Oil & Natural Gas Technology

ConocoPhillips Gas Hydrate Production Test Final Technical Report

October 1, 2008–June 30, 2013

Authors:

David Schoderbek, Helen Farrell, Keith Hester, James Howard, Kevin Raterman, Suntichai Silpngarmlert, Kenneth Lloyd Martin, Bruce Smith, and Perry Klein

> Submitted on: July 20, 2013 DOE Award No.: DE-NT0006553

> > Submitted by: ConocoPhillips Company 600 North Dairy Ashford Houston, TX 77079

Prepared for: United States Department of Energy National Energy Technology Laboratory

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions expressed herein do not necessarily state of reflect those of the United States Government or any agency thereof.

Acknowledgements

ConocoPhillips would like to thank the Department of Energy (DOE) and Japan Oil, Gas and Metals National Corporation (JOGMEC) for financial and technical support for this project. In addition, the project team is grateful for the input of individuals from the following organizations: United Stated Geological Survey (USGS), the University of West Virginia, ConocoPhillips Alaska, the State of Alaska, and the Prudhoe Bay working interest owners. ConocoPhillips also would like to acknowledge the input of the University of Bergen, who advanced the concept of CO_2 exchange as a production mechanism.

Abstract

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Contents

Disclaimer	2
Acknowledgements	3
Abstract	4
Executive Summary	7
Field Trial Goals	8
Test Chronology	8
Test Site Characterization	8
Site Selection	9
Selection Criteria	9
Reservoir Mapping	12
Structural and Stratigraphic Modeling	13
Petrophysics	15
Petrophysical Analysis	18
XPT Testing	31
MDT Testing	32
Basis of Test Design	33
Wellbore Design	34
Well Information	39
Sand Screen	39
Heater/Chemical Injection String	39
Chemical Injection Valve	40
Artificial Lift	40
Test Design	40
Model Development	42
Injection Design	44
Nitrogen Pre-flush	44
CO ₂ /N ₂ Mixture Design	46
Injection Slug Size	48
Recommended Test Design – Injection Phase	50
Recommended Test Design – Production Phase	51
Success Criteria	51
Summary of Field Results and Observations	51
Perforation	52
Injection Phase	54
Pre-Production Period	63
Production Period	64
Phase 1: Unassisted Production	75
Phase 2: Jet pumping above methane stability pressure, jet-pump flowback #1	76
Phase 3: Jet pumping ≈ CH₄-stability pressure, jet-pump flowback #2	78
Phase 4: Jet pumping below CH ₄ -stability pressure, jet-pump flowback #3	81
Post-Production Period	83
Comparison with Model Predictions	84
Model Recombinations	92
Case 1: Partial Injection Out of Zone	92
Case 2: Heterogeneous Mixing	94
Case 3: Solid Hydrate Production	96

Post Test Operation	ations									
Conclusions	Conclusions									
Graphical List c	f Materials									
References										
List of Acronym	s and Abbreviations									
Appendix A	Experimental Basis for CO2 Exchange									
Excess Wate	Excess Water Saturation									
CO ₂ Delivery	CO2 Delivery Mechanism									
Strength of U	Strength of Unconsolidated Sand									
Appendix B	Distributed Temperature Sensing Data Processing									
Appendix C	Lost Gas Correction due to Dissolved Gas									
Water Produc	ction Rate									
Dissolved ga	s calculation (aqueous phase composition)									
Appendix D	Tracer Gases									
Appendix E	Isotopic Gas Analysis									
Appendix F	Database									
Appendix G	Operations Report									

Executive Summary

The objective of the study was to perform field trial on the North Slope of Alaska to evaluate CO_2/CH_4 exchange, a methane hydrate production methodology whereby carbon dioxide is exchanged *in situ* with methane molecules within a methane hydrate structure, releasing the methane for production. In addition, production by depressurization was also evaluated. This was a short term test using a "huff and puff" injection/production cycle from a single well to demonstrate the CO_2/CH_4 exchange concept at larger-than-lab scale.

From 2008 to 2011 a suitable test site was identified and access permissions were obtained for the field trial. The test well, Ignik Sikumi #1, was drilled from a temporary ice pad in early 2011 and the injection/production test was performed in early 2012. Production operations began in January 2012 and ended in May 2012, when the well was plugged and abandoned.

During the injection phase of the field trial, the total injected volume of gas was 215.9 Mscf, which consisted of 167.3 Mscf N_2 and 48.6 Mscf CO_2 . Composition was tightly controlled during this period with an average molar injection ratio of 77.5/22.5 N_2/CO_2 .

After injection, production proceeded in these phases:

- 1. jet pumping above methane hydrate-stability pressure
- 2. jet pumping near methane hydrate-stability pressure
- 3. jet pumping below methane hydrate-stability pressure

During production testing, approximately 70% of 167.3 Mscf of injected nitrogen was recovered. In contrast, only 40% of the 48.6 Mscf injected carbon dioxide was recovered during the production period. A total of 855 Mscf of methane was produced over the total production period. Along with the various gases, water and sand were also produced. A total of 1136.5 bbl of formation water was produced.

Conclusions presented in this final report are preliminary. They represent a current understanding, based on limited analysis performed with rudimentary tools. More definitive conclusions are expected as knowledge of mixed hydrate systems mature; however, here are the conclusions included in this report:

- A 23 mol% $CO_2 N_2$ mixture was injected into a hydrate-bearing zone in which free water was present, and these gases did interact with native hydrate
- Test data indicated that solid-state CO_2 methane hydrate exchange did occur
- A simple adiabatic homogeneous instantaneous equilibrium model cannot predict the observed production behavior
- During depressurization, bottomhole pressures below 400 psia are achievable during active hydrate dissociation; this sand face pressure is below that pressure at which equilibrium models predict that icing should occur.
- Wellbore conditions must be managed effectively for efficient production of hydrates (the wellbore conditions to manage include: solids control; temperature control; and water levels)

After completing the field trial, final abandonment of Ignik Sikumi #1 wellsite was completed May 5, 2012. Tubing, casing-tubing annulus, and FLATPakTM tubes were filled with cement, which complies with the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. The wellhead area was refilled and graded to ensure it would return to its original grade following the spring melt-back of the ice pad. The final inspection of the wellsite was conducted by the Alaska Department of Natural Resources September 5, 2012, by helicopter.

Field Trial Goals

The objective of the field trial was to evaluate CO_2/CH_4 exchange. This is a methane hydrate production methodology where carbon dioxide is exchanged *in situ* with methane molecules within a methane hydrate structure, which then releases the methane for production. Production by depressurization was also evaluated during this field trial. This was a short term test using a "huff and puff" injection and production cycle from a single well to demonstrate the CO_2/CH_4 exchange concept at "larger-than-lab" scale.

Specifically the field trial aimed to:

- validate exchange mechanism results from laboratory work
- confirm injectivity into naturally occurring methane hydrates
- confirm methane release without production of water or sand
- obtain data to calibrate reservoir-scale modeling
- demonstrate stable production of natural gas hydrates by depressurization

Test Chronology

This section provides a brief timeline of events that took place during the field trial.

- 2008 2010
 - o Identify and gain access to the test site
- 2011
 - o Drill, log, complete and suspend Ignik Sikumi #1
 - Design field test
- 2012
 - Re-enter well and perforate
 - Perform exchange test
 - o Perform depressurization test
 - o P&A well and remediate site

Test Site Characterization

This section of the report provides information about test site characterization, including details about how the site was selected and site selection criteria.

Site Selection

The test site selection was based upon accessibility, proximity to North Slope infrastructure, and confidence in the presence of gas hydrate-bearing sandstone reservoirs with multiple reservoir targets. The target for this field trial were reservoirs in high porosity, high permeability clastic sandstones of the Sagavanirktok Formation. Gas hydrate reservoirs occur within and below the ice-bearing permafrost on Alaska's North Slope, because the gas hydrate stability zone includes temperatures that are below and above the freezing point of water. For the field trial, reservoirs below the permafrost were targeted for two reasons. First, it is difficult to differentiate ice-bearing sandstones in the permafrost from hydrate-bearing intervals from well logs. Second, the CO_2/CH_4 exchange experimental work was conducted at 4°C. This temperature corresponds to a depth approximately 350ft below the base of permafrost.

Selection Criteria

Wireline logs are the primary dataset used to evaluate *in situ* gas hydrates from existing wells. All wells drilled on the North Slope have penetrated the gas hydrate stability zone; although less than one-sixth of these wells have been logged between base permafrost and base gas hydrate stability zones. Sandstones with gas hydrate in their pores exhibit high resistivity and high velocity (low transit time), like their ice-bearing counterparts. Collett (1993) summarized sonic and resistivity log criteria to identify gas hydrate-bearing sandstones: resistivity 50 times greater than associated water-bearing sandstones and sonic transit time 40 microseconds per foot faster than adjacent wet sandstones. Sandstone with pore-filling gas hydrate is identified by gamma ray log response less than 55 API units; a sonic transit time of less than 140 microseconds/ft; and resistivity greater than 30 ohm-m (see Table 1).

Measurement	Cutoff Value
Gamma Ray (GR)	< 55 API
Deep Resistivity (Rt)	> 30 Ohm-m
Sonic Slowness (dT)	< 140 sec/ft

|--|

Many wells that fit the gamma ray and resistivity criteria for the presence of gas hydrates have ambiguous sonic log response due to poor hole conditions and incomplete log overlaps. In addition, partial post-drilling dissociation of gas-hydrate bearing sandstones during subsequent deeper drilling may have occurred before logging, which further complicates wireline log responses. Therefore, to improve confidence in hydrate identification, mud log records were also reviewed. A mud log is a compilation of penetration rate, cuttings description, and measurements of hydrocarbon gases in the drilling fluid. Mud logs are compiled while drilling, before any wireline logs are run. Interpretation of gas hydrates involves recognizing a gas signature on the mud logger's gas chromatograph over the interval identified as a hydrate bearing sand from the well logs. Where this gas response was over 100 units it was considered to be a "strong" indicator of gas (see Figure 1).

Figure 1: Mud log characterization

The selected field test site was adjacent to L-pad in the Prudhoe Bay unit (see Figure 2, and Figure 4) and was selected based on high quality hydrate indicators on logs and mud logs in 4 stacked reservoirs.

Figure 2: Location of L-Pad within the Prudhoe Bay Unit

Figure 3: Log characteristics of the L-pad area showing a gross reservoir interval of 125 ft in four stacked hydrate bearing sandstones, C (2), D and E. F sand is within the permafrost and is ice bearing. Mud log gas response is highlighted in red.

Figure 4: Photograph of the test site area that shows the approximate location of the ice pad. Well paths to underlying producing intervals are shown in red; L-106 (green) is the well with a full suite of logs, and it passes through the C sand at the pink location.

Reservoir Mapping

A geocellular model was built to support reservoir simulation of gas hydrate-bearing sandstones in the Sagavanirktok Formation (see Figure 5). All wells on this pad have gamma ray logs, which may be used to correlate sands. From those correlations, a structure may be built. All sands could be correlated across all wells in this area.

Figure 5: Model AOI and well control shown on the Upper F sandstone structure surface. Black points are well intersections at the top of the Upper F sandstone; blue points at the top of the B sandstone.

A structural and stratigraphic framework model was built across the Prudhoe Bay Unit L-pad area, delineating the informally named B through F sandstones. A 3-D geocellular model was then constructed over the central part of this framework model, encompassing the B through D sandstones. This model was rescaled to the 3-D gridding requirements of the reservoir simulator and exported for use in gas hydrate process modeling. The model was constructed in Roxar's RMS version 2010.01.

Structural and Stratigraphic Modeling

A seismically-defined structure grid of the top-most sandstone considered in this study, the Upper F sandstone, was used as the basis for the 3-D structural model. This grid, together with 10 fault surfaces, was interpreted and depth-converted. Structural surfaces on deeper horizons were also interpreted and depth-converted, but the top Upper F sandstone is regarded as the most reliable for use in 3-D structural modeling.

The original structure grid was conditioned to a subset of the well control in the L-pad area. The top of the Upper F sandstone was picked in a total of 54 wells for which gamma ray logs are available. The original depth grid was conditioned to all wells with valid well picks and re-gridded with a smoothing filter and the fault surfaces to create a smoother structure grid with better defined fault scarps (see Figure 6).

