Search Publications

Search Publications


Back Button

Welcome to the Energy Analysis Search Publications page. Hundreds of Energy Analysis related publications can be found in this repository. To get started, begin filtering the results below by using the quick filters located on the Search Publications Landing Page or search within filtered results by using the search box below. 


Sort Preference:


Search Terms
Technology Focus: Solid Oxide Fuel Cells

Integrating the PNNL SOFC Multi-Physics Model into the NETL Aspen System Model as a Reduced Order Model

Date: 7/15/2015
Contact: Gregory Hackett

Conference presentation from the 16th Annual SOFC Workshop that highlights the integration and validation of the PNNL SOFC model into NETL SOFC system models. The integration strengthens NETL's analyses by incorporating state-of-the-art industry performance data that can be used to inform real and achievable future targets for the cost and performance of SOFC technology.


Techno-Economic Analysis of Integrated Gasification Fuel Cell Systems

Date: 11/24/2014
Contact: Gregory Hackett

This report presents the results of an updated Pathway Study for coal-based, integrated gasification fuel cell (IGFC) power systems with carbon capture and storage (CCS). The results quantify the performance and cost benefits for a series of projected gains made through the development of advanced technologies or improvements in plant operation and maintenance. The results represent the potential future benefits of IGFC technology development. They also provide DOE with a basis to select the most appropriate development path for IGFC, and to measure and prioritize the contribution of its R&D program to future power systems technology.


IGFC and NGFC Pathway Studies - Estimation of Stack Degradation Costs and Salient Results

Date: 7/22/2014
Contact: Gregory Hackett

Conference presentation from the 15th Annual SECA Workshop. This presentation highlights the methodology used to estimate costs due to stack performance degradation. Also highlighted are the most recent system pathway results for integrated fuel cell gasification (IGFC) and natural gas fuel cell (NGFC) power generation technologies.


Analysis of Natural Gas Fuel Cell Plant Configurations - Revision 1

Date: 11/29/2013
Contact: Gregory Hackett

This report presents the results of an updated Pathway Study for natural gas fueled, fuel cell (NGFC) power systems with carbon capture and storage (CCS). The results quantify the performance and cost benefits for a series of projected gains made through the development of advances in the component technologies or improvements in plant operation and maintenance. The results represent the potential future benefits of NGFC technology development. They also provide DOE with a basis to select the most appropriate development path for NGFC, and to measure and prioritize the contribution of its R&D program to future power systems technology.


Performance and Cost of a Natural Gas Fuel Cell Plant with Complete Internal Reforming

Date: 11/27/2013
Contact: Gregory Hackett

The performance and cost of a natural gas fueled, fuel cell (NGFC) power system with complete internal reformation (IR) is presented in this report. The report presents an update to a previous NGFC Pathway Study that includes carbon capture and storage (2011). IR utilizes heat generated in the fuel cell stack directly for the endothermic reformation reaction, improving system efficiency. NGFC systems with complete IR form the ultimate embodiment of the current fuel cell technology development program at the National Energy Technology Laboratory, which is consistent with the commercialization strategies being pursued in the stationary power generation sector.


Assessment of the Distributed Generation Market Potential for Solid Oxide Fuel Cells

Date: 9/29/2013
Contact: Charles Zelek

NETL analyzed the strengths of the solid oxide fuel cell (SOFC) system in conjunction with distributed generation (DG) market segments in the U.S. and determined that natural gas compressor stations, grid strengthening, and data centers were potential early market-entry opportunities. These three DG market segments are projected to demand two gigawatts of additional power between now and 2018 and 25 GWs through 2040. This analysis shows that the DG SOFC system becomes cost competitive with other fossil-fuel based DG technologies after 25 MWe of installed capacity, around 2025. The SOFC DG application validates and enables utility scale fuel cell systems with carbon capture, and forms an essential first phase of the NETL technology development roadmap.


Quality Guideline for Energy System Studies: CO2 Impurity Design Parameters

Date: 9/27/2013
Contact: William Summers

This section of the Quality Guidelines provides recommended impurity limits for CO2 stream components for use in conceptual studies of CO2 carbon capture, utilization, and storage systems. These limits were developed from information consolidated from numerous studies and are presented by component. Impurity levels are provided for limitations of carbon steel pipelines, enhanced oil recovery (EOR), saline reservoir sequestration, and cosequestration of CO2 and H2S in saline reservoirs.


