Search Publications

Search Publications


Back Button

Welcome to the Energy Analysis Search Publications page. Hundreds of Energy Analysis related publications can be found in this repository. To get started, begin filtering the results below by using the quick filters located on the Search Publications Landing Page or search within filtered results by using the search box below. 


Sort Preference:


Search Terms
Life Cycle Analysis: Fuels

Is net carbon negative crude achievable with CO2 enhanced oil recovery?

Date: 6/15/2016
Contact: Timothy J. Skone, P.E.

This presentation was given at the 2016 Carbon Capture, Utilization, and Storage Conference in June, 2016, and provided the background on the complexity of determining the greenhouse gas emissions from this type of complex interconnected energy system. It also showed results across the wide range of possible permutations of this type of system.


A Life Cycle Analysis Perspective of CO2 Enhanced Oil Recovery

Date: 4/12/2016
Contact: Timothy J. Skone, P.E.

This presentation was given at North American Energy Ministers Trilateral Climate Change and Energy meeting on Advancing the Deployment of CCUS in Mexico City in April, 2016, and provided the background on the complexity of determining the greenhouse gas emissions from this type of complex interconnected energy system. It also showed results across the wide range of possible permutations of this type of system.


A Life Cycle Analysis Perspective of ROZ – CO2 Enhanced Oil Recovery

Date: 1/12/2016
Contact: Timothy J. Skone, P.E.

This presentation was given at USAE ROZ Workshop in January, 2016, and provided the background on the complexity of determining the greenhouse gas emissions from this type of complex interconnected energy system. It also showed results across the wide range of possible permutations of this type of system.


Approaches to Developing a Cradle-to-Grave Life Cycle Analysis of Conventional Petroleum Fuels Produced in the U.S. with an Outlook to 2040

Date: 10/7/2015
Contact: Timothy J. Skone, P.E.

The U.S. crude consumption mix has changed dramatically since the National Energy Technology Laboratory (NETL) first performed a comprehensive LCA of petroleum derived fuels (NETL, 2008). According to the Energy Information Administration’s Annual Energy Outlook, domestic production will account for nearly 60% of U.S. crude consumption by 2015 (EIA, 2015). This study examines the life cycle GHG footprint of diesel, gasoline, and jet fuel projected to 2040. The results of this analysis encompass a cradle-to-grave inventory of GHG emissions by utilizing open-source models (Oil Production Greenhouse gas Emissions Estimator (OPGEE) and Petroleum Refinery Life Cycle Inventory Model (PRELIM)) paired with Monte Carlo simulation to account for changes to crude extraction, transport and refining as well as forecast uncertainty from the EIA Annual Energy Outlook (El-Houjeiri et al, 2013; Abella & Bergerson, 2012). Study results are documented in a forthcoming peer reviewed journal article.


U.S. Coal Exports – Life Cycle GHG comparison of PRB coal to foreign export competitors in the Asian Market

Date: 10/6/2015
Contact: Timothy J. Skone, P.E.

The purpose of this study was to compare environmental implications of exporting United States (U.S.) coal resources to Asian markets with respect to alternative global sources of steam coal. This study seeks to evaluate and understand potential environmental consequences of exporting PRB coal compared to global alternative sources of coal. This study was informed by a 10-person industry based Technical Steering Committee to improve the quality of the analysis. The key question addressed by the study: Is there a definitive difference between the life cycle GHG profiles between sourcing coal from the U.S. (PRB), Australia, or Indonesia for Japan, South Korea, or Taiwan. Given the uncertainty in the model parameter values, there is not a definitive difference between the life cycle GHG profiles between sourcing coal from the U.S. (PRB), Australia, or Indonesia for Japan, South Korea, or Taiwan. This document was presented at the LCAXV conference in October, 2015.


Managing Uncertainty in Life Cycle Analysis of Natural Gas Energy Systems: Two Case Studies

Date: 10/6/2015
Contact: Timothy J. Skone, P.E.

