Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Sort ascending Patent Information Opportunity
Method for Producing Hydrogen from Coal and Natural Gas U.S. Patent Pending

Research is active on a method to produce hydrogen from coal and natural gas via chemical looping fuel gasification and steam oxidation with novel metal oxides. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Efficient Processes for the Conversion of Methane to Syngas U.S. Patent Pending

Research is active on a method to convert methane into synthesis gas using a mixture of metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Cyber-Physical System Model for Monitoring and Control U.S. Patent Pending

Research is active on the design of a cyber-physical system to monitor and exert control over multistage networked plants and processes such as multistage chemical processing plants and power generation facilities. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

System for Enhanced Chemical Reaction, Dissociation, or Separation by Electrostatic/Microwave and/or Radio Frequency Controlled Resonant Electron Interaction U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a system for enhancing chemical reactions by electrostatic/microwave and/or/ radio frequency controlled resonant electron interaction. The invention performs at a much lower temperature than conventional processes. The system can reduce the cost of many important industrial processes including nitrogen and hydrogen production. Although the focus of the invention is on producing hydrogen from hydrocarbon sources, many different reactions could be activated using the same physics. This invention is available for licensing and/or further collaborative research.

Challenge

Approximately 50 percent of natural gas is used by industry. The existing chemical reaction-based processes, such as, the Haber process, are very energy intensive and costly. This invention increases the rate and extent of chemical reactions at much lower temperatures resulting in higher product yield and overall production. It also allows for reduced energy requirements and reactor size of dry and partial oxidation reformers.

Novel Algorithm Enables Manufacture of Continuous Single-Crystal Fibers of Infinite Length U.S. Patent Pending

A patent-pending computer-control algorithm invented by the National Energy Technology Laboratory enables the manufacture of single-crystal optical fibers of potentially infinite length, with improved diameter control and faster growth, using a laser-heated pedestal growth (LHPG) system. These fibers can be used to fabricate sensors that can withstand the harsh environments of advanced energy systems. This technology is available for licensing and/or further collaborative research from NETL.

Challenge

Single-crystal optical fibers made of sapphire and other materials are only commercially available in short lengths of less than 2 meters. Using conventional technologies, length is limited by the finite size of the feedstock pedestal and equipment constraints that prevent supplying more feedstock material without compromising crystal quality. A robust technological solution is needed that allows replacement of the feedstock pedestal with minimum crystal defects and more consistent diameter for long single-crystal fibers. Other algorithms have been studied, but none has offered the ability to produce fibers of arbitrary length.

Blended Polymer for Gas Separation Membranes U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a new high performance microporous polymeric blend for carbon dioxide (CO2) gas capture and separation applications. This invention is available for licensing and/or further collaborative research from NETL.

Conducting Metal Oxides Integrated With Surface Acoustic Waves (SAW) Sensors For Use In Harsh Environments U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a method for achieving tunable gas sensitivity of surface acoustic wave (SAW) devices. The innovation implements a class of materials with tunable absolute film conductivities called conducting metal oxides (CMOs), which enables SAW devices to be calibrated for gas sensitivity in diverse harsh-environment conditions.

Hydrophobic Carbon Capture Solvent USPN 9,643,123; USPN 9,975,080; U.S. Patent Pending

Research is active on the design and synthesis of a new carbon dioxide (CO2) capture solvent based on PEG-Siloxane. Unlike conventional gas-removal solvents, the NETL’s new solvent technology is hydrophobic and has a low vapor pressure. A hydrophobic solvent with low vapor pressure is highly advantageous because it can reduce the cost and energy-consumption associated with CO2 capture by simplifying solvent regeneration and negating the need to remove water from fuel gas. For example, this solvent operates above room temperature and can be regenerated using low-grade and waste heat, whereas commercially available solvents operate below room temperature and can’t be regenerated using low-grade or waste heat This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Laser Induced Breakdown Spectroscopy Probe for Simplified Light Collection and Laser Operation USPN 10,145,737

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a laser induced breakdown spectroscopy (LIBS) probe featuring simplified construction that minimizes the need for optical elements from the probes data collection path, reducing potential interference with the transmission of high quality spectra. By reducing the complexity and cost of the laser head, the invention maximizes the amount and quality of light returned for analysis and increases the usefulness of LIBS research.

Stable Immobilized Amine Sorbents for the De-Coloration of Waste Waters U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a system and method for combining polyamines, which immobilizes the dye-absorbing amine sites within low cost, porous silica particles. The innovation has the potential to remove organic-based colorants and pollutants from different water sources. This invention is available for licensing and/or further collaborative research from NETL