Figure 6: Input vs. modeled top Upper F sandstone structure grid

A flow unit-scale reservoir zonation was established in this region, breaking out sandrich and sand-poor intervals. Figure 7 and Figure 8 show this stratigraphy on northsouth and east-west-oriented sections, respectively, through the approximate center of the framework model AOI. Gross interval thicknesses are fairly consistent across the AOI. The reservoir stratigraphy attempts to constrain the sand- and siltstone-rich portions of upward-coarsening and fining sequences. A total of 12 zones are delineated; six of them are sand-rich. Strata are labeled to conform to Sagavanirktok stratigraphic nomenclature proposed by Collett (1993). Of these, the E, D and Upper and Lower C sandstones are gas hydrate-bearing. The B and Upper and Lower F sandstones are fully water saturated.

Figure 7: North-south stratigraphic cross-section (Datum is top Upper F sandstone)

Figure 8: East-West stratigraphic cross-section (datum is top Upper F sandstone)

The detailed zonation revealed the existence of faulted sections within a number of the wells (see Figure 8 for an example). Point sets of fault cuts in wells (called "HardPoints") were generated and used together with the seismically interpreted fault surfaces (converted to fault sticks) in fault modeling. Some "pseudo-fault picks" were also added to the HardPoints set to help keep wells on the correct side of the faults.

Isochore thickness well picks were used to generate gross thickness isochore grids. Only wells with complete intervals (that is, not faulted) were used to generate the gross thickness isochore grids to avoid thickness anomalies associated with faults. The isochore grids were used, together with depth well picks, the Upper F sandstone structure surface and modeled fault surfaces, to create the other stratigraphic horizons using the Horizon Modeling functionality in RMS 2010.01.Table 2 is a summary of the input data used in horizon modeling to generate the framework model. In effect, horizon modeling involves adding gross thickness isochore grids from the top Upper F seismically defined structure surface downward while honoring the zone tops and fault model.

 Table 2:
 Input data used in horizon modeling

	Input Data			
Element Modeled	Well picks	Filtered structure surface	Fault model	Isochores
Horizons	Hard ¹	Soft ²	Soft	0.9 confidence ³

A representative east-west structural cross-section is shown in Figure 9. The framework model is about 16,000 x 16,000 feet aerially and about 1,045 feet thick from the top of the Upper F sandstone to the base of the B sandstone. Minimum depth in the model is 1136 feet and maximum depth is 3025 feet SSTVD.

Figure 9: East-west-oriented structural cross-section across the framework model

This framework model demonstrated that the test location is a structural trap with threeway dip closure to the north, east and south; and a fault closure with sands juxtaposed against silts and shales to the west. The test location was mapped to be above the lowest-known hydrate in the L-106 well for the E, D and Upper C sands. The Lower C sands extend below the lowest-known hydrate in L-106 and carried a risk that it could contain a gas hydrate/water contact.

Petrophysics

A complete suite of formation data was collected by a sequence of mud logging; logging-while-drilling (LWD) of 13¹/₂" hole and 9⁷/₈"hole; and a full wireline logging

¹ Hard means that input data is exactly preserved.

² Soft means that data is not necessarily exactly preserved.

³ A value of 0.9 indicates a high degree of conformance with the input gross thickness isochore grids.

suite in 9%"hole during the 2011 winter season. Mud log data were collected under the supervision of ConocoPhillips wellsite geologist from the bottom of the conductor casing (110ft MD) to total depth of 2597ft. Mud loggers caught samples for real-time geologist review, archival storage, and to fulfill USGS geochemical sampling protocol. Preserved wet cuttings were canned every 60ft above surface casing point (1482ft MD) and every 30ft from surface casing point to TD (2597ft MD). Samples were treated with biocide, frozen and sent to the USGS for headspace gas analysis. In addition, canisters of gas agitated from the mud stream (Isotubes) were recovered with the same frequency and shipped to IsoTech Laboratories for compositional and isotopic analysis, per USGS sampling protocol. Figure 10 depicts the mud log over the hydrate-bearing interval of Sagavanirktok sandstones; shown are the rate of penetration, interpreted lithology, quantitative gas-show measurements, and the sample description.

ConocoPhilips Alaska, Inc.				ignik S	Burs #1	#17/20					
200 ROP	o-Depth	Lithology	01	+0 T1 Gas 10	C10 Meth.C.1 2015 C10. Eth.C.2	1006	Remarks				
5hr				sets	c10,	10000	Survey Data, Mud Reports, Other Info.				
BOW geA 00	0-			to Cigs Gas 10	0 10 Butt C-4	1006					
KD6				unis	sto Pent C.S.	10062					
~2	9 3	Distance was				-	COARSER FRACTION OF THE SAND. INTACT				
	15			1		1	DECREASES WITH DEPTH AS GAS LEVELS RISE				
2	4			VIIIII	SURVEY @ 1800.54		SAND (1980 - 1990) = SAMPLES CONSIST OF A DARK BROWN SLURRY OF LOOSE SAND WITH SUBORDINATE DISACGREGATED SUIT AND BAB				
	190		-	00000000	1990 = 1890.52"		INTACT SILTSTONE CUTTINGS: THE AGGREGAT MATERIAL EXHIBITS POOR COHESION AND NO				
1	-/ •			Francis	-	<	PLASTICITY: THE SAND IS WELL SORTED; THE VAST MAJORITY OF THE SAND IS UPPER VERY ENE ORANES OF ORAN THEOLOH				
3	2			Illes		0	LOWER VERY FINE-GRAINED TO SILT-SIZED PARTICLES: THE SAND AND SILT IS ALMOST				
				Aller	33		ENTIRELY COMPOSED OF VERY LIGHT GRAY TO PALE YELLOWISH GRAY TRANSLUCENT QUART MINOP BLACK SHILL FOUR LITHLES TRACE				
	1		-	(appropriate ()			ORANGE QUARTZ, AND RARE PYRITE AND BLUE GREEN GLAUCONITIC LITHICS ARE ALSO				
1				Illenn	-K	<	PRESENT: GRAINS ARE SUBROUNDED TO ANGULAR AND QUARTZ GRAIN SURFACES ARE				
				hall shell and	30		CUTTINGS ARE VERY SOFT AND CRUMBLY, WIT A WAXY TO EARTHY LUSTER AND A SMOOTH				
13	1			0111110	STRVEY @ 1984.53'		SILTY TEXTURE: THE SANDS ARE HIGHLY CHARGED WITH GAS HYDRATES				
NO ROA	0 200		-	of the party in	0-010 Meth C-1	1006	SAND (1990 - 2120) = SAMPLES CONSIST OF				
WOB WOB	8			allerer "	Ethn C-2	1000	LESSER DISAGGREGATED SILT AND SPARSE SAND-SIZED SILTSTONE CUTTINGS: THE BULK				
-					810 Buth C-4	10000	SAMPLES EXHIBIT POOR COHESION AND NO PLASTICITY: SAMPLES ARE LIGHT YELLOWISH ORAY AND PLUYERLE BY MAKEN DRY, THE SAM				
	1			11111111	2		IS A WELL SORTED, VERY FINE-GRAINED OUARTZ SAND THAT GRADES INTO SILT: ASIDE				
				11118			FROM QUARTZ, ONLY TRACES OF BLACK AND ORANGE LITHICS CAN BE SEEN IN THE SAND				
	12			JIIIE			VISIBLE WITHIN THE RARE ALSO SOMETIMES VISIBLE WITHIN THE RARE INTAGT SILTSTONE CLITTINGS GRAINS ARE SUBANGULAR TO				
E	2		-	Illin	SURVEY @ 2078.80	1	ANGLEAR WITH MODERATE SPHERICITY ON AVERAGE, QUARTZ GRAINS SURFACES ARE				
-	1			1111111	2078.77		SILTSTONE ARE DARK GRAVISH BROWN WITH SILTSTONE ARE DARK GRAVISH BROWN WITH				
	N						SILTY TEXTURE VERY THIN BEDOING IS PERCEPTIBLE: SAMPLES ARE NON-CALCAREO				
	8	87					THE SANDS ARE HIGHLY CHARGED WITH GAS HYDRATES.				
	<u></u>	3 5			100		SAND/SILTSTONE (2120 - 2220) = SAMPLES CONSIST OF A DARK BROWN SLURRY OF LOOS				
	17				Also -		SAND AND SILT WITH SCATTERED TINY. INTACT CUTTINGS OF SILTSTONE. SILTSTONE				
	5			Allille	de		AND LAMINAE OF SAND ARE WELL SORTED AND VERY FINE-GRAINED, GRADING INTO THE				
-				Illin	1		SILTSTONE: BULK SAMPLES EXHIBIT MODERAT TO POOR COHESION AND NO PLASTICITY, THE				
- California - Cal	2			111112	SURVEY (0 2169.71 NC 0.35. AZI 194.83		OF VERY LIGHT GRAY TO YELLOWISH GRAY OLART WINDOR BLACK LITHICS: GRAINS				
	T-1			11112			ARE SUBANDULAR WITH MODERATE SPHERICI ON AVERAGE, AND QUARTZ GRAIN SURFACES				
	N		-	- SIII		4	SOFT AND CRUMBLY, WITH A WAXY LUSTER AN				
-2	200			1	C-1	5	MW 9.1 VIS 97 PV 19 YP 22 FL N/A				
	2			ID		2	GEL 21/28/34 CK NA SOL 7 O/W 70/30 SD 1.5 ALK 4.1 CI 110K Lime 5.33				
ner20112	5			maria	P	<	SILTSTONE (2230-2320) = MEDIUM DARK GRAY TO GRAY WITH SOME LIGHT GRAY AND GRAYIS				
	1		-	sollie .	. h.		BLACK: SLIGHTLY STIFF TO MOSTLY CLUMPY: VERY CRUMBLY TO CRUNCHY WITH SOME				
3				NIIIIIN	SRVEY @ 2268.43		AMORPHOUS CUTTINGS HABIT WITH SOME SLIGHTLY PLATY GREASY TO SOMEWHAT				
2					100 - 2266.40		RESINOUS LUSTER WITH SOME SLIGHTLY DULL PREDOMINANTLY SILTY WITH SOME				
-	8			able she kee			INTERBEDGED WITH THICKER BEDS OF SAND, THE SAND CONSISTS PREDOMINANTLY (
	N				32		TRANSLUCENT TO CLEAR, VERY FINE TO FINE GRAINED OUARTZ SAND: THE SAND IS MOSTLY				
	300			Active states	38		SOME PYRITE CRYSTALS THROUGHOUT; NO VISIBLE PETROLEUM INDICATORS WERE				
	1.14			411112	223	1	OBSERVED.				
				AllIIII	20	1	TO TRANSLUCENT, WITH SOME WHITE, LIGHT				
-				(Hereforder	9		GRAY TO BLACK, MOSTLY QUARTZ GRAIN SAND MATRIX WITH ABUNDANT DARK COLOREI				
			-	allan	SURVEY @ 2363.34	4	UPPER VERY FINE TO LOWER MEDIUM GRAIN SAND WITH SOME COARSE TO VERY COARSE 1				
	1				INC 0.45. AZI 227.55 TVD = 2363.21		SMALL PEBBLE: POORLY SORTED, VERY WELL ROUNDED TO SUBROUNDED WITH SOME				
			_			1	SUBANGULAR TO ANGULAR MODERATE SPHERICITY, THICKER SAND LENSES				
2			-			1	SANDY TO SOMEWHAT SILTY CLAYSTONES: SOME PYRITE CRYSTALS; NO VISIBLE				
	2400		-			- {	PETROLEUM HYDROCARBON INDICATORS WERE OBSERVED.				
-				13	64	(CEASED DRILLING AT 2429 MD. TO ALLOW DRILL COOL TO CHILL MUD FOR CIRCULATION				
	1			> 10.4120		2	SILTSTONE (2430-2530) = DARK GRAY TO				
	1			-	-	1	GRAY AND MEDIUM LIGHT GRAY, MOSTLY CLUMPY TO SOMEWHAT PASTY, WITH SOME				
	1	÷	-	1 5		{	SLIGHTLY STIFF IN PLACES MOSTLY BRITTLE WITH SOME CRUMBLY TO CRUNCHY: IRREGULA				
-	100			2	SURVEY @ 2457.01* INC 0.53. AZI 229.08	2	PRACTURE WITH SOME SLIGHTLY BLOCKY. PREDOMINANTLY AMORPHOUS CUTTINGS HABI WITH SOME VIERY SLIGHTLY BLATY USERS				
	2			1	110-200.01)	EARTHY TO SOMEWHAT DULL WITH SOME WAXY TO GREASY IN PLACES: PREDOMINANTLY				
3	(m)	A COMPANY OF THE OWNER		X		1	SILTY TEXTURE WITH SOME VERY GRITTY				

Figure 10: Mud log through hydrate-bearing Sagavanirktok sandstones

Table 3 contains a summary of the Schlumberger wireline logging tools that were run, with slight revisions to depths: Platform Express (PEX), Combinable Magnetic Resonance (CMR), Pressure Express (XPT) and Modular Dynamic Tool (MDT).