Two case studies are presented that show how Monte Carlo can reduce uncertainty in LCA results. The first case study is based on NETL's upstream natural gas model. Parameterized life cycle models provide flexibility in the specification of uncertainty ranges around parameters. The second case study demonstrates the ways in which too many parameters can confound the interpretation of results when a different question is being asked, namely picking the “better” scenario. The uncertainty can be reduced by identifying the common parameters between scenarios and holding those values constant while Monte Carlo simulation is applied to the remaining parameters. While this negatively affects the absolute values generate by the models, it provides a more direct comparison between the scenarios and allows us to focus on the parameters that differentiate options and identify true opportunities for improvement. This document of study results was presented at the LCA XV Conference in October, 2015


NETL Fischer-Tropsch Black Box Model Documentation

Date: 9/15/2015
Contact: Timothy J. Skone, P.E.

The purpose of the Fischer-Tropsch (F-T) Black Box Model is to allow for the screening of the impacts of F-T finished fuels production based on the input of a unique syngas composition. Utilizing the composition of the raw syngas, the model calculates the following outputs based on a facility sized to produce 50,000 bbl/day of liquid product: CO2 emissions, liquid product flows, required syngas input, and the net export electricity from the facility.NETL completed this model/study for the Connecticut Center for Advanced Technology (CCAT) to provide techno-economic and life cycle analysis modeling support for CBTL alternative jet fuel production, which forms key references to their report to the Defense Logistics Agency (their project sponsor/funder).


NETL Fischer-Tropsch Black Box Model

Date: 9/15/2015
Contact: Timothy J. Skone, P.E.

The purpose of the Fischer-Tropsch (F-T) Black Box Model is to allow for the screening of the impacts of F-T finished fuels production based on the input of a unique syngas composition. Utilizing the composition of the raw syngas, the model calculates the following outputs based on a facility sized to produce 50,000 bbl/day of liquid product: CO2 emissions, liquid product flows, required syngas input, and the net export electricity from the facility. NETL completed this model/study for the Connecticut Center for Advanced Technology (CCAT) to provide techno-economic and life cycle analysis modeling support for CBTL alternative jet fuel production, which forms key references to their report to the Defense Logistics Agency (their project sponsor/funder).


Comprehensive Analysis of Coal and Biomass Conversion to Jet Fuel: Oxygen Blown, Transport Reactor Integrated Gasifier (TRIG) and Fischer-Tropsch (F-T) Catalyst Configurations Modeled and Validated Scenarios

Date: 9/8/2015
Contact: Timothy J. Skone, P.E.

This study evaluates the technological/process, life cycle environmental, and economic perspective of 20 discreet F-T jet fuel production scenarios. The technological/process model provides a process level evaluation of the 10 alternate CBTL facility scenarios considered in this study. Aspen Plus simulation models for the CBTL facility scenarios were developed to determine the composition and flows of all of the major streams in the plants. These were used to develop conceptual level cost estimates for capital and operating costs for the major process units. NETL completed this study for the Connecticut Center for Advanced Technology (CCAT) to provide techno-economic and life cycle analysis modeling support for CBTL alternative jet fuel production, which forms key references to their report to the Defense Logistics Agency (their project sponsor/funder).


Comprehensive Analysis of Coal and Biomass Conversion to Jet Fuel: Oxygen Blown, Entrained-Flow Gasifier (EFG) and Fischer-Tropsch (F-T) Catalyst Configurations Modeled and Validated Scenarios

Date: 9/8/2015
Contact: Timothy J. Skone, P.E.

This study evaluates the technological/process, life cycle environmental, and economic perspective of 10 discreet F-T jet fuel production scenarios. The technological/process model provides a process level evaluation of the 10 alternate CBTL facility scenarios considered in this study. Aspen Plus simulation models for the CBTL facility scenarios were developed to determine the composition and flows of all of the major streams in the plants. These were used to develop conceptual level cost estimates for capital and operating costs for the major process units. NETL completed this study for the Connecticut Center for Advanced Technology (CCAT) to provide techno-economic and life cycle analysis modeling support for CBTL alternative jet fuel production, which forms key references to their report to the Defense Logistics Agency (their project sponsor/funder).


Coal and Biomass to Liquids (CBTL) Greenhouse Gas Optimization Tool

Date: 3/11/2015
Contact: Timothy J. Skone, P.E.

