Back to Top
Skip to main content
 
 
 
Briggs White
NETL’s Briggs White will provide an update on the development of the nation’s Fossil Energy Advanced Energy Storage Program during a webinar from 11 a.m. to noon EST on Wednesday, April 22. During the U.S. Energy Association (USEA) webinar, White will provide an overview about the new program, explain its relationship to the U.S. Department of Energy (DOE) Energy Storage Grand Challenge and lead a discussion regarding future program plans. White serves as a technology manager at NETL where he manages three research and development programs related to fossil energy applications — High Performance Materials, Water Management and Energy Storage. In collaboration with the Office of Fossil Energy, NETL has implemented the DOE initiative to accelerate the development and integration of energy storage technologies to ensure reliable supplies of affordable, clean energy from the nation’s fossil energy assets (both coal and natural gas).
Mac Kay
Working with university and industry partners, NETL is finding new ways to use concrete, a widely available and inexpensive building material, to create next-generation energy-storage systems and ensure the availability of reliable, affordable electricity as the nation shifts to renewable sources such as wind and solar. Concrete thermal energy storage (CTES) systems may be significantly less expensive than other technologies and have the potential to meet longer-duration storage needs, which will be critical as more renewable intermittent energy sources come online. NETL-supported projects under way are investigating how to transfer high-temperature, high-pressure steam produced by fossil fuel-burning power plants to concrete modules, where the thermal energy can be stored until needed and returned to the power plant to generate electricity in response to grid demand. As the research arm of the U.S. Department of Energy’s Office of Fossil Energy (FE), NETL is developing a comprehensive strategy to expand FE’s current portfolio to include an Energy Storage Technology Research Program.
Story One
Many of the nation’s leading scientists and engineers will present new energy technologies at the NETL-hosted Spring Fossil Energy R&D Project Review Meeting Tuesday, April 21, through Thursday, April 23, at the Omni William Penn Hotel in Pittsburgh. The meeting also is expected to attract representatives from electric utilities, as well as research universities and private industries who are interested in partnering with NETL on current and future projects. The conference will explore how research and development (R&D) activities sponsored by the U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) are advancing transformative science and innovative technologies that enable the reliable, efficient, affordable and environmentally sound use of fossil fuels. Fossil energy sources constitute more than 80% of the country’s total energy use, and are important to the nation’s security, economic prosperity and growth. Focus areas will include:
FOA Logo
The U.S. Department of Energy (DOE) and NETL have announced up to $64 million in federal funding for cost-shared research and development (R&D) projects under the funding opportunity announcement (FOA), Critical Components for Coal FIRST Power Plants of the Future. “Coal is a critical resource for grid stability that will be used in developing countries around the world well into the future as they build their economies,” said U.S. Secretary of Energy Dan Brouillette. “Investing in R&D for cleaner coal technologies will allow us to develop the next generation of coal plants for countries to use this valuable natural resource in an environmentally responsible manner.” DOE’s Coal FIRST (Flexible, Innovative, Resilient, Small, Transformative) initiative will develop the coal plant of the future needed to provide secure and reliable power to the U.S. grid. Evaluation of potential future power plant concept designs assisted in defining the R&D sought under this FOA. DOE will solicit cost-shared projects focused on developing the critical components required by Coal FIRST and transformational coal-fired systems.
FOA Logo
The U.S. Department of Energy’s Office of Fossil Energy and NETL have selected seven Coal FIRST (Flexible, Innovative, Resilient, Small, Transformative) conceptual designs to receive $7 million and proceed with preliminary front-end engineering design (pre-FEED) studies. These designs have been selected from 13 conceptual design studies that were completed by 11 different recipients as part of the first phase of the effort. The DOE selected the designs as a part of its Coal FIRST initiative, which seeks to advance coal power generation beyond today’s state-of-the-art capabilities and make coal-fired power plants better adapted to the evolving electrical grid. Research and development resulting from this initiative will underpin coal-fired power plants that are capable of flexible operations to meet the needs of the evolving grid, use innovative cutting-edge components that improve efficiency and reduce emissions, provide resilient power to Americans, are small compared to today’s conventional utility-scale coal, and will transform how coal technologies are designed and manufactured.
FOA Announcement
Today, the U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) and NETL have selected 17 projects to receive approximately $39 million in federal funding for cost-shared research and development under funding opportunity announcement Improving Efficiency, Reliability, and Flexibility of Existing Coal-Based Power Plants.
FOA Announcement Logo
The U.S. Department of Energy (DOE) and NETL have announced today investments for the Coal FIRST (Flexible, Innovative, Resilient, Small, and Transformative) initiative, which aims to develop coal plants of the future that will provide secure, stable, reliable power with near zero emissions.  “Coal is an abundant, affordable, resilient, and reliable energy source that, through innovation, will continue to be an important part of the U.S. portfolio for decades to come,” said Under Secretary of Energy Mark W. Menezes. “The Department’s Coal FIRST initiative is helping the Nation secure its domestic power supply by developing plants that are not only more reliable, resilient, efficient, and near zero emissions, but that can adapt to the changing electrical grid.” Under the Coal FIRST initiative, DOE is supporting research and development (R&D) projects that will help develop plants that:
FOA Logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) has issued a request for proposal (RFP) seeking conceptual designs for coal-based power plants of the future, with an option to conduct preliminary front-end engineering design (Pre-FEED) studies.  This RFP is in support of the Coal FIRST (Flexible, Innovative, Resilient, Small, Transformative) initiative, which will develop the coal plants of the future needed to provide secure, stable, and reliable power.  As previously announced, this RFP and subsequent competitively-awarded research and development (R&D) opportunities will develop technologies that underpin coal-fired power plants that:
FOA logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) announced its intent to fund competitive research and development (R&D) efforts in Fiscal Year (FY) 2019 that will advance first-of-a-kind coal generation technologies.  This effort—the Coal FIRST (Flexible, Innovative, Resilient, Small, Transformative) initiative—will develop the coal plant of the future needed to provide secure, stable, and reliable power.  This R&D will underpin coal-fired power plants that are capable of flexible operations to meet the needs of the grid; use innovative and cutting-edge components that improve efficiency and reduce emissions; provide resilient power to Americans; are small compared to today’s conventional utility-scale coal; and will transform how coal technologies are designed and manufactured. 
The eXtremeMAT team met Oct. 18, 2018, in Columbus, OH to review research plans and progress
Fossil energy transformational power technologies like ultra-supercritical steam plants and supercritical carbon-dioxide power have the potential to increase efficiencies and bolster clean coal efforts because they operate at higher temperatures and pressures. However, this leads to harsher and more corrosive conditions compared to traditional power plants. Furthermore, today’s current fleet of fossil power plants are increasingly being subjected to cycling conditions due to the penetration of renewable energy sources onto the electricity grid. These plants were designed for baseload operations, and the changing of plant temperature and pressures during cycling adds stress to the materials of construction, which may cause premature failure of components in service. Thus, the materials of construction are being subjected to more “extreme” operating environments. Accelerating the development of improved steels, superalloys and other advanced alloys is of paramount importance in deploying materials solutions to address materials challenges associated with both the existing fleet and future power systems.