Logging Run	Vendor	Hole Size	ΤοοΙ	Measurement	Interval
Mud log Mud logging	CanRig/Epoch	13½" & 9%"	Mud logger	ROP, mud gas, sample descriptions	110ft- 2597ft
LWD Run 1	Sperry (Halliburton)	131⁄2"	Gamma Ray	GR	110ft- 1482ft
			Resistivity	pre-invasion Rt	110ft- 1482ft
			Density- Neutron	ΦD, ΦΝ	110ft- 1482ft
LWD Run 2	Sperry (Halliburton)	91⁄8"	Gamma Ray	GR	1473ft- 2597ft
			Resistivity	pre-invasion Rt	1473ft- 2597ft
Wireline Run 1	Schlumberger	97⁄8"	Gamma Ray	GR	1473ft- 2597ft
			Sonic Scanner	ΔtC, ΔtS	1473ft- 2597ft
			OBMI (+ GPIT)	Hi-Res image	1473ft- 2597ft
			Rt Scanner	Vertical & horizontal resistivity	1473ft- 2597ft
Wireline Run 2	Schlumberger	97⁄8"	PEX	ΦD, ΦΝ	1473ft- 2597ft
			HNGS	natural gamma spectroscopy	1473ft- 2597ft
			CMR	distribution of relaxation times	1473ft- 2597ft
			XPT	P, T, fluid mobility	selected points
Drill pipe	Schlumberger	97⁄8"	TLC Gamma Ray	Drill pipe conveyance GR	
		Run 3A	MDT mini- Frac	P, T, fluid sampling	selected points
		Run 3B	MDT mini- DST	frac/breakdown pressures	selected points

 Table 3:
 Ignik Sikumi #1 Openhole Data Collection

Petrophysical Analysis

Figure 11 shows the basic log responses for the reservoir interval. The gamma ray (Track 1) is the standard sand – shale discrimination tool, where the hydrate-bearing sand intervals are recognized by the lower GR signal. The caliper log (Track 1 HCAL), when compared to the bit-size curve (Track 1 BS) indicates a good quality borehole throughout the hydrate-bearing intervals with minimal washout. The hydrate-bearing intervals are identified by high resistivity (Track 4 AT90), low compressional slowness

values (Track 5, DTCO) and separation between the conventional density and NMR porosity curves (Track 6). The deepest reading resistivity curve, AT90, was collected with the RtScanner and processed with a standard two-foot vertical resolution. A threshold value of 2 ohm-m was chosen to identify the hydrate-bearing intervals (shaded red). Lower slowness values correspond to faster velocities and indicate the presence of a porosity-reducing hydrate that also strengthens the sand. A threshold value of 140 µsec/ft was used to discriminate the hydrate-bearing intervals. The bulk density measurement (RHOZ) is not affected when water is transformed into hydrate because the density of the liquid and solid are virtually the same. For this reason, the standard density log is the best option for determining the total pore volume filled with liquid and hydrate. In contrast, the fluid-sensitive NMR log does not detect the hydrate because the fast relaxation times associated with hydrate are not detectable by the conventional logging tools. The combination of the two provides a useful way to distinguish water-filled pores from hydrate-filled pores.

In Figure 11, hydrates are identified by high RT values, low compressional slowness (DTCO), (i.e. high velocity), a subdued NPHI response, and the relationship between low RHOB/high DPHI and low NMR porosity (TCMR) that results from fast T2 decay.

Figure 11: Ignik Sikumi Log response with hydrate-bearing intervals (shaded)

The logs were analyzed to determine reservoir quality and calculate fluid saturations (Figure 12). The Upper C sandstone was selected for the test because it is thick, homogenous, and clean with uniform hydrate saturation. The interval has high resistivity values and reduced slowness, both of which indicate hydrates in this particular environment. The NMR relaxation time distributions (Track 6, T2D) in the hydrate-bearing interval are broad, with strong bimodal behavior at some depths. The faster relaxation times correspond to water in smaller or drained pores. In contrast, the slower, more intense distribution in the Lower C sand (2330 and below) indicates a water-filled sand without hydrate. This interval provides a baseline for any interpretation of the NMR log.

Figure 12: Log characteristics of the Ignik Sikumi Upper C sands showing homogeneous character and well-defined bounding shales, and low moveable water

Tracks from left-to-right are: gamma ray, resistivity, sonic, neutron density, CMR T2 echo train and CMR calculated saturation (blue = free water, orange = capillary bound water, brown = clay bound water).

Hydrate saturation was calculated using four methods:

- 1. Archie's equation (Archie, 1942);
- 2. Schlumberger's Density-NMR method based on a conventional gas analysis approach (Kleinberg et al, 2005);
- 3. Multiple Mineral solution by linear regression, AIM (Klein et al., 2012); and
- 4. Sonic (Xu and White, 1995).

The assignment of parameters in the conventional Archie's method was based upon the similarity in resistivity between hydrates and hydrocarbons (i.e., high resistivity phases). The water resistivity (Rw) has a great deal of uncertainty associated with its value in hydrate-bearing reservoirs, and was determined by conventional well log analysis techniques in the water-wet sand at the base of the C sand interval. Standard values for the Archie parameters "a", "n" and "m" (i.e. 1, 2 and 2) were used given the absence of independently determined results. Saturations were calculated using a modified Archie expression where hydrate saturation is 1.0 minus water saturation.

Equation 1: Modified Archie's equation

$$Sh = 1 - \left(\frac{Rw}{\phi^m Rt}\right)^{1/n}$$

Where:

 S_h = hydrocarbon saturation \emptyset = porosity Rw = formation water resistivity Rt = observed bulk resistivity n = saturation exponent (generally 2)

The NMR log-based interpretation model calculated hydrate saturation as the difference between NMR porosity and density porosity (Kleinberg et al., 2005). This approach was similar to conventional gas analysis methods where the density porosity approach measures the total pore volume while the NMR responds only to the liquid filled pores (gas density being so low that it approaches a value of zero). The NMR-based interpretation model is driven by the observation that while liquid water has relaxation properties that are easily detected by the logging tool, once that water is transformed into a solid state, either as ice or hydrate, the relaxation processes are too fast for detection by a conventional logging tool. The separation between a density-based porosity and the NMR-based value in a hydrate-bearing interval reflects the amount of hydrate (or ice) in the zone. Equation 2: Hydrate Saturation model for NMR and Density logs

$$S_{h} = \frac{DPHI - TCMR}{DPHI + \lambda \cdot TCMR} \qquad \qquad \lambda = \frac{\rho_{fluid} - \rho_{hydrate}}{\rho_{matrix} - \rho_{fluid}}$$

Where:

 S_h = hydrocarbon saturation DPHI = density porosity TCMR = NMR total porosity ρ = density of fluid, hydrate or bulk matrix

The multiple mineral solution used a simultaneous equation solver with GR, PHOB, DT and HPHI as inputs. The linear regression model generated outputs of sand, clay, hydrate and water volumes. This solution was independent of resistivity.

The sonic method calculated hydrate saturation as the difference between sonic porosity and density porosity, in a manner like the NMR-based interpretation model.

The results of these methods for hydrate saturation are shown in Figure 13. The Archie's and NMR methods provided a similar solution with average hydrate saturation in the Upper C sand being 75%. None of these methods were calibrated to core, so there was significant uncertainty in the actual saturations values. All methods indicated that the hydrate saturation was high and relatively uniform in the Upper C sand.

Figure 13: Calculated hydrate saturations in Ignik Sikumi using four different methods (Red = Archie's equation; Green = NMR method; Purple = multiple mineral solution; Black = sonic)

NMR data from the CMR tool was reprocessed to improve time and depth resolution of the calculated relaxation time distributions. The original relaxation time distributions were broad, with weak discrimination between fast and slow relaxation components (Figure 14). Reprocessing with a similar T2 time basis (30 points between 0.3 to 3000 msec) and a fixed regularization parameter generated distributions with a more distinct bimodal nature. The fast relaxation component represented capillary-bound water, the majority of the free water in the hydrate-bearing intervals, while the slower component was associated with free water in larger pores. Volumetrically this mobile water was less than the faster capillary-bound water. The distributions were scaled to total NMR porosity, which was significantly reduced in the hydrate-bearing zones. The water-

saturated interval at the base of the C sand was identified by high NMR porosity and a relaxation time distribution dominated by slower times (i.e., large water-filled pores).

Volumetric calculations from the NMR-Density model (Track 4, Figure 14), indicate that there are large volumes of hydrate (green) in the Upper C sand with smaller amounts of "free" water (dark blue) and capillary bound water (light blue). The Lower C sand interval at 2350 ft. does not contain hydrate as shown by the large volume of free water.

Estimates of permeability based on NMR-measured properties were calculated with both the TIMUR and SDR conventional models. Both approaches generated permeability values greater than 1 Darcy in the water-bearing C sand (Lower C). The permeability was calculated to be less than 1 mD in the hydrate-bearing Upper C sand. These values are not actually measurements of permeability; instead, the models are based on pore geometry models of porosity and estimates of pore size, and should be used with caution.

Acoustic velocities were calculated from the first arrivals of Monopole and In-line Dipole of the Dipole Sonic Tool. The waveforms were well behaved with clearly resolvable first-arrivals (see Figure 15). The hydrate-bearing intervals stood out on the waveform plots by the increased attenuation (loss of signal amplitude). The Vp velocities ranged between 2500 and 3000 msec, comparable to the values obtained on the nearby L-106 and Mt. Elbert wells (Collett and Lee, 2012), and laboratory-based measurements (Howard et al., 2011). The Vp/Vs ratio was around 2.5.

The velocities and calculated saturations were compared to the general Effective Medium model used to determine hydrate distribution in pores (see Howard et al., 2011 for details of earlier work). The velocities compared favorably with the modelpredicted values for hydrate enveloping discrete sand grains, but not for grain-contact hydrate cement or pore-filling hydrate (Figure 16). These results were similar to those collected on high-hydrate saturation sand packs.