The purpose of the model is to perform scenario analysis to optimize GHG performance under varies CBTL configurations.  This model expands upon the NETL CBTL Jet Fuel Model by providing the user the ability to choose from three coal types (Illinois No. 6 bituminous coal, Montana Rosebud sub-bituminous coal, or North Dakota Lignite) and three biomass types (Southern pine, switchgrass, or municipal solid waste). The model will also allow the user to adjust the fraction of the captured CO2 that is vented and adjust the overall efficiency of the plant.  The model includes environmental performance data for CBTL plants modeled under the CCAT case studies and two additional NETL studies: Production of Zero Sulfur Diesel Fuel from Domestic Coal: Configurational Options to Reduce Environmental Impact and Cost and Performance Baseline for Fossil Energy Plants Volume 4: Coal-to-Liquids via Fischer-Tropsch Synthesis.


Coal and Biomass to Liquids (CBTL) Greenhouse Gas Optimization Tool Documentation

Date: 3/11/2015
Contact: Timothy J. Skone, P.E.

This report is the user documentation for the NETL CBTL Jet Fuel Model submitted under a separate approval routing. The documentation is intended to accompany the model. The documentation explains how to the use the model. The documentation does not contain any energy analysis findings. NETL completed this model/report as part of a study for the Connecticut Center for Advanced Technology (CCAT) to provide techno-economic and life cycle analysis modeling support for CBTL alternative jet fuel production, which forms key references to their report to the Defense Logistics Agency (their project sponsor/funder).


CBTL Jet Fuel Model

Date: 2/27/2015
Contact: Timothy J. Skone, P.E.

An Excel-based model was developed to allow in-depth user access to the technological process, economic, and life cycle environmental results that were completed in support of this study, for each of the different CBTL jet fuel production scenarios (total of 49 unique result sets when counting both TRIG and EFG scenarios). The CBTL Jet Fuel Model incorporates a stochastic analysis of modeled results, drawing on input statistical distributions for the 17 environmental and 40 economic parameters. A stochastic analysis was performed by using the Palisade Corporation’s @RISK Excel add-in. NETL completed a CRADA with Connecticut Center for Advanced Technology (CCAT) to provide techno-economic and life cycle analysis modeling support for CBTL alternative jet fuel production, which forms key references to their report to the Defense Logistics Agency (their project sponsor/funder).


Cost and Performance Baseline for Fossil Energy Plants - Volume 4: Coal-to-Liquids via Fischer-Tropsch Synthesis

Date: 10/15/2014
Contact: William Summers

This report establishes performance and cost data for coal-to-liquids systems, specifically by means of gasification and Fischer-Tropsch reaction. The analyses were performed on a consistent technical and economic basis to assess the design and financial performance of a commercial-scale coal-to-Fischer-Tropsch liquids facility. The cost and performance data were compiled from published reports, information obtained from vendor quotes and users of the technology, and data from designing and building utility and refining projects.


Developing an Approach for the Life Cycle Analysis of Conventional Petroleum Fuels: Outlook to 2040 – Crude Extraction and Transport

Date: 10/7/2014
Contact: Timothy J. Skone, P.E.

This presentation, given at the LCA XIV Conference, starts with the original NETL baseline, which is consistent with other published values for conventional fuel production in the U.S, and updates it to determine the life cycle GHG footprint of diesel, gasoline, and jet fuel over time to 2040. The results of this analysis encompass a cradle-to-grave inventory of GHG emissions by utilizing updated models to account for changes to crude extraction, transport and refining.


Evaluating GHGs from Transportation: Alternative Fuels and Alternative Metrics

Date: 10/6/2014
Contact: Timothy J. Skone, P.E.

In this presentation, given at the LCA XIV conference, the production and end-use combustion of diesel from conventional petroleum and alternative coal to liquid (CTL) or gas to liquid (GTL) technologies with carbon capture and storage (CCS) are compared using a number of different climate change metrics. In addition to traditional static LCIA GHG metrics such as global warming potential (GWP) and global temperature potential (GTP), we model the emissions and their impact over time using technology warming potential (TWP) and temperature results.


A Review of the CO2 Pipeline Infrastructure in the U.S.

Date: 4/21/2014
Contact: Donald Remson

This report provides an overview of the state of CO2 pipeline infrastructure, both the existing and the current planned expansion based on industry announcements. In addition, EP-NEMS, a modified version of EIA's 2014 NEMS model, was used to run three cases in order to provide a snapshot of potential CO2 pipeline expansion under various carbon policy scenarios. The three scenarios studied were a reference case, an extended policies case (Cap40), and a carbon price case (CP25). The report also contains an overview of the current permitting, regulations, and policies involved with CO2 pipeline infrastructure.


