Back to Top
Skip to main content
NETL Logo

Worcester Polytechnic Institute will design, test, and validate cathode materials for SOFCs that maintain high performance and low degradation rates under simultaneously present, MULTIPLE impurities using a combined Integrated Computational Materials Engineering and lab-scale testing approach. The research team will comprehensively simulate the phase stabilities, equilibrium compositions, and point defect chemistry of cathode materials; experimentally validate phase stability and point defect chemistry through electrical conductivity measurements on the cathode materials identified by computational modeling; and recommend a series of potential cathode materials for cell testing. The team will then fabricate button cells using the optimized cathode, test selected cells, and recommend cathode candidates that can deliver power density higher than 1.5W/cm2 at 800C but exhibit degradation rate lower than 0.4%/1000 hours in the presence of simultaneously present, MULTIPLE impurities at the cell level, for testing in real cells/stacks at Atrex Energy.

image_plp
WPI BU
plp_DOD_share
Off
Presentations_plp
  • Nothing at this time
Principal Investigator
Dr. Yu Zhong
yzhong@wpi.edu
Project Benefits

The SOFC Program is committed to developing efficient, low-cost electricity from natural gas or coal with carbon capture capabilities for distributed generation (DG) and central power generation applications; maintaining cell development and core technology research to increase the reliability, robustness, and durability of cell, stack, and system technology; and providing the technology base to permit cost-competitive DG applications and utility-scale systems with carbon capture capabilities.

Project ID
FE0031652
Website
Worcester Polytechnic Institute
https://www.wpi.edu/