THE MERITS OF HEAVY RESIDUE GASIFICATION IN TODAY’S WORLD

IChemE Conference 2010

Nicolás Ximénez Bruidegom
General Manager for Gasification & Clean Coal Energy – Europe, Middle East, Africa
The companies in which Royal Dutch Shell plc directly or indirectly owns investments are separate entities. In this publication the expressions "Shell", "Group" and "Shell Group" are sometimes used for convenience where references are made to Group companies in general. Likewise the words "we", "us" and "our" are also used to refer to Group companies in general or those who work for them. The expressions are also used where there is no purpose in identifying specific companies.

Shell Global Solutions is a network of independent technology companies in the Shell Group. In this publication the expression ‘Shell Global Solutions’ is sometimes used for convenience where reference is made to these companies in general, or where no useful purpose is served by identifying a particular company.

The information contained in this publication contains forward-looking statements, that are subject to risk factors which may affect the outcome of the matters covered. None of Shell Global Solutions, any other Shell company and their respective officers, employees and agents represents the accuracy or completeness of the information set forth in this publication and none of the foregoing shall be liable for any loss, cost, expense or damage (whether arising from negligence or otherwise) relating to the use of such information.

The information contained in this publication is intended to be general in nature and must not be relied on as specific advice in connection with any decisions you may make. Shell Global Solutions is not liable for any action you may take as a result of you relying on such material or for any loss or damage suffered by you as a result of you taking this action. Furthermore, these materials do not in any way constitute an offer to provide specific services. Some services may not be available in certain countries or political subdivisions thereof.

Copyright © 2010 Shell Global Solutions International B.V. All copyright and other (intellectual property) rights in all text, images and other information contained in this publication are the property of Shell Global Solutions International B.V., or other Shell companies. Permission should be sought from Shell Global Solutions International B.V. before any part of this publication is reproduced, stored or transmitted by any means, electronic or mechanical including by photocopy, recording or information storage and retrieval system.
PRESENTATION OVERVIEW

- The Global Energy Challenge
- Gasification Technology
- Gasification in Refining
- Gasification in Oil Sands
- Gasification in Gas-to-Liquids
- Gasification for Power and EOR
- Conclusion
9 billion people

2.5 billion more than today

4-5 times richer

with most extra wealth coming from developing countries

Double the energy

using twice as much energy as now

Twice as efficient

using half the energy as now to produce each dollar of wealth

6-10 times more energy

from renewable sources
Rising and shifting demands
Cleaner fuels
Biofuels

Energy efficiency
Lower emissions
CO₂ reduction

More unconventional crude/feedstocks

Market is changing
Refining will need to invest
Upstream is changing
SHELL GASIFICATION TECHNOLOGIES

<table>
<thead>
<tr>
<th>SGP</th>
<th>SCGP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-slagging condition
- Refractory lined gasifier
- Liquid feed system
- Fire tube boiler
- Soot water handling

Slagging condition
- Membrane wall gasifier
- Dry feed system
- Water tube boiler
- Solid slag handling

Liquid refinery residues

Coal and coke
VERSATILITY OF SHELL GASIFICATION TECHNOLOGIES

Legend
SGP – Shell Gasification Process
SCGP – Shell Coal Gasification Process
DRI – Direct Reduced Iron
FT – Fischer-Tropsch

Coal/Lignite → SGP or SCGP → Syngas → Hydrogen → Shift → Carbon dioxide

Petcoke → SGP or SCGP
Biomass → SGP or SCGP
Heavy Oil → SGP or SCGP
Heavy residue → SGP or SCGP

Syngas → Power & water → DRI → EOR
Syngas → Power & water → Steam/heat → EOR
Syngas → Methanol → Petrochemicals
Syngas → Synthetic NG → Town gas
Syngas → Ammonia → Urea
Syngas → FT liquid fuels
Syngas → Fuel cells
Syngas → Oil refineries

Carbon dioxide → Scenario: Saline Aquifers Depleted Hydrocarbon Reservoirs

Copyright of Shell Global Solutions International B.V.
CONVERTING “BOTTOM OF THE BARREL” INTO VALUABLE PRODUCTS

- Proven track record in gasification since 1950’s
 - Residue/gas: >150 reactors built, >80 reactors in operation
 - Gas: major equity investment in GTL Qatar (18 reactors)
 - Coal: 24 units sold globally, 13 plants currently in operations
- Proven track record on heavy, high sulphur, viscous residues, s/a Thermal Cracker residue, Solvent Deasphalter residue
- High syngas yield (typically >2,600 Nm3 CO+H2 per ton feed), low oxygen consumption and low soot formation, and high thermal efficiency through syngas cooler
CONVERTING “BOTTOM OF THE BARREL” INTO VALUABLE PRODUCTS

- Safe and Reliable operation: automated and fully safeguarded heat-up, start-up, shutdown sequences
- Long burner run length and long refractory lifetime
- Extensive experience in start-up, operation and maintenance of own units and licensed units.