Comprehensive Analysis of Coal and Biomass Conversion to Jet Fuel: Oxygen Blown, Transport Reactor Integrated Gasifier (TRIG) and Fischer-Tropsch (F-T) Catalyst Configurations

Date: 2/19/2014
Contact: Timothy J. Skone, P.E.

The Connecticut Center for Advanced Technology (CCAT) has received funding from the Defense Logistics Agency (DLA) Energy to demonstrate how liquid fuel can be produced from coal and meet the Energy Independence and Security Act (EISA) of 2007 greenhouse gas (GHG) requirement for DOD fuel purchases of synthetic fuel. Section 526 of EISA requires that any fuel purchases have a life-cycle CO2 emission less than conventional petroleum fuel. This study evaluates different scenarios for the conversion of coal and biomass to jet fuel using oxygen blown, transport reactor integrated gasifier and Fischer-Tropsch catalyst configurations.


A Parameterized Life Cycle Analysis of Crude from CO2-Enhanced Oil Recovery

Date: 10/2/2013
Contact: Timothy J. Skone, P.E.

Carbon dioxide-enhanced oil recovery (CO2-EOR) is a tertiary oil extraction technology used after primary and secondary techniques have been used at an oil field. CO2-EOR operators use alternating injection schemes of CO2 and water to reduce the viscosity of crude oil, allowing recovery of a resource that would be otherwise unrecoverable. The primary objective of CO2-EOR is to produce additional crude oil from a mature oil field, but CO2-EOR also sequesters CO2. A process-based approach uses parameters that allow comparisons of different operating conditions and characterization of uncertainty. The model leverages existing NETL life cycle data to account for environmental burdens upstream and downstream from the CO2-EOR site, including natural dome and several anthropogenic sources of CO2, petroleum refining, and combustion of finished petroleum products such as gasoline or diesel.


The Carbon Footprint of Carbon Dioxide

Date: 10/1/2013
Contact: Timothy J. Skone, P.E.

This presentation examines the carbon footprint of obtaining carbon dioxide. While post-combustion capture at power plants may represent the best near-term opportunity for CO2 capture, there are other sources of CO2 in nature and industry. This analysis accounts for the environmental burdens of CO2 from three alternative sources: natural CO2 domes, natural gas processing plants, and ammonia production plants. This analysis uses a life cycle analysis (LCA) approach for developing data and modeling CO2 systems. The energy and material flows for key processes in the CO2 supply chain were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis.


Gate-to-Grave Life Cycle Analysis Model of Saline Aquifer Sequestration of Carbon Dioxide (Presentation)

Date: 9/30/2013
Contact: Timothy J. Skone, P.E.

A gate-to-grave life cycle analysis (LCA) model was created to quantify the environmental impacts of the various processes associated with saline aquifer sequestration. The following unit processes are accounted for in this analysis: site preparation, well construction, carbon dioxide sequestration operations, site monitoring, brine management, well closure, and land use. This analysis used an LCA approach for developing data and modeling saline aquifer sequestration. The energy and material flows for key processes within the gate-to-grave boundaries of the saline aquifer were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis (e.g., 1 tonne of carbon dioxide sequestered).


Gate-to-Grave Life Cycle Analysis Model of Saline Aquifer Sequestration of Carbon Dioxide (Report)

Date: 9/30/2013
Contact: Timothy J. Skone, P.E.

A gate-to-grave life cycle analysis (LCA) model was created to quantify the environmental impacts of the various processes associated with saline aquifer sequestration. The following unit processes are accounted for in this analysis: site preparation, well construction, carbon dioxide sequestration operations, site monitoring, brine management, well closure, and land use. This analysis used an LCA approach for developing data and modeling saline aquifer sequestration. The energy and material flows for key processes within the gate-to-grave boundaries of the saline aquifer were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis (e.g., 1 tonne of carbon dioxide sequestered).


Gate-to-Gate Life Cycle Inventory and Model of CO2-Enhanced Oil Recovery (Presentation)

Date: 9/30/2013
Contact: Timothy J. Skone, P.E.

A gate-to-gate life cycle analysis (LCA) model was created to quantify the environmental impacts of the various processes associated with enhanced oil recovery (EOR). The following unit processes are accounted for in this analysis: injection and recovery, bulk separation and storage, gas separation, supporting processes, and land use. This analysis used an LCA approach for developing data and EOR and gas processing. The energy and material flows for key processes within the gate-to-gate boundaries of the EOR site were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis (e.g., 1 barrel of crude produced via EOR).


