Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Sort descending Opportunity
Corrosion Detection Sensors for Use in Natural Gas Pipelines U.S. Patent Pending

This invention describes a system and method for detecting corrosion in natural gas pipelines using an optical platform or a wireless platform. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

The U.S. Energy Information Administration states that natural gas accounts for nearly 30 percent of energy consumption in the United States. More than 300,000 miles of natural gas transmission and gathering lines deliver this valuable energy source to consumers. Like any energy infrastructure, this network of pipelines requires significant maintenance costs. In the case of natural gas pipelines, corrosion accounts for around 25 percent of incidents over the last 30 years, 61 percent of which was caused by internal corrosion.

The corrosion-related annual cost for such incidents amounts to $6 to $10 billion in the United States each year. Therefore, a need exists to monitor corrosion inside of the gas pipelines to implement corrosion mitigation and control before any failure.

High-Performance Corrosion-Resistant High-Entropy Alloys U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) developed designs, manufacturing processes, and corrosion property validations of new high-performance corrosion-resistant high-entropy alloys that are superior to and less expensive than existing alloys and demonstrate improved resistance to corrosion, including pitting corrosion in harsh environments and sea water.

Challenge
Metals and alloys used in sea water or acidic aqueous environments are prone to various forms of corrosion, including pitting and/or crevice corrosion because of the presence of aggressive salt, such sodium chloride (NaCl). Pitting and crevice corrosion can serve as initiation sites for developing cracks that will lead to catastrophic failures of the metallic components. The current solution to this problem is to coat the metals with nickel (Ni)-based superalloys such as Hastelloy® C276. Hastelloy®, which is very expensive.

Converting Natural Gas to Valuable Chemicals with Microwave Technology U.S. Patent Pending

This novel patent-pending methane conversion technology employees microwave-assisted catalysis for chemical conversion. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas, primarily composed of methane, is a cheap and abundant domestic resource that can be converted to a wide range of products including liquid transportation fuels and a wide range of chemical intermediates. However, traditional methods of converting methane to valuable chemicals first require it to be converted to synthesis gas.

A direct, one-step, method to convert the methane would have significant advantages over current indirect methods, including reduced costs and increased yields, but several technology barriers must first be overcome. Microwave-assisted catalyst reactions can provide a viable direct method for overcoming these barriers.

Producing Carbon and Hydrogen With NETL’s Novel Iron-based Catalyst U.S. Patent Pending

This new Iron-based catalyst will enable a one-step process to produce hydrogen - a promising energy source that is also environmentally benign - by directly converting methane. The catalyst will eliminate the need to first create syngas and then remove carbon dioxide. In addition to creating hydrogen, carbon, which is also a useful commodity is created as a by-product. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The traditional commercial methods of forming hydrogen from methane are based on steam methane reforming, coal or bio-mass gasification, electrolysis, and thermo-chemical processes. Some of these methods are cost-effective, but each requires that syngas first be created and the water gas shift reaction be used to convert syngas to hydrogen and carbon dioxide. From there, the hydrogen must be purified using pressure swing adsorption to separate the hydrogen for the carbon dioxide. Developing a method that avoids these intermediate steps would reduce the cost of producing valuable hydrogen.

Rotational Mechanical Gas Separator U.S. Patent Pending

This invention describes a technology for separating liquid and solid phase substances from a gas stream. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The removal and sequestration of carbon dioxide (CO2) from gas streams has been extensively researched, and many methods of separating CO2 have been proposed. These include adsorption monoliths, membrane absorption and cryogenic distillation, but such methods require special materials and/or high maintenance. Other state-of-the-art removal techniques, such as centrifugal stratification, compress CO2 into a liquid or solid phase, then remove it from the gas stream. But during removal, the liquid/solid phases travel through flow fields and their viscous heating effects. This causes the liquid/solid phases to re-vaporize, stymieing separation efforts.

