and control before any failure.

High-Performance Corrosion-Resistant High-Entropy Alloys U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) developed designs, manufacturing processes, and corrosion property validations of new high-performance corrosion-resistant high-entropy alloys that are superior to and less expensive than existing alloys and demonstrate improved resistance to corrosion, including pitting corrosion in harsh environments and sea water.

Challenge
Metals and alloys used in sea water or acidic aqueous environments are prone to various forms of corrosion, including pitting and/or crevice corrosion because of the presence of aggressive salt, such sodium chloride (NaCl). Pitting and crevice corrosion can serve as initiation sites for developing cracks that will lead to catastrophic failures of the metallic components. The current solution to this problem is to coat the metals with nickel (Ni)-based superalloys such as Hastelloy® C276. Hastelloy®, which is very expensive.