Cradle-to-Gate Life Cycle Analysis Model for Alternative Sources of Carbon Dioxide (Report)

Date: 9/30/2013
Contact: Timothy J. Skone, P.E.

While post-combustion capture at power plants may represent the best near-term opportunity for CO2 capture, there are other sources of CO2 in nature and industry. This analysis accounts for the environmental burdens of CO2 from three alternative sources: natural CO2 domes, natural gas processing plants, and ammonia production plants. This analysis uses a life cycle analysis (LCA) approach for developing data and modeling CO2 systems. The energy and material flows for key processes in the CO2 supply chain were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis (e.g., 1 kilogram of CO2 ready for compression and pipeline transport).


Cradle-to-Gate Life Cycle Analysis Model for Alternative Sources of Carbon Dioxide (Presentation)

Date: 9/30/2013
Contact: Timothy J. Skone, P.E.

While post-combustion capture at power plants may represent the best near-term opportunity for CO2 capture, there are other sources of CO2 in nature and industry. This analysis accounts for the environmental burdens of CO2 from three alternative sources: natural CO2 domes, natural gas processing plants, and ammonia production plants. This analysis uses a life cycle analysis (LCA) approach for developing data and modeling CO2 systems. The energy and material flows for key processes in the CO2 supply chain were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis (e.g., 1 kilogram of CO2 ready for compression and pipeline transport).


Gate-to-Gate Life Cycle Inventory and Model of CO2-Enhanced Oil Recovery (Report)

Date: 9/30/2013
Contact: Timothy J. Skone, P.E.

A gate-to-gate life cycle analysis (LCA) model was created to quantify the environmental impacts of the various processes associated with enhanced oil recovery (EOR). The following unit processes are accounted for in this analysis: injection and recovery, bulk separation and storage, gas separation, supporting processes, and land use. This analysis used an LCA approach for developing data and EOR and gas processing. The energy and material flows for key processes within the gate-to-gate boundaries of the EOR site were calculated. These processes were then compiled in a model that scaled the flows between processes to arrive at an inventory of environmental burdens on a common basis (e.g., 1 barrel of crude produced via EOR).


Analysis of Natural Gas-to-Liquid Transportation Fuels via Fischer-Tropsch

Date: 9/1/2013
Contact: Erik Shuster

This study models a gas-to-liquids (GTL) system that nominally produces 50,000 bbl/day of fuels fungible in the refined product infrastructure without further refining steps. Specifically, the system produces 15,500 bbl/day of finished motor gasoline, and 34,500 bbl/day of low-density diesel fuel. The study provides an updated evaluation of cost, technical, and environmental performance. With an estimated total as-spent capital cost of 4.3 billion dollars (3.7 &spamp;ndash; 5.6 billion dollars) or $86,188 ($73,260 - $112,045) per bbl of daily production of Fischer-Tropsch liquids, such a facility would be commercially viable should the market conditions (liquid fuel and natural gas prices) remain as favorable or better throughout the life of the project than during the middle of May 2013. The life cycle greenhouse gas (GHG) emissions for GTL diesel and gasoline when based on current practices in the natural gas industry are 90.6 g CO2e/MJ and 89.4 g CO


LCA XII Presentation: Modeling the Uncertainty of Fischer-Tropsch Jet Fuel Life Cycle Inventories with Monte Carlo Simulation

Date: 10/1/2012
Contact: Timothy J. Skone, P.E.

This presentation discusses the use of Monte Carlo simulation to model the uncertainty in a life cycle inventory of the Gasification Systems of coal and biomass. While the inventory is dominated by carbon dioxide emissions from the Adv. Combustion Systems of the fuel, small changes to the feedstocks that are used to make the fuel can make the difference in complying with the Energy Independence and Security Act of 2007.


Production of Zero Sulfur Diesel Fuel from Domestic Coal: Configurational Options to Reduce Environmental Impact

Date: 5/1/2012
Contact: Thomas Tarka

The conversion of domestic resources such as coal and biomass into diesel fuel is a near-term technology pathway to address the energy security, economic sustainability, and Climate Change Risk Mitigation concerns which currently face our nation. This study evaluates the economic viability and environmental impact of producing diesel fuel via Fischer-Tropsch (FT) synthesis. Two facility design approaches – focused on fuels production and the co-production of fuels and electricity, respectively – were evaluated for the conversion of domestic resources such as coal or a mixture of coal and biomass.


Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: F-T Based SPK-1 Case Study (Report)

Date: 12/1/2011
Contact: Timothy J. Skone, P.E.

In response to the Energy Independence and Security Act (EISA), NETL conducted an LCA (LCA) of 10 fuel production pathways using Fischer-Tropsch synthesis. These pathways use varying combinations of coal and swithgrass feedstocks and two options for carbon management (sequestration or enhanced oil recovery). Only greenhouse gas (GHG) emissions are inventoried. Comparative analysis of the results demonstrate that higher percentages of biomass result in lower life cycle GHG emissions when using switchgrass. The choice of carbon management strategy has an effect on the results.


Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer Tropsch Based SPK-1 Case Study (Model)

Date: 9/1/2011
Contact: Timothy J. Skone, P.E.

In response to the Energy Independence and Security Act (EISA), NETL conducted an LCA of 10 fuel production pathways using Fischer-Tropsch synthesis. These pathways use varying combinations of coal and swithgrass feedstocks and two options for carbon management (sequestration or enhanced oil recovery). Only greenhouse gas (GHG) emissions are inventoried. Comparative analysis of the results demonstrate that higher percentages of biomass result in lower life cycle GHG emissions when using switchgrass. The choice of carbon management strategy has an effect on the results.


Life Cycle Analysis: Ethanol from Biomass - Presentation

Date: 9/1/2011
Contact: Timothy J. Skone, P.E.

The Life Cycle Analysis of an Ethanol Plant utilizing Biomass develops an Inventory of emissions results and calculates Life Cycle costs.


Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: F-T Based SPK-1 Case Study (Presentation)

Date: 9/1/2011
Contact: Timothy J. Skone, P.E.

The purpose of this report is to provide a framework and guidance for estimating the life cycle greenhouse gas emissions for transportation fuels, specifically aviation fuels derived from coal and biomass. This report is a detailed case study of ten coal and biomass to SPK-1 aviation fuel scenarios. The case study follows the framework and guidance document developed by the Interagency Work Group for Alternative Fuels (IAWG-AF) published in 2010. The report is a product of the workgroup members, was sponsored by the U.S. Air Force and the project was led by the National Energy Technology Laboratory. The results of this case study are a detailed report and model documenting the methodology, data, and conclusions. A summary presentation is also included with the report and model.


Life Cycle Analysis: Ethanol from Biomass - Appendix

Date: 9/1/2011
Contact: Timothy J. Skone, P.E.

The Appendix of Life Cycle Analysis of an Ethanol Plant utilizing Biomass develops an Inventory of emissions results and calculates Life Cycle costs.


Life Cycle Analysis: Ethanol from Biomass

Date: 8/1/2011
Contact: Timothy J. Skone, P.E.

The Life Cycle Analysis of an Ethanol Plant utilizing Biomass develops an Inventory of emissions results, and calculates Life Cycle costs. This is a life cycle environmental and cost analysis of ethanol using starch and cellulosic feedstocks. It provides a life cycle comparison of three tiers of technology, three types of biomass feedstocks, and two fuel-blending compositions for a total of 18 distinct pathways. When ethanol is blended with gasoline at an 85/15 ratio between ethanol and gasoline, the life cycle greenhouse gas (GHG) emissions are highly variable due to different feedstock types and ethanol production technologies. The biochemical conversion of cellulosic feedstocks to ethanol has the lowest GHG emissions in this analysis, because of the energy recovered at the ethanol plant.


CBTL Jet Fuel Model

Date: 2/16/2011
Contact: Timothy J. Skone, P.E.

The Connecticut Center for Advanced Technology (CCAT) has received funding from the Defense Logistics Agency (DLA) Energy to demonstrate how liquid fuel can be produced from coal and meet the Energy Independence and Security Act (EISA) of 2007 greenhouse gas (GHG) requirement for DOD fuel purchases of synthetic fuel. Section 526 of EISA requires that any fuel purchases have a life-cycle CO2 emission less than conventional petroleum fuel. This model evaluates different scenarios for the conversion of coal and biomass to jet fuel using oxygen blown, transport reactor integrated gasifier and Fischer-Tropsch catalyst configurations.