Quality Guideline for Energy System Studies: Process Modeling Design Parameters

Date: 1/31/2012
Contact: William Summers

The purpose of this section of the Quality Guidelines is to document the assumptions most commonly used in systems analysis studies and the basis for those assumptions. The large number of assumptions required for a thorough systems analysis make it impractical to document the entire set in each report. This document will serve as a comprehensive reference for these assumptions as well as their justification.


Quality Guideline for Energy System Studies: Specifications for Selected Feedstocks

Date: 1/31/2012
Contact: William Summers

This document provides recommended specifications for various feedstocks that are commonly found in NETL-sponsored energy system studies. Adhering to these specifications should enhance the consistency of such studies. NETL recommends these guidelines be followed in the absence of any compelling market, project, or site-specific requirements in order to facilitate comparison of studies evaluating coal-based technologies.


Research and Development Goals for CO2 Capture Technology

Date: 12/1/2011
Contact: Timothy Fout

This document outlines the carbon capture goals set forth by DOE/NETL and provides a detailed breakdown and justification of their derivation.


Analysis of Natural Gas Fuel Cell Plant Configurations

Date: 5/1/2011
Contact: Walter Shelton

This report presents the results of a Pathway Study for natural gas fueled, fuel cell (NGFC) power systems with carbon capture and sequestration (CCS). The results quantify the performance and cost benefits for a series of projected gains made through the development of advances in the component technologies or improvements in plant operation and maintenance. The design and cost bases for this pathway study closely follows the bases applied in the NETL, 2010, Bituminous Baseline report so that direct performance and cost comparisons can be made with the conventional fossil-fuel power plant results estimated in that report. Performance and cost projections for a baseline integrated Gasification Systems combined cycle (IGCC) power plant, a baseline natural gas combined cycle (NGCC) power plant, and prior coal-based integrated Gasification Systems fuel cell (IGFC) pathways, are compared with the results for the NGFC pathways. The results represent the potential future benefits of NGFC.


Analysis of Integrated Gasification Fuel Cell Plant Configurations

Date: 2/25/2011
Contact: Walter Shelton

This report presents the results of a Pathway Study for coal-based, integrated gasification fuel cell (IGFC) power systems with carbon capture and sequestration (CCS). The results quantify the performance and cost benefits for a series of projected gains made through the development of advanced technologies or improvements in plant operation and maintenance. The results represent the potential future benefits of IGFC technology development. They also provide DOE with a basis to select the most appropriate development path for IGFC, and to measure and prioritize the contribution of its R&D program to future power systems technology. The IGFC plants in this study apply advanced, planar, solid oxide fuel cell (SOFC) technology with separate anode and cathode off-gas steams, and incorporate anode off-gas oxy-combustion for nearly complete carbon capture. The SOFC simulations utilize the expected operating conditions and performance capabilities of this solid oxide fuel cell technology, ope


Current and Future Technologies for Gasification-Based Power Generation, Volume 2: Carbon Capture, Revision 1

Date: 11/1/2010
Contact: James Fisher

The impact of a portfolio of advanced technologies in DOE's Clean Coal R&D Program were evaluated in gasification-based power plant configurations with carbon capture and sequestration (CCS) resulting in power plants that are significantly more efficient and affordable than today's fossil energy technologies. In the IGCC process, the study estimates that a 7 percentage point efficiency improvement over conventional gasification technology is possible. With fuel cell technology, process efficiency improvements of 24 percentage points are potentially achievable. Furthermore, successful R&D for the advanced technologies evaluated results in capital costs and cost of electricity that is more than 30% below that of conventional IGCC technology with CCS.


Fuel Composition Effects and Other Operational Parameters on Solid Oxide Fuel Cell Performance

Date: 10/1/2010
Contact: Eric Grol

This analysis evaluates the effects of syngas composition (including methane and diluents such as water and carbon dioxide), fuel utilization, and anode recycle rate on theoretical solid oxide fuel cell performance.