-										-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-									
ction DAS	movable	water %					0.24	0.35	0.33	0.39	0.39	0.40	0.43	0.39	0.40	0.41	0.40	0.38	0.42	0.43	0.41	0.48	0.48	0.44	0.46	0.51	10.0	0.40	0.35	0.41	0.45	0.46	0.44 0.28	0.35	0.37	0.28	0.07	0.08	0.12	0.14	0.17					
l porosity" fra	capillary-	oound water %					0.44	0.45	0.47 0.48	0.46	0.44	0.44	0.45	0.53	0.50	0.39	0.40	0.42	0.39	0.39	0.42	0.37	0.34	0.40	0.46	0.44	0.40	0.49	0.41	0.45	0.42	0.33	0.50	0.46	0.44	0.61	69.0	+0.0	0.55	0:50	0.46					
"Water-fillec	ay-bound	water t					0.32	0.20	0.20	0.15	0.17	0.16	0.12	0.08	0.10	0.20	0.20	0.20	0.19	0.18	0.16	0.16	0.18	0.17	0.08	0.04	00.0	0.11	0.24	0.14	0.13	0.21	11.U 0.13	0.19	0.19	0.11	0.70	0.34	0.33	0.36	0.37					
tal water-	filled	COMR_1	0.13894	0.156766	0.225022	0.199079	0.168035	0.161128	0.143285 0.04923	0.0816193	0953457	0.100888	0873008	0/82839	0000000	0676673	0.070748	0741777	0.0744321	0808913	0.0909458	0931526	0.0916498	0.0867888	0826941	0.0861074	1818880.0	0824032	0960217	0.111571	0.112435	0.105521	0.10100303	0.125267	0.120282	0.131669	07307C 0	0.267035	0.226663	0.209099	0.204575	0.1689/3	0.106278	0.103085	0959051	0.130075
oward/Klein)	ovable	AFF_1 T	608266)518991 212220	141487	0233187	0408565	563572	1475758 1377984	319334 0	368581 0	400886	372062 0	030482 0	0 0000020	0274972 0	0281119	0283021 0	312754 0	344967 0	376048 0	0443903 0	0441136 0	0 17977671 0	0 119777 0)442301 0	0 0307050	0 1686/60	337752 0	.045421	505238	0485922	0449302	0443812)442642	364327	1253147	0000510	0275285	029471	343493	1401644	0231706	0239418	134943 0	108274
urations (Ho	m" punoq	≥ 27 ≥	12058 0.0	40508 0.0	10 22500 UL	31418 0.0	31521 0.0	17679 0.0	89622 0.0 58921 0.0	22132 0.0	62107 0.0	66005 0.0	07282 0.0	63433 0	49013 U.C	37494 0.0	40413 0.0	14851 0.0	41312 0.0	45269 0.0	50028 0.0	46244 0.0	62231 0.0	14455 0.0	42813 0.0	56211 0.0	10 00/0/	92803 0.0	32247 0.0	59439 0	47614 0.0	17814 0.0	26647 0.0	23331 0.0	30715 0.0	43062 0.0	00180 0.0	U 20200	44931 0.0	47257 0	65782 0.0	41218 U.C 82406 D.C	25375 0.0	00834 0.0	74331 0.0	00407 U.C
CMR Sat	ound "clay-		1137 0.02	4868 0.03	/US3 U.U/	7576 0.08	7178 0.05	0477 0.03	7086 0.02 6246 0.01	6859 0.01	4877 0.01	7997 0.01	0946 0.01	8018 0.00	naki nang	1702 0.01	6361 0.01	8755 0.0	1567 0.01	3946 0.01	3341 0.01	7623 0.01	5363 0.01	0216 0.0	7164 0.006	8772 0.003	200.0 10/0	2444 0.000	2468 0.02	1496 0.01	1911 0.01	9285 0.02	10.0 0.01	8854 0.0	0181 0.02	2361 0.01	8998 0.04 0000 0.06	auua u.uc 4544 0.00	9134 0.07	9629 0.07	0225 0.07	8809 0.C	1081 0.006	1429 0.02	4107 0.03	9248 0.Ut
capilla	clay-bo	nt wate	0.078	0.10	1.0	0.1	0.12	0.1	0.095	0.049	0.058	0.060	0.050	0.047	0.043	0.040	0.042	0.045	0.043	0.046	0.05	0.048	0.047	0.049	0.044	0.041	0.043	0.04	0.062	0.066	0.06	0.056	9GU.U 780.0	0.080	0.076	0.095	1.0	77.0	0.19	0.17	0.17	0.12	0.083	0.079	0.082	11.0
e (per Ahmac		ACTUAL XP measurmei nei	Ē							1077																	1000	7601				1082				1088										
rvoir Pressur tre from XPT	tifzai/SLB)	Sd gradient	1072	1072	1073	1074	1074	1075	1075 1076	1076	1077	1077	1078	10/8	1070	1079	1080	1080	1081	1081	1082	1082	1083	1083	1084	1084	1065	1086	1086	1087	1087	1088	1088 1080	1089	1090	1090	1090	1001								
Resel	Гa	gradient C	034	035 07	036	036	037	037	038 138	039	039	039	040	040	5 12	042	042	043	043	044	044	045	045	045	046	046	047	047 048	048	049	049	050	060	051	051	052	052 062	053	054	054	055	056 056	056	157	057	057
Rese	ŝ	0/3 Avg 0		= ;		-	1	1	~ ~	=	7	7	÷ :			-	=	7	7	7	÷	7	7	÷.	÷.				=	÷	7	÷ ;			-	÷.			-	÷	₹.			÷	÷	1
ture Closure	ressure	/e Cramer, (oir" "seal" nei	1542	1542	15451 -	1544	1545	1546	1547	1548	1549	1549	1550	1551	1552	1553	1553	1554	1555	1555	1556	1557	1558	1558	1559	1560	P021	1567	1562	1563	1564	1564	1500	1567	1567	1568	1509	1570	1571	1571	1572	15/3	1574	1575	1575	15/6
Frac		per uar "reserv	1412	141	1412	1415	1416	1416	1417	1418	1419	1419	1420	1421	241	1423	1423	1424	1424	1425	1426	1426	1421	1428	1428	1429	1641	143	1431	1432	1433	1430	1434	1435	1436	1436	1430	1436	1430	1440	1440	141	144	1440	144	144
		e f 9/08 reading: °E	40.25	40.26	40.28 40.79	40.31	40.32	40.33	40.35 40.38	40.39	40.40	40.42	40.43	40.45	40.45 40.46	40.47	40.49	40.53	40.54	40.55	40.57	40.58	40.57	40.60	40.62	40.62	40.05	40.66	40.68	40.70	40.71	40.70	40.73	40.77	40.78	40.79	40.81	40.84	40.85	40.87	40.90	40.92 40.95	40.96	40.98	40.98	40.98
		1emperature 9/08 AVG o																																												
		t DTS trace,	40.39	40.26	40.47 40.47	40.37	40.30	40.37	40.42 40.45	40.42	40.41	40.46	40.53	40.63	40.60	40.56	40.55	40.57	40.64	40.70	40.66	40.63	40.61	40.65	40.69	40.75	C/.04	40.70	40.78	40.85	40.91	40.87	40.88 40 97	40.91	40.89	40.89	40.97	40.98	40.93	40.93	40.97	41.04 41.10	41.10	41.02	40.99	41.00
		eadings las						~					_					-	_	~				~ .	~	~ -				-					~	~ .				_	~					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ļ	NG of 5/30 r	40.55	40.55	40.b(40.64	40.66	40.68	40.70	40.7	40.77	40.79	40.81	40.8	40.04	40.84	40.86	40.90	40.91	40.92	40.94	40.95	40.96	40.9	40.95	40.95	10 IV	41.02	41.00	41.04	41.0	41.06	41.02 41.10	41.11	41.12	41.15	41.15	41.16	41.17	41.21	41.23	41.2	41.26	41.2	41.26	41.22
	ļ	ace, 5/30 A	59	9.5	10	56	55	64	67 66	67	99	68	73	6/	o K	73	76	78	88	96	95	95	91	93	97	03	05	5 5	90	90	90	07	10	11	07	02	9/	50	94	2	26	۹۱ د	1 71	18	22	53
		last DTS tr	6	9	0 0	6 4	40	40	0- Q	40.	40.	40.	40	9 9 9	f 5	6	40	40	40	40	40	40	6	Q 9	9	14 1	1 2	414	41	41	41	41	17 T	41	41	41	04	4	40	41	41	41 41	41	41	41	41
		GR_1 GR_1	45.501	48.5958	53.3080 66.1271	75.7642	69.0552	55.7428	46.6645 44 7692	39.3189	37.2422	41.9536	42.3916	41.1234 20.5200	LEFE CE	27.3199	25.592	27.7828	26.8447	27.2636	29.2141	30.4711	31.4545	32.3246	28.4158	28.1903	30.0140	31.2494	32.3397	32.7427	33.7819	34.918	787.6087	37.9862	40.1472	40.9721	42.//81 50.0076	1985.8C	81.7174	75.479	69.2006	54 A670	42.0727	39.1933	43.1474	49.5692
ir Jim Klein	0	IV VOIUME G	0.237248	0.261158	1/0882.0	0.471055	0.419223	0.316374	0.246237 0.231595	0.189487	0.173443	0.209842	0.213226	0.203428	0.131134	0.0967856	0.0834363	0.100362	0.0931144	0963507	0.11142	0.121131	0.128729	0.135451	0.105252	0.10351	0.1170U4	0.127144	0.135567	0.138681	0.14671	0.155487	0.1762710	0.179191	0.195886	0.202259	0.240246	0.502193	0.517048	0.468851	0.420346	0.40308 0.306486	0.210762	0.188517	0.219065	0.268678
roperties, pe vater	turation		386844	0.391638	14/3//9	.859164	0.73428	0.53378).457165 1.418926	1.255176	.208347	.244212	260989	0.23135/	2100120	185513 (.175617 (0.183128	0.192133 (.193774 (1.212501	0.2358	1.240429	0.238388	1.227148	0.217189	0.1077066	0.22796	1.216416	0.250076	.300091	0.316672	0280821	302846	.359059	0.331896	0.302002	1.030000	.967426	.781774	1732259	0.686193	332054	1.284131	0.28933	.297495
Reservoir P Irate v	ration sat	MR_1 SW	313156 C	508362 [0 177070 U	140836 C	26572	46622	542835 (181074 0	44824 0	191653 (755788 0	739011 [1040543	100016	14487 0	124383 0	316872 0	307867 0	306226 0	787499 (0.7642	120221	761612 (172852	782811 (h phata	64070J	83584 0	149924 [0 606669	583428 (1 05USU1	97154 0	540941 0	568104 (03/938 0		325745 C	218226 C	267741 L	31380/ [167946 C	715869 C	71067	702505 (
-og Derived hvd	tal satu	DSRV Trom	7061 0.6	6643 D.t	4647 0.3	3994 0.1	7503 0.	2915 0.	2891 0.5	3752 0.7	9261 0.7	6564 0.7	0223 0.1	3932 0.1	0 2000	5236 0.8	2424 0.6	3509 0.8	3206 0.6	1042 0.8	0.0 8070	1873	3533 0.7	0327 0.1	8109 0.7	7012 0.1	0 000	6321 0	6939 0.7	9752 0.7	6333 0.6	8515 0.4	10 0148 U.1	1648 0.6	1248 0.6	5485 0.6	0 8120 0.0 8730	7139 0.02	6406 0.03	13352 0.2	10 8898	13109 0.1	8436 D.E	8473 0.7	0042 0	14406 U.
	to	EPTH PHI	2234 0.37	2235 0.3	90.0 752C	2238 0.26	2239 0.2	2240 0.32	2241 0.36 2242 0.35	2243 0.	2244 0.40	2245 0.40	2246 0.4	224/ 0	70 0477	2250 0.40	2251 0.40	2252 0.40	2253 0.40	2254 0.40	2255 0.3	2256 0.40	2257 0.40	2258 0.40	2259 0.36	2260 0.35	0 Lace	2263 0.39	2264 0.39	2265 0.39	2266 0.36	2267 0.36	0200 030	2270 0.37	2271 0.36	2272 0.31	12/13 0.34	2275 0.26	2276 0.27	2277 0.29	2278 0.26	7280 0.30	2281 0.37	2282 0.36	2283 0.37	2284 0.3
		PERFS DE	-							perf	perf	perf	ber	te l	le le	bert	bert	perf	perf	perf	perf	perf	perf	, perf	berf	Ted 1	bell bell	bel, be	bert	bert	perf	ber	lia ju	bert,	perf	berf,	belt									
		-																																												

 Table 4:
 Petrophysical reservoir characterization

XPT Testing

The Pressure Express, XPT tool was used to measure formation pressure and estimate fluid mobility in the D and C sands. Each formation was expected to have low permeability resulting from the high hydrate saturations. The XPT has a pad and probe that permits fluid withdrawal/pressure build up testing with very low fluid flow rate for tight formations. The tool used a large area packer that increased the formation area exposed to the probe barrel. Both a lower flow rate and a larger area allowed for smaller draw-down pressure as shown by Darcy's equation.

Equation 3: Darcy's equation

$$\Delta P = \frac{Q * \mu}{A * k}$$

Where:

 ΔP = pressure drawdown Q = flow rate μ = fluid viscosity A = area k = formation permeability

Mobility calculations shown as green dots on Figure 17, while requiring an assumption on fluid viscosity, indicated that mobility is consistent with the permeability calculated from NMR. Estimated permeabilities are tight (< 0.1 md) and of a similar magnitude in the D and C sands.

Figure 17: Log panel showing raw and calculated curves. Track from left to right: Gamma ray and caliper; total gas from mud log; resistivity; neutron density and CMR; lithology; hydrate saturation and permeability with XPT mobility.

