The University of Kentucky Center for Applied Energy Research, in partnership with the Electric Power Research Institute, Mitsubishi Hitachi Power Systems America, and Smith Management Group, will develop an advanced pilot-scale post-combustion carbon dioxide (CO2) capture system for a coal-fired power plant employing an innovative heat integration method designed to utilize waste heat from a Hitachi H3-1 advanced solvent carbon capture system while improving steam turbine efficiency. A two-stage stripping concept will be combined with the heat integration method to increase solvent capacity and capture rate in the CO2 scrubber. The advanced solvent utilized by the process has several advantages over conventional amine solvents, including lower heat of regeneration, higher capacity, and less solvent degradation. A 0.7 megawatt electrical (MWe) equivalent modular slipstream facility will be designed, constructed, and installed at the Kentucky Utilities E.W. Brown Generating Station, located near Harrodsburg, Kentucky. A technical and economic analysis of the process concept for a 550 MWe power plant will be completed to determine its potential to achieve the Department of Energy’s target of no more than a 35 percent increase in the cost of electricity while capturing at least 90 percent of the CO2 released during the combustion of fossil fuels in existing coal-fired power plants.
Presentations_plp
- Application of a Heat Integrated Post-Combustion Carbon Dioxide Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plants [PDF] (Aug 2017)
Presented by Kunlei Liu, University of Kentucky Center for Applied Energy Research, 2017 NETL CO2Capture Technology Project Review Meeting, Pittsburgh, PA
- Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plants [PDF] (Aug 2016)
Presented by Heather Nikolic, University of Kentucky Center for Applied Energy Research, 2016 NETL CO2 Capture Technology Project Review Meeting, Pittsburgh, PA
- Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plants [PDF] (June 2015)
Presented by Jesse Thompson, University of Kentucky, Center for Applied Energy Research, 2015 NETL CO2 Capture Technology Meeting, Pittsburgh, PA
- Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plants [PDF] (March 2015)
BP3 review presentation.
- Nitrosamines and Thermal Degradation: Exploring Solvent Degradation with Mass Spectrometry [PDF] (Oct 2014)
- Application of a Heat Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plants [PDF] (July 2014)
Presented by Heather Nikolic and Jesse Thompson, University of Kentucky, Center for Applied Energy Research, 2014 NETL CO2 Capture Technology Meeting, Pittsburgh, PA
- Application of a Heat Integrated Post-Combustion CO2 Capture System [PDF] (July 2013)
Presented by Kunlei Liu, University of Kentucky, 2013 NETL CO2 Capture Technology Meeting, Pittsburgh, PA
- Slipstream Demonstration of a Heat Integrated CO2 Capture System [PDF] (July 2012)
Presented by Jim Neathery, University of Kentucky, 2012 NETL CO2 Capture Technology Meeting, Pittsburgh, PA
- Application of a Heat-Integrated Post-combustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant Fact Sheet [PDF] (May 2012)
- Application of A Heat-Integrated Postcombustion CO2 Capture System with Hitachi Advanced Solvent into Existing Coal-Fired Power Plant [PDF]
(Oct 2011) Project kick off meeting presentation
- CO2 Capture Technology Status Sheet
Principal Investigator
Kunlei Liu
kunlei.liu@uky.edu
Project Benefits
This project focuses on the design, construction, and testing of a post-combustion heat integrated solvent-based CO2 capture system with a two-stage stripping process for solvent regeneration and a heat-integrated cooling tower system that recovers waste energy from the carbon capture platform. The overall effect will be improved power plant cooling tower and steam turbine efficiency leading to decreased capital and operating costs. The novel concepts and advanced solvent used in this project show promise of improving the overall plant efficiency and can be utilized to retrofit existing coal-fired power plants. Specifically, this project will implement the heat-integrated system in a 0.7 MWe slipstream pilot-scale unit.
Website
University of Kentucky
http://www.caer.uky.edu/