This project will produce a state-of-the-art 3-D visualization and analysis software package targeted for improving development of oil and gas resources. The software [RVA (Reservoir Visualization and Analysis)] will display data, models, and reservoir simulation results and have the ability to jointly visualize and query data from geologic models and reservoir simulations to improve exploration and development cycle time and the technical quality of interpretations and development decisions. Key capabilities of RVA will include simultaneous viewing and analysis of multiple reservoir fluids and data mining of combined geologic models and reservoir simulation results.
University of Illinois/Illinois State Geological Survey, Champaign, IL 61820-7406
Because unconventional oil and gas resources can be distributed in structurally complex or highly compartmentalized reservoirs and in transition or residual oil zones, accurate characterization and efficient management of these resources depend on the ability to view these complex settings and to query them in more sophisticated ways. Advanced reservoir visualization and analysis software can provide significant economic and development advantages to companies that can afford it. Advanced visualization and analysis tools have been useful in providing enhanced solutions to a wide range of technical challenges including quantitative reservoir analysis, migration pathway analysis, integrated reservoir models, interactive well planning, data mining and pattern recognition, and flow simulation analysis for reservoir management and development planning. Economic gains such as cost reduction and cycle time improvement can be realized from the use of advanced visualization in these areas and these tools can be critical for improving the quality of interpretations while providing new insights into the data.
Unfortunately, the costs for purchasing the most sophisticated software can run into the hundreds of thousands of dollars per license. This cost structure makes this technology available to only a subset of the oil and gas industry and out of reach to most researchers and government agencies. In addition, these visualization tools are typically too complicated for infrequent users and this complexity prevents their use in all but the largest firms. More affordable software options do not provide many options. The moderate- to low-cost earth modeling software or stand-alone reservoir simulation packages vary widely in the quality and capabilities of their visualization tools, and can lack the capability to analyze reservoir data or simulation results based on complex queries or filters. Free reservoir simulation packages typically lack any significant visualization capabilities at all and require post-processor software to handle visualization and analysis of data.
There is a clear need for low-cost 3-D visualization software that provides many state-of-the-art capabilities including visualization of multiple fluid phases (e.g., oil, natural gas, water, carbon dioxide (CO2) gas, dissolved concentration of CO2), multiple properties of the various phases (e.g., oil viscosity, pH, alkalinity, pressure, flow lines), and multiple geologic models (e.g., high-resolution anisotropic model, up-scaled model). Advanced data mining capabilities would provide functionality that is unavailable even in the high-end software applications. The value of this functionality is hard to quantify, but based on the recognized value of current state-of-the-art capabilities, advanced data mining will improve the quality of interpretations and overall understanding of reservoir behavior.
This project will develop a software application [Reservoir Visualization and Analysis (RVA)] that will provide a combination of uncommon and unprecedented capabilities to improve the characterization, analysis, exploration, and development of unconventional oil and gas resources. The features in RVA will directly assist industry, researchers, and government agencies in evaluating the distribution, flow, and character of oil, water, CO2 gas, dissolved CO2, and dissolved solvents associated with various injection and pumping scenarios. RVA will be capable of visualizing the modeled geologic framework and petrophysical properties in sophisticated and sometimes new ways. With its query and data mining tools, RVA will allow users to identify and view locations where CO2 gas is too close to existing non-pumping wells, migrating toward cap rocks or other geologic seals, or where CO2 gas accumulations are expected to leak through geologic seals or cap rocks. Together, these tools will assist in development and management of the resources, increasing production and identifying reservoir fluid or gas movement that could pose a risk to the environment. RVA will be open source, freely-distributed, and will provide capabilities for sophisticated visualization and analysis of unconventional oil and gas resources, CO2sequestration projects, and traditional oil and gas E&P efforts. RVA will be designed around a simple, intuitive interface structure and will provide both uncommon and unprecedented tools to all sectors of the petroleum industry.
The Project team completed task related activities on September 15th, 2015. The principal investigator and the project team are working on the project final report.
$709,911
$191,061
NETL – William Fincham (William.Fincham@netl.doe.gov or 304-285-4268)
Illinois State Geological Survey – Donald Keefer (keefer@isgs.illinois.edu or 217-244-2786)
If you are unable to reach the above personnel, please contact the content manager.