MDT Testing

Micro-fracturing tests were carried out using an MDT tool to measure the minimum horizontal stress. Fractures were generated by pressurizing an interval approximately 3

ft in length isolated between the dual packers of the MDT tool. The nominal diameter of the borehole was 9.88 in. Micro-fracturing tests were carried out at two stations located at 2071.95 and 2202.58 ft RKB. The formation at the first test station was a gas hydrate bearing D sand, and this test was performed to determine the formation breakdown pressure in sand similar to the test sand, without damaging the test sand. The second test was in the siltstone overlying the test sand to understand injection pressure limits. At times during testing, the pumps only completed half-strokes, which caused irregular flow. This problem was probably caused by interaction of solids in the mud with pump-check valves. Half-stroking complicated the interpretation of corroborative parameters such as the leak-off pressure. However this problem did not affect the inference of the most crucial parameter, i.e., the closure stress. Therefore the main objective of these tests was satisfied. The tests yielded minimum horizontal stress estimates of 1364 psi (12.7 ppg, 0.66 psi/ft) and 1625 psi (14.2 ppg, 0.74 psi/ft) in the sand and confining bed respectively.

Detailed reports on the XPT and MDT testing can be found in the appendices of the Q2 2011 progress report for this project.

Basis of Test Design

The testing equipment was designed to accommodate a range of operating conditions. The parameters are described in this section. Equipment was sourced to handle the following injection and flow back rates (Table 5):

	Pre-Inje Drawdo	ection own	N₂ inje	ction	CO ₂ +N ₂ injectio	2 9 n	Exchang Drawdov above P	ge Test wn GHS	Dissociation Test Drawdown below PGHS				
	min	max	min	max	min	max	min	max	min	max			
BHP (psi)	750	1000	1000	1400	1000	1400	750	1000	0	750			
BHT (°F)	42	42	35	45	35	45	35	45	35	45			
Qinj (gpm)	NA	NA	0.25*	2	0.25	2**	NA	NA	NA	NA			
Qg (MCF/D)	0	0	NA	NA	NA	NA	7.5	100	50	150			
Qw (Bbl/D)	0	75	NA	NA	NA	NA	0	50	50	400			

 Table 5:
 Pressure and rate condition ranges for each phase of the test

BHP =>	Bottomhole pressure (psi)
BHT =>	Bottomhole temperature (F)
Qinj =>	Injection rate (gallons per minute of liquid N ₂ or CO ₂)
Qg =>	Gas production (MCF/D)
Qw =>	Water production (Bbl/D)
*0.25 gpm N ₂	\approx 22 SCF/min; **2 gpm CO ₂ + N ₂ \approx 160 SCF/min
Pres =>	Reservoir pressure (1075-1090 psi)
Pbd =>	Breakdown pressure (1420-1440 psi)
Tres =>	Reservoir temperature (40.4-40.8°F)

Wellbore Design

Drilling and casing design, including approximate proposed setting depths, is summarized in Figure 18. Surface casing was set in the $13\frac{1}{2}$ " hole, which was drilled to 1475 feet. The production hole was drilled with a $9\frac{7}{8}$ " bit and chilled, oil-based drilling mud to a depth of 2597ft. The production hole casing design consisted of two main elements: a tapered casing string that was instrumented and then cemented in place and an upper heated casing string that converted the wellbore to a $4\frac{1}{2}$ " monobore.

Figure 18: Subsurface stratigraphy and casing location

Completion design is summarized graphically in Figure 19.

10^{3} /4" casing was cemented in the 13^{1} /2" surface hole, and a 7^{5} /8" x 4^{1} /2" tapered casing was cemented to surface with low heat-of-hydration cement to minimize hydrate dissociation.

In Figure 19, a fiber-optic Distributed Temperature Sensor (DTS) string (shown in yellow) was clamped outside the tapered casing and run to TD. Three surface-readout pressure/temperature gauges (shown in red) were also run on the 4½" casing. Electronic lines for these (shown in black) were clamped to the outside of the tapered string adjacent to the DTS cable. The bottom gauge permitted monitoring fluid fill-up during completion operations. Both the upper and central gauges were run above the perforation interval in Sagavanirktok Upper C sand. A central gauge was placed between the nipple and the seal-bore receptacle, which reflect the top and bottom of a sand-control screen installed immediately after the perforation step.

After cementing the $7\frac{5}{8}$ " x $4\frac{1}{2}$ " tapered casing, the upper completion was installed on $4\frac{1}{2}$ " tubing. This tubing string was strung into a polish-bore receptacle seal assembly (at the $7\frac{5}{8}$ " x $4\frac{1}{2}$ " crossover) and converted the wellbore to a $4\frac{1}{2}$ " monobore which simplified perforation, injection, and flowback testing. Three, $\frac{3}{4}$ " tubing strings were clamped to the outside of the tubing, and bound together in a triple flat pack. Two $\frac{3}{4}$ " strings (shown in red on Figure 19) were run open-ended to facilitate fluid circulation and heating of the upper well annulus. This "heater string" was used to make the $7\frac{5}{8}$ " x $4\frac{1}{2}$ " annulus a heat exchanger, which facilitated the delivery of injected fluids at the desired temperature and prevented freezing of fluids in the permafrost. A chemical injection mandrel was connected to the third $\frac{3}{4}$ " tubing string (shown in blue). The gaslift mandrel (shown in blue) serves four functions: evacuation of fluid from the annulus; artificial lift of fluid in the $4\frac{1}{2}$ " tubing; installation of an additional pressure-temperature gauge; and as a circulation port for cementing during plug and abandonment (P&A) operations.

A more detailed wellbore schematic that shows equipment locations relative to the reservoir sands is provided in Figure 20.

Figure 20: Large scale wellbore schematic showing equipment position relative to reservoir sands

Well Information

Other elements in the wellbore design include: sand screen; heater/chemical injection; and artificial lift. These elements are described in detail.

Sand Screen

Delta Elite 200 micron screens for downhole sand control were built and shipped to Unique Machine in Anchorage, where an assembly including seals and a DB-6 lock was built for space-out across the Sagavanirktok Upper C sand. The screen was configured for running and setting inside the 4¹/₂"monobore.

OAL	Top Depth	Length	Description	ltem	Est. Lbs
1.17	2,224.46	1.17	DB-6 Lock, 3.687" min ID DB Nipple	1	20
1.98	2,225.63	0.81	Upper Cross-Over	2	10
12.06	2,226.44	10.08	Upper Space-out pup	3	70
14.31	2,236.52	2.25	2-7/8" D Nipple (2.188" ID) + X/over	4	10
52.64	2,238.77	38.33	Screen sections (coupled length)	5	391
55.24	2,277.10	2.60	Lower X-over & space-out pup 6		20
56.66	2,279.70	1.42	7	20	
		56.66			541

 Table 6:
 Sand screen assembly detail

Heater/Chemical Injection String

The heater/chemical injection string consisted of three identical ³/₄ inch tubes made up into a FLATPak. Two of the tubes were open-ended at a depth of approximately 1,927 ft. and were glycol and warmed water circulation. The third tube was connected to a chemical injection mandrel and was intended to be used to power a small hydraulic pump.

FLATPak Tube Specifications, 3 each ³/₄" Tubes:

- 2 each, Glycol/water Heat Circulation Tubes (open-ended at bottom ~1,927' MD)
- 1 each, Chemical Injection Tube connected to Chemical Injection Mandrel

OD (inches)	ID (in.)	Drift (in.)	Wt #/ft	Grade	Tensile Conn. (1000 Ibs)	Burst (psi)	Collapse (psi)	Thread Connection	Tensile Body (1000 lbs)
3/4"	.576	NA	.618	HS-70	Coiled Tubing	15,000	14,356	12.7	NA

 Table 7:
 FLATPak Tube specifications for chemical injection string

Chemical Injection Valve

A chemical injection valve with 1,500 psi set pressure, for placement in the chemical injection mandrel, was ordered and transported to the North Slope. The chemical injection tube was not used during 2012 operations, because it was in pressure communication with the $7\frac{5}{8}$ " x $4\frac{1}{2}$ " annulus. It is suspected that the tube failed as a consequence of sub-freezing temperatures in the wellbore due to incomplete removal of water from the tube before temporary well suspension in 2011. Below freezing temperatures for water existed in the wellbore between April 2011 and February 2012.

Artificial Lift

Options to provide pressure drawdown and to lift produced fluids included a hydraulicdrive mechanical pump and a reverse jet pump. The hydraulic-drive mechanical pump was designed to use the ³/₄"chemical injection line to supply power fluid and the lower end of a conventional sucker-rod pump. One advantage of hydraulic-drive pump, which has a maximum capacity estimated at 75 BWPD (with limited gas capacity), is the ability to pump fluid without contact between and mixing of power fluid and pumped fluid. This pump was not used in the test because the failed chemical injection line prevented the correct powering of the unit with hydraulic fluid.

Two reverse jet pumps of different capacities were used during the test and were installed to straddle the gas lift mandrel. They were able accommodate the entire range of produced water and gas volumes. Power fluid for the reverse jet pump was recycled, warmed, produced water that was pumped down the annulus and into the gas-lift mandrel.

Test Design

The objective of the field trial was to evaluate CO_2/CH_4 exchange, a methane hydrate production methodology whereby carbon dioxide is exchanged *in situ* with the methane molecules within a methane hydrate structure, releasing the methane for production. In addition, production by depressurization was also evaluated. This was a short term test using a "huff and puff" injection and production cycle from a single well to demonstrate the CO_2/CH_4 exchange concept at larger-than-lab scale. Specifically the field trial aimed to:

- Validate exchange mechanism results from laboratory work
- Confirm injectivity into naturally occurring methane hydrates
- Confirm methane release without production of water or sand
- Obtain data to facilitate reservoir-scale modeling
- Demonstrate stable production of natural gas hydrates by depressurization

The initial reservoir conditions established from the 2011 reservoir characterization work were:

- Reservoir Pressure = 1000 psi, @ 2,250 ft MD
- Reservoir Temperature = 41° F @ 2,250 ft MD
- Average Saturation = 72% Hydrate + 28% water
- Thickness = 30 ft
- Reservoir = Unconsolidated sand
- Formation Breakdown pressure » 1450 psi

The field trial was designed to accommodate the following conditions and process constraints:

- Native hydrate exists in equilibrium with excess water;
- Free water can be converted to CO₂ hydrate;
- New hydrate formation can dramatically reduce permeability (Figure 21); and,
- N₂ can be used to displace water but may dissociate hydrate.

Model Development

As originally conceived, the field demonstration of "solid state" CO_2 exchange with methane hydrate was predicated on injecting pure carbon dioxide into a methane hydrate bearing sand interval. The original concept, however, did not fully consider the practical ramifications of injecting liquid CO_2 at reservoir conditions into a hydrate zone that contains excess water. Primary concerns are the management of bottomhole pressure because gaseous CO_2 at surface conditions condenses to liquid at reservoir depth and temperature; and the maintenance of injectivity as excess CO_2 interacts with excess formation water to form additional hydrate saturation thereby reducing permeability.

Of the potential remedies to these problems the most promising employ the inclusion of nitrogen in the test design either as a pre-flush or as a CO_2 diluent. The inclusion of nitrogen in the design, however, presents a challenge in that existing hydrate simulators do not include nitrogen as a component, much less a third component, for compositional simulations. Because a functional simulator is deemed necessary for the proper design and interpretation of the field exchange test, the task was undertaken to construct a serviceable multi-component hydrate model.

Developing a thermodynamically rigorous simulator that strictly solves the governing equations for heat and fluid flow and energy and mass conservation is beyond the scope of this project, so a simplified approach was adopted employing a multi-cell equilibrium separation concept. Isothermal and adiabatic model versions were developed to bracket the anticipated extremes of thermal effects on hydrate exchange; the former implying instantaneous thermal equilibrium with the surrounding strata while the latter suggesting that there is no heat exchange at all.

In its isothermal manifestation, the system is divided into cells of equal volume at constant temperature, which are linked in series. All cells initially are identical containing the same global composition at the same temperature and pressure. Upon injection, a fractional cell volume of injectant is passed to the first cell at the specified injection pressure and composition. Simultaneously an equivalent volume is removed from the first cell at its resident condition and passed to the next downstream cell. The volume removed may under some conditions be subject to a global pressure constraint and/or a local pressure constraint between cells. The composition of the removed volume is solely dictated by the mobile phases present within the upstream cell. If both liquid and gas are present, the ratio of each phase removed is based upon their relative mobility given by the following equation.