- Shell Pernis 1997
 Cracked Residue
 3x550 t/d

- ENI Sannazzaro 2006
 Residue/Asphalt
 2x600 t/d

- Nexen (Opti) 2008
 Asphalt
 4x1033 t/d

- Fujian 2009
 Asphalt
 3x1200 t/d
GASIFICATION IN OIL SANDS

- JV between Nexen and OPTI Canada, operated by Nexen
- Produces 72,000 bbl/day of bitumen
- Heavy asphaltene by-product is gasified in a SGP unit, which generates all hydrogen for the hydrocracking unit and high-quality steam for use throughout the plant.
- Excess syngas is used for power and steam generation.
- Therefore unlocking the value of oil sands, without using natural gas
- Shell delivered four oil gasification installations to Nexen, with a total capacity of 3,600 t/d, the largest in the world.
- The start-up of the units progressed well and the gasification units have successfully demonstrated their intended performance.
- TSA signed in 2010
GASIFICATION IN OIL SANDS
LONG LAKE PROJECT, CANADA
GASIFICATION IN GAS-TO-LIQUIDS
PEARL GTL PROJECT, QATAR

- World’s largest GTL plant
- 120,000 boe/d of natural gas liquids and ethane and 140,000 b/d of liquid hydrocarbon products
- Major construction completed end 2010, production ramp up in 2011
- Entered the testing phase
PEARL – A WORLD CLASS INTEGRATED GTL PROJECT

Offshore production
Qatar North Field
1.6 bcf/d

GTL plant
140 kbbl/d

Products (indicative)

LPG

Ethane

Condensate

GTL Gasoil

Kerosene

Synthetic Base Oil

Base Oil

Gasoil

Naphtha

Other

>1 mtpa

>2 mtpa

>1 mtpa

Development & Production Sharing Agreement

Upstream

Downstream

Marketing
Shift of syngas with steam leads to pure streams of CO2 and H2.
N2 is used to dilute H2 before its combustion in gas turbines.
Power price is competitive when CO2 is sold as a valuable product.
RELATIVE COSTS OF CO$_2$ AS A BY-PRODUCT OF POWER PRODUCTION

Based on an internal Shell study
CONCLUSION

- Global demand for energy will continue to increase, while CO$_2$ emissions will have to be reduced
- More stringent industrial and environmental requirements in the oil and gas business are imminent
- Gasification technology applications can provide solutions
- Upstream operations will present new areas of application – in regions with EOR potential residue gasification-to-power could well be a key enabler
- Shell is strongly positioned to meet the energy challenge
RECENT SGP PROJECTS

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Feedstock</th>
<th>Input, t/d</th>
<th>Syngas, 10^6Nm3/d</th>
<th>End product</th>
<th>Startup date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Nederland Raffinaderij</td>
<td>Rotterdam, Netherlands</td>
<td>Cracked residue</td>
<td>1650</td>
<td>4.7</td>
<td>Hydrogen/power/steam</td>
<td>1997</td>
</tr>
<tr>
<td>Lanzhou Chemical</td>
<td>Lanzhou, China</td>
<td>Vacuum residue</td>
<td>700</td>
<td>2.1</td>
<td>Chemicals</td>
<td>1998</td>
</tr>
<tr>
<td>Chemopetrol revamp</td>
<td>Litvinov, Czech Republic</td>
<td>Cracked residue</td>
<td>1250</td>
<td>3.6</td>
<td>Chemicals/hydrogen</td>
<td>2001</td>
</tr>
<tr>
<td>Lucky Goldstar</td>
<td>Naju, Korea</td>
<td>Vacuum residue</td>
<td>225</td>
<td>0.7</td>
<td>Chemicals</td>
<td>2001</td>
</tr>
<tr>
<td>Eni SpA</td>
<td>Sannazzaro, Italy</td>
<td>Cracked residue</td>
<td>1200</td>
<td>3.4</td>
<td>Hydrogen/power</td>
<td>2006</td>
</tr>
<tr>
<td>Opti/Nexen</td>
<td>Alberta, Canada</td>
<td>Asphalt</td>
<td>3790</td>
<td>9.7</td>
<td>Steam/hydrogen</td>
<td>2008</td>
</tr>
<tr>
<td>Fujian ethylene project</td>
<td>Fujian, China</td>
<td>Asphalt</td>
<td>2180</td>
<td>5.7</td>
<td>Hydrogen/power</td>
<td>2009</td>
</tr>
</tbody>
</table>