Back to Top
Skip to main content

Twitter Icon Linkedin Icon Facebook Icon Instagram Icon You Tube Icon Flickr Icon

Hydrogenation and Hydrodesulfurization
Project Number
FEWFEAC323
Goal

The goal is to develop a hydrogenation catalyst capable of operation at moderate or mild conditions.

Performer

Oak Ridge National Laboratory (ORNL)
Oak Ridge, TN

Argonne National Laboratory (ANL)
Argonne, IL

Background

The processing of heavy oils is currently plagued by two major problems, one involving presence of asphaltenes, which increases oil viscosity; and the second involving the heteroatom content, which poses corrosion and complex refining problems. Technology is needed to process heavy crudes in order to reduce viscosity and heteroatom content under mild conditions. Additions of hydrogen to aromatic and heteroatom molecules via a biological route can be a potentially attractive alternative to upgrading heavy crudes. However, hydrogen addition to molecules existing in petroleum using natural enzymes is difficult.

In order to make the biological enzymes work with compounds in crude oil, it is necessary to create favorable binding interactions between the oil substrates and enzymes. The difficulty in coupling enzymes with the hydrophobic substrates in oil can be overcome by reducing the polarity or increasing the hydrophobicity of the enzyme's substrate docking site. This modification was be done at ORNL. The approach was based on understanding the enzyme-substrate interaction and then modifying the enzyme to improve its activity. The improvements was partly assessed using EXAFS technology in collaboration with ANL. Selected enzyme catalysts were subjected to kinetic testing and thermal stability tests. Industrial input was sought in catalyst development as well as in performing preliminary economic analysis.

Impact

The catalyst developed will assist refiners in correcting corrosion problems that occur in heavy oil refining processes.

Accomplishments (most recent listed first)

A hydrogenation catalyst was developed.

The laboratory set-up was updated to carry out anaerobic microbiology and enzymology work for modification of hydrogenase enzymes to be developed into desulfurization biocatalysts. A collaboration was set up with Dr. Mike Adams at the University of Georgia, Athens, GA, to obtain the thermophilic hydrogenase enzyme and to study its activity against organosulfur compounds.

At ANL, catalyst-testing units have been modified for testing of catalyst samples received from ORNL. These units include a plug flow unit that can study supported enzymes and a stirred autoclave for studying unsupported enzymes. The plug flow unit also has a back-mixed reactor cell for studying long-term heterogeneous catalyst synthesis and testing. In-situ EXAFS cells have been modified and tested for collecting data on stream for promising catalyst leads. With this equipment, researchers should be able to tell the coordination sphere and oxidation state of the active metals in time slices as small as one minute under reaction conditions.

Current Status

This project is complete.

Project Start
Project End
DOE Contribution

$625,000

Performer Contribution

 $151,000 (20% of total)

Contact Information

NETL - Kathleen Stirling (kathy.stirling@netl.doe.gov or 918-699-2008)
ORNL - Abhijeet Borole (borolea@ornl.gov or 865-576-7421)