Metal-organic Framework Films for Gas Sensor Applications U.S. Patent Pending

This invention describes a system and method for rapid, ambient-temperature growth of metal-organic framework (MOF) films for gas sensor applications. More specifically, the invention relates to growth of MOF films on advanced sensor devices such as distributed optical fiber and passive wireless like surface acoustic wave-based sensors. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

MOF thin films have emerged as particularly attractive candidates for gas sensing applications due to their tunable porosity and pore size, enabling them to be rationally designed to selectively absorb specific gasses of interest. MOFs are especially appealing due to their high selectivity and capacity for energy-relevant gasses such as carbon dioxide and methane. A critical step towards the development of MOF thin film devices is the ability to efficiently and reliably incorporate high-quality MOF layers onto a wide range of substrates like optical fibers. However, current techniques are often inconvenient due to long reaction times, heating requirements, equipment costs and/or poor control over crystal coverage and morphology.

Microwave Diagnostics and Passive Sensors for Pipeline, Well-Bore, and Boiler-Tube Monitoring U.S. Patent Pending

The invention is a system and method for monitoring the interior of metallic tubular structures like pipelines, well-bores, and boiler-tubes using an integrated wireless system. The technology uses a combination of the pipe or tubular structure as a wave guide, integrated radio frequency (RF) patch antennas, integrated passive surface acoustic wave (SAW) sensors, and data analytic methodologies. The technology is available for licensing from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Safety and longevity are major concerns in fossil fuel industries and other technologies that use long metallic tubular structures like gas pipelines, well-bores, and boilers. Real time monitoring of the tubular structures for multiple variables within them, including but not limited to corrosion, leaks, and mass flow, is crucial to ensure safety and cost-effective maintenance in timely manner. Conventional techniques for investigating the state-of-health and operational conditions of tubular structures use non-destructive acoustic-based techniques, which are limited by the ability to interpret the data because, as an indirect measurement, requires models to be made of the infrastructure under investigation.

Low-Cost Optical Sensor Array to Monitor Temperature and Dissolved Gases in Electrical Assets U.S. Patent Pending

The invention is a new low-cost way to form an optical sensor array that monitors multiple parameters such as temperature and hydrogen in essential components of electrical transmission and distribution networks. It uses multi-wavelength interrogation combined with multiple sensor elements using a single optical fiber. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Power transformers are among the most essential components of electrical transmission and distribution networks. To avoid the substantial financial and social expenses caused by catastrophic failures, there is a growing need to develop low-cost and real-time analytical techniques and instruments to detect and diagnose fundamental changes in the operating characteristics of transformers. Key parameters, such as dissolved gases content and temperature, provide valuable information for assessing the condition of transformers. For example, dissolved gas analysis (DGA) identifies electrical or thermal faults in transformers. In addition, temperature information is vital because when the temperature in transformers exceeds 90o C, the aging rate of insulation and tensile strength grows, resulting in a dramatic deterioration of transformer life expectancy. It is therefore of significant value to monitor the temperature under various ambient and loading conditions to identify failures before they result in significant damages. 

Energy Infrastructure Monitoring using Conformal Coaxial Helical Antennas and Distributed Electromagnetic Interrogation Schemes U.S. Patent Pending

The invention is a distributed radio frequency (RF) /electromagnetic (EM) interrogation scheme that leverages distributed antennas along a coaxial cable for subsurface, pipeline, and other energy infrastructure monitoring. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge: 
In industrial and wireless sensing, the communication channel often determines the characteristics and performance of the overall sensing network. For wellbore monitoring applications, telemetry challenges are acute because of harsh environmental conditions (elevated temperature and pressure, chemical corrosives) which restrict the application of complex electronics and instrumentation. In addition, inherent absorption of electromagnetic radiation within the subsurface environment limits the potential for free space wireless power and signal delivery over distances. However, distributed wireless sensors throughout the subsurface environment could provide unprecedent visibility for monitoring and minimizing environmental impacts associated with the wellbore and ensure safe and productive operation of oil and gas recovery processes, enhanced geothermal systems and carbon storage sites.  Similar needs exist for monitoring of natural gas pipelines and other energy infrastructure for which enhanced visibility can significantly impact reliability, resiliency, and security. 
 

Encapsulation Method for More Durable Reactive Materials U.S. Patent Pending

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.