Equation 4 Use this equation to determine the ratio of the liquid and gas phase removed based upon relative mobility

$$Q_g / Q_w = \frac{(k_{rg} / \mu_g)}{(k_{rw} / \mu_w)}$$

Where:

 k_{rg} = the relative permeability of the gas phase

 μ_{g} = viscosity of the gas phase

Relative permeability is determined in the standard manner and is solely a function of mobile phase saturations within the upstream cell. The entire remaining contents of the upstream cell are then flashed at constant volume and temperature. Multiphase equilibrium calculations are executed via MultiflashTM, a commercial software package capable of dealing with mixed hydrates of nitrogen, carbon dioxide and methane. The algorithm is repeated sequentially for downstream cells until new pressure, phase saturations and compositions are determined for each cell in the model. The process is then repeated for the model until the full complement of injectant has been passed to the first cell. Under a production scenario the process is reversed and the global pressure constraint is amended to reflect the producing bottomhole pressure rather than the bottom hole injection pressure.

In the adiabatic version of the model the model process logic and cell to cell algorithms remain largely unchanged. However, in addition to mass transfer between cells energy transfer is allowed. Energy transfer between cells is mediated solely through the enthalpy change due to mass transfer. (Heat transfer between cells and the surrounding strata is not allowed.) The governing equation for energy is:

Equation 5: Governing equation for energy

$$m_{f1} \cdot U_{f1} - m_{f2} \cdot U_{f2} + m_{rock} \cdot c_{p_rock} \cdot \Delta T = m_{f_rin} \cdot H_{f_rin} - m_{f_rout} \cdot H_{f_rout}$$

Where:

 m_{f1} = Total mole of fluids at previous calculation step m_{f2} = Total mole of fluids at current calculation step U_{f1} = Molar internal energy at previous calculation step U_{f2} = Molar internal energy at current calculation step $m_{f_{-}in}$ = Total mole of fluids flowing into the tank $m_{f_{-}out}$ = Total mole of fluids flowing out of the tank $H_{f_{-}in}$ = Molar enthalpy of inlet fluid $H_{f_{-}in}$ = Molar enthalpy of outlet fluid m_{rock} = Total mass of porous rock $c_{p_{-}rock}$ = Specific heat of porous rock ΔT = Temperature change.

An iterative solution technique is employed wherein the temperature change is estimated, U_{f2} is calculated and a flash of the cell contents is conducted at constant volume and internal energy using MultiflashTM. The resultant temperature of the flash calculation is compared to the original temperature guess and the process is repeated until convergence is attained.

The Cell-to-Cell model was benchmarked against Computer Modeling Group's $STARS^{TM}$ hydrate simulator. $STARS^{TM}$ is commercially available simulation code that is capable of modeling mixed hydrates of CO₂ and methane. The benchmarked case is documented in SPE 137313. It involves constant rate isothermal CO₂ injection into a single grid block or cell initially containing water and methane below the hydrate stability pressure. The reported results predict a unique pressure and saturation response.

Figure 22 shows a comparison between models for pressure, hydrate saturation and water saturation. The STARSTM results are expressed against time whereas the Cell-to-Cell Model results are expressed against volume injected. At the conclusion of injection the same volume of CO_2 has been injected into both models. From the comparison it is clear that the Cell-to-Cell model compares favorably to STARSTM for this simple example.

Injection Design

The objective of this study was to determine an appropriate injected fluid composition for a methane hydrate exchange field trial using carbon dioxide as the principal exchange constituent in the injected fluid. The design predicates the use of nitrogen in the injectant as a pre-flush and/or as a diluent to desaturate the near-well region of excess free water. The principal purpose being to:

- 1. maintain reservoir temperature above the freezing point for water, 32°F, given that prolonged contact of nitrogen with native methane hydrate could initiate hydrate disassociation thereby causing the reservoir interval to cool substantially and possibly freeze; and
- 2. In this study, isothermal and adiabatic cell-to-cell models were used to study the injection and production responses for the sequenced injection of nitrogen and carbon dioxide, and as constant composition mixtures of said gases.

Nitrogen Pre-flush

The use of nitrogen as a pre-flush could lead to hydrate dissociation and cooling, so the adiabatic model was deemed most suitable to study temperature effects due to injection. Because heat transfer between the reservoir and its surroundings is not allowed, the

adiabatic model should reflect an extreme prediction for temperature changes associated with hydrate dissociation, formation, or exchange. Initial reservoir pressure, temperature and hydrate saturation were fixed at 1000 psia, 41°F, and 70% respectively. The remaining pore space not occupied by hydrate was assumed to be water filled. For injection, bottomhole conditions were maintained at 1400 psia and 41°F. Note that fluid temperature at bottomhole was assumed to be equal to initial reservoir temperature based on wellbore model predictions. Injected volumes are expressed as multiples of a single cell volume in the cell-to-cell model. The first cell volume equates to the reservoir annular volume associated with a radial distance of 1 foot from the wellbore wall, assuming a reservoir height of 30 feet.

Figure 23 shows the temperature profiles with radial distance from the well for a four cell volume (CV) N₂-pre-flush, which is followed by an 8 CV CO_2/N_2 mixture. At the end of the N₂ pre-flush (4 CV, amber curve), the near-well (cell one) temperature is near the freezing point of water (32°F). Based upon water displacement simulations, it is believed that the volume required to dewater the near-well region via nitrogen injection is much greater than four cell volumes. Therefore, it is unlikely that a nitrogen pre-flush would be effective in displacing free water from this region while avoiding the potential for water to freeze.

Figure 24 shows the same case but without the N_2 -pre-flush. In this instance, the model predicted cell one temperature remains within a few degrees of the initial reservoir temperature. Hence, an icing problem is not expected in this injection scenario. It is, therefore, concluded that a N_2 pre-flush cannot be employed in the field test design; but rather a N_2/CO_2 mixture must be used to manage injectivity while promoting hydrate exchange. Mixture design is the subject matter of the following section.

Figure 24: Temperature profiles for 12-CV N₂/CO₂ injection (no N₂ pre-flush)

CO₂/N₂ Mixture Design

The injectant mixture design sought a CO_2/N_2 composition that preserved injectivity and promoted CO_2 exchange with methane hydrate. To preserve injectivity, it was critical to avoid excessive hydrate saturation build-up in the near-well region. The isothermal cell-to-cell model was used for this analysis. The imposition of isothermal conditions thermodynamically favored hydrate formation and represented the worst case scenario for hydrate build-up. CO_2/N_2 mixtures were varied from approximately 60 mol% CO_2 to 20 mol% CO_2 . The upper limit was slightly below the composition at which the injectant will remain in the gaseous state from surface to bottomhole conditions. At higher CO_2 contents, the injectant transitions from a gas to a liquid. Plans were to operate the well under tight bottomhole pressure control, so it was judged important to avoid phase transitions that might complicate well control.

Figure 25 compares hydrate-saturation profiles during 12-CV N_2/CO_2 injection with two different mixture compositions (35 mol% CO_2 vs. 23 mol% CO_2). The initial hydrate saturation in both cases is 50%; initial reservoir pressure, temperature and bottomhole injection conditions are as stated above.

Figure 25: Hydrate saturation profiles for two different injected compositions

In the 35 mol% CO_2 case, hydrate saturation significantly increases in the nearwellbore region. After 12-CV of mixed gas injection, the hydrate saturation increases from 50% to about 93% by volume. In contrast, hydrate saturation build-up in the near well region is significantly less (50% to 63%) for the 23 mol% CO_2 case. Given that the initial effective permeability to gas is already quite low (1 md @ S_h = 50%), injectant mixture compositions below 25 mol% CO_2 are preferred.

Notably, both cases show hydrate build-up deeper into the formation. This hydrate build-up is associated with exchange-driven methane enrichment of the gas phase at the displacement front, where free water is available to form additional hydrate. With continued injection, the high hydrate saturation front progressively moves outward from the well. The maximum hydrate saturation appears to stabilize at about 80%. These results were replicated at other injectant compositions over the range of interest.

Model results indicated that within the tested composition range, some impairment of injectivity should be anticipated due to in-depth hydrate formation, which was

generally insensitive to injectant composition and largely driven by exchange. In the near well region, however, excessive hydrate build-up ($S_h > 90\%$) could be mitigated by adjusting injected fluid composition. A sensitivity study determined that the appropriate injectant composition for the field trial was 23 mol% CO₂ + 77 mol% N₂.

Injection Slug Size

A sensitivity study was conducted to determine whether the production response trends (i.e., produced gas composition trends) are affected by injection slug size. Both isothermal and adiabatic cell-to-cell models were used. As in the previous cases, initial reservoir pressure, temperature and hydrate saturation were fixed at 1000 psia, 41° F, and 70% respectively. The producing bottomhole pressure was 650 psia. The 23 mol% CO₂ injectant slug size was stepwise varied from one to eight to thirty two cell volumes.

Figure 26 illustrates the change of gas compositions in the near-wellbore region (Cell 1) for each injection slug size. Results are for the isothermal cell-to-cell model. The plots show the change of gas composition from the start of injection until the end of production on a cumulative injection and production volume basis. In all cases, the first free-gas appears with a relatively high methane (about 55 mol%) composition, indicating the preference for CO_2 to exchange with methane into the hydrate phase. As injection continues, methane composition declines in the near-wellbore region while CO_2 and N_2 compositions in the gas phase increase, reflecting the gradual depletion of methane from the hydrate phase. The degree of methane depletion in cell one is a function of the slug size injected. After approximately 30 CV was injected, the hydrate phase in cell one was devoid of methane and the hydrate was in equilibrium with the injected gas composition. Upon production, the declining CH₄ composition trend reversed, although some lag was observed in the event that methane was completely swept from the near well region. The production composition profiles for the 1-CV, 8-CV and 32-CV injection cases adequately represented the range of responses expected for the field trial to the extent that isothermal equilibrium applies.

Figure 26: Production responses at different injection slug sizes (isothermal)

Figure 26 compares the change of gas compositions in model cell one for different injection slug sizes using the adiabatic cell-to-cell model. All model inputs are identical to isothermal cases shown in Figure 26. For the most part, the gas composition profiles from the isothermal and adiabatic cell-to-cell models appear similar. Model differences are reflected primarily as differences in magnitude and timing.

In conclusion, production trends may vary with injection slug size. However, these trends appear to be predictable and invariant with respect to the equilibrium model assumptions. Consequently, the design basis for the field trial was predicated on maximizing the injected volume in the allotted time for injection, 17 days. Given average field properties, the modeled estimated injection volume is 200,000 scf.

Recommended Test Design – Injection Phase

For the injection phase, all injection was performed below 1400 psia to ensure the injection occurred below parting pressure of the formation. Simple models indicated that 200 Mscf of gas could be injected into a formation with a permeability of 1md over a period of 13 days. Thus the recommended injection procedure was:

- 1. Inject 23% CO₂/ 77 molar % N_2 gas mixture (SF₆ tracer) for half of the allotted injection period or 6.5 days.
- 2. Inject 23% CO_2 / 77 molar % N_2 gas mixture (HFC 114 tracer) for half of the allotted injection period or 6.5 days.
- 3. Monitor the injection temperature profile at the wellbore on the DTS system to identify the thermal signature of hydrate formation or dissociation and to assess injection conformance
- 4. Monitor changes in injectivity using a Hall plot. The trend of this plot, which plots cumulative pressure-days versus cumulative volume injected, indicates whether formation permeability is increasing or decreasing over the injection period (Figure 27). The Hall plot is a standard graphical method to represent injection performance clearly and easily under steady-flow conditions (Hall, 1963).

Figure 27: Hall plot example

Recommended Test Design – Production Phase

Primary design considerations for the production phase of the test were:

- Avoid freezing in or near the wellbore; and
- Maximize returns of tracers, CO₂, N₂ and CH₄

The production phase was divided into two production periods. In the first period, targeted bottomhole pressures were at or above 650 psia. This is above the pure methane hydrate stability pressure at reservoir temperature. In the second period, the targeted bottomhole pressure was conditionally the minimum operating limit, which maintained borehole temperatures above 32°F. Pre-test, the production phase execution was planned as follows:

- 1. Stepwise reduce BHP to 650 psia
- 2. Maintain downhole temperature above 32°F
- 3. Measure borehole temperature
- 4. Measure produced fluid rates and compositions
- 5. Stepwise reduce BHP to minimum operating limit
- 6. Maintain downhole temperature above 32°F
- 7. Measure borehole temperature
- 8. Measure produced fluid rates and compositions

Success Criteria

Given our understanding of the test and its parameters, the operational success criteria were considered to be:

- Injection of > 200,000 scf
- Diminishing injectivity with time
- Avoid freezing during injection
- Significant production above CH₄ hydrate stability pressure
- Methane absent or diminished in initial produced gas
- Avoid freezing during production
- Stable bottomhole pressure
- Diminishing temperature
- >50% tracer recovery

Summary of Field Results and Observations

Field activities ran from January 2012 until the well was plugged and abandoned in May 2012. This section summarizes the results and observations of the production test from perforation on February 15, 2012, through well shut-in at the end of production on April 11, 2012.

