Back to Top
Skip to main content
Numerical Studies for the Characterization of Recoverable Resources from Methane Hydrate Deposits
Project Number
Last Reviewed Dated

The overall objective of this effort is to further enhance earlier-developed numerical simulators, and to use them to perform studies on the characterization and analysis of recoverable resources from gas hydrate deposits, the evaluation of appropriate production strategies for both permafrost and marine environments, and the analysis of the geomechanical behavior of hydrate-bearing sediments, in addition to providing support for DOE’s hydrate-related activities and collaborative projects.


Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720


Methane hydrates are solids in which water forms a rigid lattice containing a guest molecule, methane. They occur ubiquitously along the continental shelves and slopes throughout the world, as well as in subduction zones in the Pacific, the abyssal depths of the Gulf of Mexico, the Caribbean, and in on-shore permafrost regions. The concentration of methane per unit volume of water can be very large; 1 cubic meter (m3) of fully saturated hydrate contains 164 m3 of methane gas at standard temperature and pressure.

Current estimates of the worldwide quantity of hydrocarbon gas hydrates range between 1015 m3 and 1018 m3. Even the most conservative estimates of the total quantity of gas in hydrates may surpass (by a factor of two) the energy content of the total fuel fossil reserves recoverable by conventional methods. The magnitude of this resource could make hydrate reservoirs a substantial future energy resource. Although the current energy economics cannot support gas production from hydrate accumulations, their potential demands evaluation.

This effort will continue prior LBNL studies on the characterization and analysis of recoverable resources from gas hydrate deposits with a current focus primarily on further evaluation of the production potential of offshore Indian hydrate deposits, the planning of future production field tests in Alaska, and an analysis of post-production hazards.


The research will support the hydrate scientific community by making available the fastest and most advanced numerical simulation capabilities for the solution of the difficult problems of stability, characterization, and gas recovery from methane hydrate deposits. Additionally, it will allow researchers to recommend production strategies and well designs to enable gas production from a wide variety of hydrate-bearing geologic settings and methods to alleviate potential geomechanical problems related to gas production.

Accomplishments (most recent listed first)

This project initiated in October 2018. No accomplishments to date.

Please see the project page for ESD12-010 to view accomplishments from previous, related efforts.

Current Status

Efforts under the project have initiated and will focus on (a) the maintenance, upgrade and support of numerical simulation codes for the analysis of gas production from hydrates and of the corresponding geomechanical system response, (b) support for DOE’s activities and collaborations, including planning for a long-term hydrate procuction test on the Alaska North Slope and support of DOE international hydrate collaborations, (c) participation in DOE’s 2nd International Gas Hydrate Code Comparison study, and d) the exploration of potential high efficiency modeling methods for hydrate reservoir simulation.

Project Start
Project End
DOE Contribution


Performer Contribution


Contact Information

NETL – Richard Baker (
LBNL – George Moridis (

Additional Information

Quarterly Progress Report [PDF] April – June 2019
Quarterly Progress Report [PDF] January – March 2019
Quarterly Progress Report [PDF] October – December 2018