Title | Date Posted Sort ascending | Patent Information | Opportunity |
---|---|---|---|
Method of Fabricating Low-Loss and Low-Noise Hollow Waveguides for Visible Wavelength Applications | U.S. Patent Pending | The invention is method of fabricating a hollow glass waveguide (tube that transmits light) that exhibits low loss in the visible or short-wave spectral region and is optimized for Raman spectroscopy or visible laser beam delivery. Prior art hollow capillaries suffer high optical loss and poor visible transmission, but the NETL invention produces these high-quality capillaries via a specialized deposition system. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Hydrophobic Alkyl-Ester Physical Solvents for CO2 Removal from H2 Produced from Synthesis Gas | U.S. Patent Pending |
Challenge State-of-the-art precombustion CO2 capture processes predominantly employ hydrophilic physical solvents. Current commercial physical solvents touted for IGCC CO2 capture were developed for removing acid gases from raw natural gas streams. Therefore, they were designed to remove significant amounts of water from the process gas. As such, the focus was on the purification of the process gas with less concern for generation of high-purity CO2 streams suitable for pipeline transmission and sequestration. While water removal is important for natural gas pipeline applications, it is not favorable for applications in which the fuel stream is directly combusted on-site, as would be encountered in IGCC systems. |
|
Single-Step Synthesis of Carbon Capture Fiber Sorbents | U.S. Patent Pending | This invention describes a single-stage preparation of a novel carbon capture fiber sorbent. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Fiber Optic pH Sensor for High-Temperature and High-Pressure Environments | U.S. Patent Pending | This invention describes a pH sensor comprising an optical fiber coated with metal-oxide based pH sensing materials for use in high-temperature and high-pressure environments such as wellbores and the challenging high pH range relevant for wellbore cement. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Catalysts for Thermal Conversion of Carbon Dioxide to Carbon Monoxide or Synthesis Gas Using Fuels | U.S. Patent Pending | This invention describes novel iron-based catalysts for conversion of carbon dioxide (CO2) to produce valuable gases such as carbon monoxide (CO) or syngas in the presence of fuel (biomass, coal, methane) for commercial and industrial applications while reducing greenhouse gas emissions. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Creep Resistant Ni-Based Superalloy Casting and Manufacturing | U.S. Patent Pending | This invention describes an improved casting and manufacturing method for a creep-resistant nickel-based superalloy for advanced high-temperature applications. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Bottom-Up Assembly of Graphene Quantum Dots to Form Two-Dimensional Amorphous Carbon Film | U.S. Patent Pending | This invention describes a uniquely engineered 2-D amorphous carbon film and a memristor fabricated with coal-derived carbon quantum dots as the dielectric (switching) media for resistive random-access memory (RRAM). The atomic dielectric carbon layer can provide large storage density and 3-D packing ability, allowing memory and logic devices to be integrated in one chip, providing faster data processing with low energy consumption. This patent application is jointly owned by NETL and the University of Illinois-Urbana Champaign (UIUC) and it is available for licensing and/or further collaboration. Challenge |
|
Microwave Active Metal Oxides for CO2 Dry Reforming of Methane | U.S. Patent Pending | This patent-pending technology establishes a novel system and method for the microwave-assisted dry reforming of methane. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge Traditional steam reforming of methane to produce hydrogen (H2), which is then reacted with carbon (CO) to produce methanol and other industrial commodity chemicals, is an extremely energy intensive process with large carbon footprint. For example, the steam reforming reaction produces 10 tons of carbon dioxide (CO2) for every ton of H2. Methane dry reforming uses an alternative reaction that uses CO2 as a soft oxidant to produce CO and H2 from methane, which can be further processed into methanol or hydrocarbons. Further, using CO2 to produce commodity chemicals, such as H2 and CO, can generate revenue to offset carbon capture costs, reduce the carbon footprint of fossil-fuel powered processes, and allow sustainable use of fossil fuel resources. Traditional dry reforming techniques are extremely energy intensive and require very high temperatures (>800C) that make it unpractical economically compared with the lower-temperature, carbon-positive, methane steam reforming. Microwave-assisted catalysis has been demonstrated as an enabling technology to promote high temperature chemical processes. Unlike traditional thermal heating, microwaves can rapidly heat catalysts to extremely high temperatures without heating the entire reactor volume. This reduces heat management issues of conventional reactors and enables rapid heating/cooling cycles. Ultimately, this can allow reactors to utilize excess renewable energy on an intermittent basis (load follow) to promote traditionally challenging, thermally-driven reactions for on-demand chemical production. Microwave absorption is a function of the electronic and magnetic properties of the material, and a properly designed catalyst may function as a both a microwave heater and a reactive surface for driving the desired reaction. Microwave absorption is extremely sensitive to the catalyst’s chemical state and electronic structure, and effective catalysts must maintain microwave activity across a wide range of temperatures in both oxidative and reductive environments.
|
|
Downhole Laser System With an Improved Laser Output Production and Data Collection | U.S. Patent Pending | This patent-pending technology establishes a novel system and method for laser induced breakdown spectroscopy (LIBS) applications. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge Low-cost, efficient monitoring of remote locations has and continues to be highly sought in the industry. For example, drilling production or injection wells for oil/gas extraction or carbon dioxide (CO2) storage always has the potential for leakage into the surrounding formations and environment. The ability to measure the subsurface fluids in and around the injection/production area before and after subsurface activities becomes more important when there is a suspected leak. Current downhole monitoring systems rely on bulk parameters such as pH and conductivity. Lab based systems can provide trace element measurements of subsurface fluids but require fluids to be taken from the field and digested prior to measurement. A system that can provide trace element measurements in real time while deployed in the subsurface is potentially of great value. Current diode pumped solid state (DPSS) laser systems used for laser induced breakdown spectroscopy applications in fluid system measurements have numerous limitations. First, the systems are susceptible to dimensional changes caused by temperature and pressure swings in fluctuating environments in downhole applications. A second issue is the size of the laser spark that is produced in the fluid for measurements affecting signal strength. The third issue is the efficient collection and transmission of the plasma emission for analysis. |
|
Improved Rare Earth Element Extraction Method from Coal Ash | U.S. Patent Pending | This invention describes an improved method for extracting rare earth elements (REEs) from coal ash at ambient temperatures. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge Current methods and technologies for REE extraction from ore and other sources can be hazardous and expensive to implement without harming the environment or workers. For example, common practices employ high temperatures and strong acids or bases. This technology seeks to overcome these and other issues with current REE extraction methods by turning to a material that is currently viewed as a waste – coal ash. |