During the injection phase, the total injected volume of gas was 215.9 Mscf, which consisted of 167.3 Mscf N_2 and 48.6 Mscf CO_2 . Composition was tightly controlled

during this period with an average injection ratio of 77.5/22.5 N₂/ CO₂. Injectivity decreased from an estimated average *in situ* permeability of 5.5 mD to 0.6 mD in the early stages of the injection. The calculated *in situ* permeability then increased gradually to 1.2 mD by the end of the injection period. These changes in permeability cannot be attributed solely to relative permeability changes and may reflect changes in the hydrate saturations in the formation.

Following injection, production proceeded in four phases:

- 1. Unassisted flowback
- 2. Jet pumping above methane-hydrate stability pressure
- 3. Jet pumping near methane-hydrate stability pressure
- 4. Jet pumping below methane-hydrate stability pressure

Over the course of the production test, approximately 70% of 167.3 Mscf of injected nitrogen was recovered. In contrast, only 40% of the 48.6 Mscf injected carbon dioxide was recovered. A total of 855 Mscf of methane was produced over the total production period.

Water and sand were produced along with the various gases. The test produced a total of 1136.5 bbl of formation water. Produced water-to-gas ratios varied between 10 and 50 on a molar basis during the first jet-pumping phase. However, the water rate stabilized during the following two jet-pumping phases when compared with gas production. The water rate followed the gas rate with a water-to-gas ratio of 8-9 on a molar basis. This compares to the stoichiometric ratio for structure one sI hydrate of 1 mole gas per 5.75 moles of water. During the final steady depressurization below methane hydrate-stability pressure, the produced water rate varied from 22-42 bbl/day with gas rates of 13-38 Mscf/day. Sand production continued until Phase 4 (jet pumping below methane hydrate-stability pressure), at which point sand production ceased. In total, an estimated 67 bbl of sand was produced during the test.

Perforation

On February 15, 2012, at 08:15, a 30-foot interval (2243-2273ft. KB) in the Sagavanirktok C sandstone was perforated on six-inch spacing. The perforated interval included nearly all of the hydrate-saturated C sandstone, leaving the top 2 feet of the massive sand un-perforated. The tool was oriented so the shots would avoid the pressure-temperature cables and gauges, and the fiber-optic cables installed outside the casing. Perforation caused a temperature increase of more than 10°F across the entire perforated zone. The increase dissipated to reservoir temperature within a few hours (Figure 28). Continuous pumping of the CO_2/N_2 mixture controlled wellbore pressure during perforation, maintaining a pressure of ~1350 psia.

Following perforation, the CO_2/N_2 gas mixture was injected at a high rate of ~120 Mscf/day over two short durations of approximately 45 minutes each. The chosen rate was necessary to overcome any near-wellbore obstructions and to establish good communication between the borehole and reservoir (Figure 29). Pressure was monitored with the pressure gauge just above the perforated interval (at 2226 ft). The measured injection pressure was significantly higher than planned for the actual test.

Figure 29: Mid-perforation pressure and injection rate during and immediately after perforation.

Injection Phase

After establishing injectivity into the formation, the injection phase of the field trial began and continued for ~14 days (13:45 February 15, 2012, through 07:45 February 28, 2012). The mid-perforation pressure remained constant throughout the injection stage while the injection rate varied (Figure 30). A constant downhole pressure controlled the injection rate. Injection pressure of 1420 psia was chosen as it was above original reservoir pressure (1055 psia) and below the minimum measured fracture closure pressure of the formation (1435 psia).

Figure 30: Mid-perforation pressure and injection rate during the injection phase.

Injection gas temperature at the surface after mixing typically ranged between 90°-100°F. The injectant gas cooled in the wellbore during low-rate injection and measurements show that it was within 0.2°F of formation temperature before injection (Figure 31). Downhole gauges positioned on the tubular assembly inside the wellbore responded directly to the pressure and temperature properties of the fluids in the well. The DTS assembly was attached to the outer wall of the casing in direct contact with the formation. The small temperature difference between the two instruments before injection reflected the non-equilibration of the fluids with the wellbore possibly due to natural convection. Dynamic flow of the injected gas into the reservoir eliminated this difference and resulted in similar temperatures between the downhole gauge and the DTS measurement (Figure 31). Note that temperature data during perforation was excluded from Figure 31 for clarity. The slight temperature decrease before February 17 was attributed to the residual temperature fall-off following heating due to perforation. The downhole temperature gauge showed more variability in temperature during the injection period while the DTS temperature increased by about 1°F within the perforated zone (Figure 32). Much of the DTS data in this report is shown as a

temperature difference relative to an initial temperature distribution over the interval measured before the start of the production test. This technique removes the contribution of the constant geothermal gradient signal that could mask small differences in temperature changes at different points in the perforated interval. 0 describes this methodology. Warming during injection could signal an exothermic reaction that accompanied hydrate formation or exchange with native methane hydrate. A cooling event also existed above the perforated interval (2230-2245 ft) and continued in this restricted interval for some time following perforation (Figure 32).

During injection, operational constraints required idling the liquid N_2 and CO_2 tanks for short periods in order to control injection effectively. At low injection rates, the majority of the pumped cryogenic fluids were recycled. The heat transferred to the tanks during recycling caused the fluids to boil, which disrupted smooth operation of the injection pumps. During these idle periods, pressure in the wellbore decreased 20-50 psi (Figure 30). The pressure and temperature of the middle downhole gauge above the perforated zone, as well the pressures and temperatures at the top, middle, and bottom of the perforations taken from DTS, were compared with the flash-calculated hydrate stability zone for the injected gas mixture of 77/23 mol% N₂/CO₂ (Figure 33). Even with these decreases in pressure, the injection zone was always maintained at conditions above the predicted incipient hydrate stability for the injected composition. Hence, the small observed pressure excursions are not expected to have a significant impact on the process of exchange.

Other than these idle periods, injection was maintained very close to the desired pressure of 1420 psia. Composition monitored with the on-line gas chromatograph (GC) showed the injectant consistently held close to the target composition of 23 mol% CO_2 and 77 mol% N_2 (Figure 34).

Figure 34: Composition of the injection gas recorded by the on-line GC.

Clear changes in the injection rate occurred as injection proceeded. Even while maintaining a constant 1420 psia downhole pressure, the injection rate began to decrease during the first days of injection (Figure 30). However, around February 17, the injection rate leveled off and began to increase steadily through the remainder of the injection phase.

A Hall plot compared changing injectivity throughout the test (Figure 35). The Hall plot is a standard graphical method to represent injection performance clearly and easily under steady-flow conditions (Hall, 1963). A straight line on the plot of pressure difference per day against cumulative injection volume indicates constant injectivity. Upward curvature of the line indicates loss of injectivity, while downward curvature occurs when injectivity increases. The observations from the rate data agree with the conclusions from the Hall plot. Both indicate that the initial days of injection showed a decrease in injectivity (Figure 35) followed by a progressively increasing injection rate.

Figure 35: Hall plot showing injectivity changes during injection.

The change in injectivity could have resulted from a number of effects, including formation or dissociation of hydrate, and changes in relative permeability as gas saturation increased. A simulation of gas injection into a water aquifer was run in the compositional reservoir simulation modeling program GEMTM (CMG, LTD) to investigate these effects in more detail. To simplify the model, the reservoir was assumed to be homogeneous and isothermal. The model compared the gas injectivity observed during the pilot with the simulation results of gas injection into an aquifer (Figure 36). Figure 36B shows the early injection period in more detail. The model's *in situ* permeability of 5 mD was calibrated to match the initial injectivity of the field trial. The comparison indicated that injectivity during the pilot declined much faster than the modeled aquifer case. Adjusting the relative permeability curve to improve the match had no effect.

Figure 36: A) Comparison of the Hall plot from the injection and the calculated Hall plot matching the early injection data using a constant permeability aquifer model. B) A closer view of the early injection data and the calculated fit using the aquifer model.

Still assuming constant permeability, the *in situ* permeability was adjusted to obtain the best match possible for the entire pilot. A good history match could not be generated for the constant permeability case (Figure 37). The plot suggests that in addition to relative permeability, the reduction in injectivity was likely caused by hydrate formation, which reduced the effective permeability of the formation.

Figure 38: Hall plot of the injection performance compared with aquifer models that assumed: A) estimated *in situ* permeability during the injection phase and B) Calculated hydrate saturation based on the estimate permeability.

The aquifer model was modified to calculate an estimated average *in situ* permeability from the injection data (Figure 38A). The estimated permeability was calculated from the slope change of the Hall plot and based on an initial *in situ* permeability of 5.5 mD.

This approach assumed that the slope change was caused only by the change of *in situ* permeability. It was more likely that the injectivity was controlled by a combination of *in situ* permeability and relative permeability to gas phase effects. However, the straight line behavior for gas injection observed in the field test was comparable to the results expected from a conventional interpretation of cumulative injection into an aquifer where the linear response indicated constant injectivity after accounting for relative permeability effects (Figure 37). This implied that the gas injection rate was predicted to be more or less constant even though gas saturation around the well increased significantly during the injection, minimizing the impact of relative permeability.

The estimates of permeability change that were generated by matching the cumulative injection data showed that average *in situ* permeability decreased from 5.5 mD to 0.6 mD in the early stages of the injection. The calculated *in situ* permeability then gradually increased to 1.2 mD by the end of the injection period.

Average hydrate saturation was estimated from the calculated average *in situ* permeability using the method shown in Equation 6 (Moridis et al, 2008). The calculated average hydrate saturation changed slightly during the injection process (Figure 38B).

Equation 6: Average hydrate saturation estimation is calculated from the average *in situ* permeability

$$\frac{k_2}{k_1} = \left[\frac{\phi \cdot (1 - Sh_2) - \phi_c}{\phi \cdot (1 - Sh_1) - \phi_c}\right]^n$$

Where:

 k_1 = initial *in situ* permeability (5.5 md) k_2 = *in situ* permeability during injection Sh_1 = initial hydrate saturation (0.7) Sh_2 = average hydrate saturation during injection ϕ_c = critical porosity (porosity that permeability become zero, 0.05) n = exponential constant (3)

The model accounted for the changes in *in situ* permeability determined from the original Hall plot and calculated a new hydrate saturation at each point along the injection curve. The average hydrate saturation increased from 0.70 to about 0.79, then gradually decreased to 0.77 throughout the injection period.

To investigate whether permeability changes due to hydrate formation and dissociation could account for the observed injectivity, *in situ* permeabilities of near-wellbore grid blocks were adjusted manually every 3 hours throughout the injection period. By adjusting *in situ* permeability qualitatively according to the hydrate saturation profile predicted by the cell-to-cell model, a good history match was obtained during injection (Figure 39). As before, *in situ* permeability changes were used to recalculate the hydrate saturation at each time step using Equation 6. The high quality of the match between the actual injection results in the Hall plot and the modeled cumulative injection curve based on variable *in situ* permeability and hydrate saturation changes

strongly suggested that hydrate formation and dissociation could account for the observed changes in injectivity during the injection period.

Total cumulative injection volume was calculated, including changes in wellbore storage, which consisted of the pressure increase at the beginning of production and the pressure falloff following shut-in at the end of injection pre-production period. The total injection volume of 215.9 Mscf comprised 167.3 Mscf N₂ and 48.6 Mscf CO₂.

Pre-Production Period

After the two-week injection period, the well was shut in and operations transitioned to production mode. The shut-in period lasted February 28 to March 4, 2012. As expected, the bottomhole pressure (BHP) began to fall off after injection ceased (Figure 40). Over the post-production period, downhole pressure dropped from an initial pressure of 1420 psi to 1200 psi. Short-term spikes and drops in the pressure data were followed by build-up to the main pressure decline trend (Figure 48). These changes appeared to be natural as opposed to instrument fluctuations or noise. These short-term events of less than one hour may have been caused by hydrate reformation taking place near the well. These events could not be localized because the pressure drops were detected by the bottom-hole gauge. The thermal information from the DTS, however, sheds additional light on these possible interactions. Each of the short-term pressure drops was associated with slight cooling of the hydrate-bearing reservoir interval. This was most notable with the longest-duration pressure drop on March 2, where a concomitant drop in temperature of several tenths of a degree was recorded (Figure 40). Endothermic hydrate reformation near or at the casing-formation interface could explain the combination of small pressure drops and temperature decreases.

