This project looked at a storage company's task of selecting a strategy for determining the optimal combination of facility and operational changes required to offer peaking service in addition to the baseload service already being offered at a specific storage facility. Initial modeling work was done using a 3-D black oil simulator coupled with a deliverability forecasting model to handle the wellbores, surface pipelines, and facilities. A total of 700 runs were required to support the GA/ANN methodology for a given operation scenario: 500 runs to create the knowledge base and 100 verification runs for each of two objective functions. At approximately three minutes/run, this amounted to 35 CPU hours, which was a relatively small investment of machine time. The 700 runs required by the ANN-assisted GA were a small effort compared to the runs required for the full-model-assisted GA. These latter searches employed identical procedures except that a simulator was called to supply predictions instead of obtaining those predictions from the ANNs. In this case, 6,274 unique calls to the simulators, taking 313.7 hours to complete, were required to generate results that were identical to the ANN-assisted results. The difference in effort is almost an order of magnitude.
The optimized solutions to the planning problem that resulted from this exercise were based on a deterministic, “best guess” view of the field's reservoir properties. However, at least some of the uncertainties associated with these properties need to be taken into account in a thorough analysis. After refining the model used for the initial simulation-optimization exercise, the researchers developed and applied procedures for applying the GA/ANN optimization approach so that three sources of uncertainty could be accommodated: alternative hypotheses regarding the permeabilities in a key region of the field, uncertainty regarding the success of remediating existing wells, and risks associated with siting new wells in relatively unknown regions of the field.
The first two sources of uncertainty involve physical properties (permeabilities and skin factors, respectively) that are embedded in the simulation of the reservoir response and, therefore, required substantial changes to the initial knowledge base of simulations. The third source of uncertainty could be examined simply by making changes to the objective functions driving the optimization. Within a few hours, it was possible to construct a new objective function and run many different analyses varying the weights applied to individual terms, whereas completing a single analysis relying on the full simulator model to generate predictions would have required about six days. In the end, the answer to the management problem was to not attempt to provide peak service with the existing array of development options.