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OHIO

A Block Flow Diagrams

DOE/NETL Baseline Configuration Case 1

DOE Baseline Analysis
Case 1: Coal-to-Crude-Methanol without CCS
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SUALE Block Flow Diagrams

DOE/NETL Baseline Configuration Case 2

DOE Baseline Analysis
Case 2: Coal-to-Crude-Methanol with CCS
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Coal Gasification for Methanol Production:
OSU Process
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Economic Analyses
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OHIO Zones of Metal Oxides for Chemical Looping

UNIVERSITY
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Zone A: They can work as
oxygen carriers for both CLFO
and CLPO. (NiO, CuO, CoO,
Fe,O,, and Fe,0,, etc.)

Zone B: They are able to work
as oxygen carriers for CLPO but
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as oxygen carriers and are
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amount of H,O generated.
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%%5 Bench Moving Bed Reducer
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e Coal mixed with Oxygen Carrier particles

e Tests performed:
* Methane to syngas
e Sub-bituminous and Bituminous coal
e Coal to syngas
* Co-injection of methane
e Co-injection of methane and steam
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Experimental Studies — Fixed Bed Tests
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#as Coal to Syngas - Bench Scale Moving Bed Tests
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Concentration (%)

OSU Chemical Looping Hydrogen Production Process
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Concluding Remarks

From theoretical (thermodynamics and kinetics),
experimental (bench and sub-pilot), and economic (third
party) evidence, the OSU chemical looping gasification
technology using coal, shale gas, and/or biomass as
feedstock to produce, in one step without the use of
molecular oxygen from air separation, to produce a high
purity syngas at H,:CO at 2:1 for direct application to
generate chemicals and liquid fuels downstream can
potentially revolutionize the energy and chemical
industries in short years.

The studies from the concluded DOE Phase 1 project
activities with independent economic assessment by
WorleyParsons have ascertained the technical
soundness, process viability and economic
attractiveness of these OSU technologies and prepared
for further process scale-up efforts.



Concluding Remarks (continued)

 The experience from the on-going high
pressure pilot demonstration of H,
production at NCCC for the OSU Syngas
chemical looping technology can
accelerate the gasification
commercialization process.
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