The goal of this project is to develop, evaluate, and demonstrate advanced, closed-loop NOx emissions controls for two-stroke integral gas compressor engines to enhance the operation, reliability, and integrity of the natural gas transmission system through development of advanced compressor technologies.
Southwest Research Institute (SwRI) – project management and research products
Cooper Energy Services (CES) – project support for cooper bessemer test engine
Location:
San Antonio, Texas 78238
The gas transmission industry operates over 4,000 integral engine compressors, the majority being two-stroke, with a median age of 45 years and a median size of 2000 horsepower. These engines pump at least half of the 23 TCF of natural gas presently consumed in the United States. These engines are no longer produced, and with the projections for future increased demand of natural gas and the expense of replacement, it would be advantageous to modernize the existing fleet to allow for continued operation with increased efficiency and emissions compliance.
Integral gas compression engines have historically exhibited poor performance and high emissions, due in part to poor engine control. The end results are misfires and partial burns that lead to increased fuel usage and exhaust emissions. Many of the slow-speed integral engines in the gas compression industry utilize control systems that are outdated, slow, and suffer from poor resolution. The automotive and heavy-duty truck industries have advanced the state of electronics, sensors, and control algorithms for maximum efficiency, minimum emissions, and broadest operating envelope. Communications between the various power train components have also been developed for optimized operation and interaction between auxiliary systems.
To comply with future emissions legislation, and to increase industry wide competitiveness, existing engines need modern control systems and modern electronic sensors to maximize fuel economy while remaining emissions compliant. In addition, engine health monitoring and safety requirements mandate that additional sensors be installed to prevent inefficient operation, to be emission compliant, be pro-active in maintenance scheduling, expand the operating envelope, and allow for efficient operation at conditions that do not affect the structural integrity of the unit. The work reported under this project is a step toward bringing integral gas compression engine control and health-monitoring up to par with modern engine control technology, with new concepts that address the specific nature of integral compressor engine operation. The results of this program should compliment other industry funded programs for development of more sophisticated electronic engine controls.
The research conducted under this project has several potential impacts. In order to meet emissions legislation, it is essential that existing engines require modern control systems and sensors to enhance fuel economy while remaining emissions compliant. It is also critical to monitor engine health and safety to prevent inefficient operation or emissions violations, to expand the operating envelope, and to be proactive in maintenance scheduling. The proposed work takes steps toward making such monitoring possible and in doing so holds the potential to affect the environmental impact of pollutants from older two-stroke reciprocating engines through optimized operation and to enhance the overall safety, integrity, and delivery reliability of natural gas through real time condition monitoring of these critical gas infrastructure components.
and Remaining Tasks:
Work under this project has been completed resulting in a valuable description of optimum control algorithms for two-stroke integral natural gas compressor systems. Results and algorithms will be made available to potential users (controls development companies) through the release of the project final report and collaborations between SwRI and those companies. Project final report is to be posted by late spring 2005.
$100,675
$25,169
NETL – Richard Baker (richard.baker@netl.doe.gov or 304-285-4714)
SwRI – Gary D. Bourn (gary.bourn@swri.org)
Final Report [PDF-1709KB]
Status Assessment [PDF-315KB]
Kick-off Presentation [PowerPoint-4194KB]