Figure 40: Downhole pressure and temperature response during shut-in period following injection. The thick dashed lines on the DTS indicate the targeted formation and the small dashed lines indicate the perforated zone.

Production Period

The production stage of the field trial proceeded in two major phases: unassisted flow and lift-assisted flow using reverse jet pumping. The jet-pumping phase was divided further into an initial low-flow period (~7 days), a high-flow period (~2.5 days), and an extended increasing flow period (~19 days). Figure 41 illustrates downhole pressure and cumulative gas and water production in the different stages. Methane hydrate phase equilibrium pressure was also calculated with the downhole temperature for comparison with the actual reservoir pressure (Figure 41). The calculated mixedhydrate phase equilibrium pressure from the downhole temperature and the produced gas composition is included in Figure 42. Pressures above methane hydrate equilibrium were maintained during the unassisted production and the first jet-pumping periods. This suggests that produced gas in these periods was not caused by dissociation of inplace natural hydrate. During the high-flow second jet-pumping production period, production pressure remained very close to the methane hydrate stability pressure. During the third and final jet-pumping period, downhole pressure dropped well below methane hydrate stability, likely resulting in the stimulation of in-place hydrate dissociation.

The short unassisted-flowback period at the beginning of the production test showed gas-only production to surface. However, water began to flow and fill the wellbore during the latter stages of the unassisted flowback. During the early stages of Production Phase 2, jet-pump flowback began and cumulative gas and water production rates were high. Water and gas production fell during the end of the second period of jet-pump flowback (Production Phase 3) as the well underwent maintenance. The onset of the third period of jet-pump flowback (Production Phase 4) coincided with the well

pressure drop below the methane hydrate equilibrium pressure. These factors resulted in near constant rate production of both gas and water during the last stage of the production period (Figure 41).

Figure 41: Total volumetric production rate, downhole pressure, and cumulative water and gas during the production phase. Also included is the calculated CH₄ hydrate stability pressure based on the downhole pressure.

Figure 42: Total volumetric production rate, downhole pressure, and cumulative water and gas during the production phase.

Figure 42 also includes the calculated CH_4 hydrate stability pressure based on the downhole pressure and the mixed gas-hydrate stability pressure based on the downhole pressure and the composition of the produced gas stream.

Temperature sensors active during the production period monitored temperature fluctuations at various points in the reservoir interval (Figure 43). The DTS temperature array was sampled at three points corresponding to the top, middle, and bottom of the perforated zone. Since the DTS array was attached to the outside of the casing string, it was more responsive to temperature fluctuations in the formation. In contrast, the bottomhole temperature gauge (middle gauge) was ported to the borehole and was responsive to the average temperature of the borehole fluids. The early stages of the production through the end of the second jet-pump flowback sequence saw a uniform temperature drop. When the jet pump was shut in for maintenance, the borehole temperature increased rapidly to 40°F as the fluids equilibrated with the surrounding formation. Formation temperatures as indicated by the three DTS curves showed a more gradual and less complete temperature increase during this shut-in period. During the early stages, the borehole temperature generally showed greater variability and faster response to changing conditions than the DTS temperatures. Once jet-pump flowback #3 (Production Phase 4) began, all of the temperature sensors showed a significant rapid drop from 38.5°F to 34-35°F. After this rapid drop in the borehole and along the casing-formation interface, the temperatures stabilized in the 34-35°F range with fluctuations of approximately 0.1°F. The final stages of depressurization during jet-pump flowback #3 period show a significant divergence in the DTS temperatures from each other, with the lowest perforation 1.0°F warmer than the middle and top perforations.

Interesting correlations appeared in the combined results from the downhole pressure, downhole temperature (DTS), and volumetric production rates for the early stages of the production period (Figure 44). The complete DTS array has a visual aspect that was not captured by the extraction of temperature curves for individual points along its length. Small perturbations in temperature and the spatial distribution of those temperature changes are associated with specific events during this production period. In the early stages the hydrate-bearing zone showed a small amount of cooling that was restricted to the perforated interval. Only during the second jet-pump flowback period (Production Phase 3), when there was a very high rate of gas production, did the temperature changes affect the reservoir interval above the perforated interval. During this time the produced interval had a significant reduction in temperature.

The continued reduction in temperature in the perforated interval and in the surrounding reservoir above the perforated interval characterized the period of depressurization below methane hydrate stability during the third jet-pump flowback (Figure 45). The temperature in the perforated zone shows marked cooling that was most noticeable after the BHP dropped below the pure methane hydrate equilibrium value. This temperature drop was consistent with the endothermic reaction of hydrate dissociation. The spatial heterogeneity in the thermal response from top to bottom of the perforated intervals provides potential clues on how to evaluate the relative flow of gas and water into the wellbore from the formation.

The gas composition was monitored during the entire production period with an on-line GC. The three dominant gases comprised nitrogen, carbon dioxide, and methane, so the produced volumes were normalized to a relative proportion in mole percent, mol%,

(Figure 46). Even during the unassisted production interval during the first two days, methane was the dominant gas produced from the well. After the initial jet-pump stages were under way, methane increased in the total gas stream, reaching almost 80 mol% of the total by the end of the first jet-pumping flowback period (Production Phase 2). During that time, nitrogen and carbon dioxide decreased their contribution to the gas stream. When the depressurization stage started during third and final jet-pump flowback stage, the methane contribution rose to more than 95 mol%. Nitrogen and carbon dioxide contributions fell to very low levels, with carbon dioxide never exceeding 2.0 mol% of the total stream. The produced gas volumes were converted to cumulative volumetric amounts of the individual produced gases (Figure 47). Significant increases in produced methane during the production test corresponded to the initial jet-pump flowback and a very large increase at the beginning of the second flowback stage. When the third flowback period began on March 23, the methane production rate was fairly uniform for the final 18 days. Nitrogen showed early production during the first two flowback stages, but once pressures fell below the methane hydrate stability pressure the amount of produced nitrogen fell to very low levels. Carbon dioxide behavior was very similar. After an initial burst of production during the initial flowback period, the amount of produced carbon dioxide remained almost constant.

The recovery percentage of the injected gases was calculated based on the cumulative injected volumes (Figure 48). The test produced 855 Mscf of methane over the total production period. Of the initial 215.9 Mscf of injected gas, 167.3 Mscf was nitrogen. Over the course of the production test approximately, 70% of that nitrogen was recovered. In contrast, only 40% of the 48.6 Mscf of injected carbon dioxide was recovered. During the early stages of the production test, excluding the first period where gas from the wellbore was produced on initial depressurization, more nitrogen was produced compared to the amount of carbon dioxide that was injected. This is shown by the CH_4 -free mol% CO_2 relative to nitrogen (Figure 49). Only in the final jetpumping stage, in which the pressure was lowered below CH₄-hydrate stability, did we see an increase in the amount of CO_2 relative to N_2 . This could indicate that pressures were finally being reached that led to the destabilization of CO₂-enriched hydrate. Note that because the separator normally operated above ambient pressure and jet-pumping water was mixed with produced fluids in the wellbore, gas loss occurred when the water containing dissolved gas moved from the separator into the atmospheric uprighttanks. It was necessary to correct for the lost gas in the data reported because CO₂ is much more soluble that N₂ or CH₄. To account for this, a procedure was developed to calculate the amount of dissolved gas leaving the separator over the production phase. This lost gas was added to the gas production amounts metered through the gas leg of the separator. Appendix C provides details for this calculation.

Figure 45: Thermal effects (along with gas production rate and downhole pressure) during the third jetpumping phase of production. Note that A and B have different temperature threshold limits. The thick dashed lines indicate the targeted formation and the small dashed lines indicate the perforated zone.

Figure 46: Produced gas composition during production measured with the on-line gas chromatograph.

Figure 47: Cumulative volumes of gas during the production period.

Figure 48: Percentage of injected gas recovered during production based on the total amount injected.

Figure 49: Mole % CO₂ relative to N₂ on a CH₄-free basis.

A total of 1136.5 bbl of formation water was produced with varying daily production rates during the jet-pumping phases (Figure 50) Appendix C describes the methodology for calculating the daily water rate. Figure 51 shows the molar ratio of produced water to produced gas over the jet-pumping production periods. Produced water:gas ratios were erratic during the first jet-pumping phase and varied from 10-50 on a molar basis.

However, the next two jet-pumping phases showed a steadier water rate compared with gas production. The water rate followed the gas rate with a water:gas ratio varying from 4-12 on a molar basis. The expected ratio from hydrate dissociation alone would be approximately 6. Therefore, for almost all of the production, the amount of water produced was greater than can be attributed to the release of water by hydrate dissociation. (Assuming a 5.75:1 molar ratio of water to methane, approximately 40% of the produced water was sourced from something other than native hydrate.) During the final steady depressurization below the methane hydrate stability pressure, water rate varied from 22-42 bbl/day with gas rates of 13-38 Mscf/day. The ratio of water to gas is comparable to that observed at the 2007/2008 Mallik hydrate production test. During a smooth production period, the Mallik test recorded rates of 63-125 bbl/day of water with 70-106 Mscf gas, resulting in molar water:gas ratios of 6.6-8.8 (Kurihara et al, 2011).

Figure 51: Molar ratio of produced water to produced gas based on daily cumulative values.

In addition to gas and water, sand was also produced. During the first two jet-pumping phases, sand was produced steadily with occasional large spikes (Figure 52). In Phase 4 (jet-pump flowback #3), however, sand production virtually stopped. Sand sampled on March 7, 2012, was analyzed by the ConocoPhillips Kuparuk laboratories and found to have a mean particle size of 148 μ m. Although the well used a 200 μ m sand screen, the continual pressure fluctuations (especially in Production Phase 2) could account partially for the continuous production of sand, as the sand could not form an effective bed around the sand screen. This produced sand ultimately damaged two valves in the separator during Production Phase 2.

On April 10, 2012, the tank strap on empty upright tank #1 measured 38.1 cm (1 foot, 3 inches), indicating that the bottom of the tank held sand at a height equivalent to ~25 bbl. At the conclusion of the test, the tanks were drained, leaving behind sand in the upright tanks (Figure 53). Both tanks were full to the lowest off-load point at 30.48 cm (1 foot). This represented ~20 bbl in each tank. At some points the tanks may have contained more sand, but some sand could have been removed as water was off-loaded from the tanks. The separator also was known to contain a significant amount of sand. The amount of sand removed at the end of the field trial was unavailable.

Total produced sand was estimated using the average daily sand volume percent in the produced water and the daily water production (sum of jet-pumping rate and estimated formation water production). As shown in Figure 54, more than 67 bbl of sand could have been generated over the course of production.

Figure 52: Bottom sediment and water measurements of the percentage sand in the produced water stream.

Figure 53: Sand in upright tank at the conclusion of the pilot.

Figure 54: Estimated cumulative sand production based on bottom sediment and water measurements and water production.

Phase 1: Unassisted Production

Unassisted production ran March 4-6, 2012. The methane concentration in the produced gas rapidly rose to more than 40 mol% (Figure 46). After the first day of production, the pressure gradient calculated from the downhole gauges began to increase (Figure 55). This increase was attributed to water flowing into and filling the wellbore. Based on the density of water, a pressure gradient of 0.43 psi/ft was anticipated. This was indeed the case for the gradient between the bottom and middle gauges for a short period. This gradient then increased (for all gauges) indicating that solids (sand) were likely mixed with the produced water. As the water continued to fill the wellbore, the downhole pressure began to rise (see Figure 44), which corresponded with a marked decrease in production rate. On March 6, the test transitioned to an artificial lift system, the well was shut in, and the first jet pump (Oilmaster 5C) was installed.

Figure 55: Pressure gradients among the three downhole gauges during the unassisted production period.

Phase 2: Jet pumping above methane stability pressure, jet-pump flowback #1

Reverse-flow jet pumping above the in-place hydrate stability pressure began March 7, 2012, and proceeded for seven days. As suspected from the downhole pressure gradients, the first produced water to the surface separator showed entrained sand. The downhole pressure during this period was maintained at a higher pressure than the calculated methane hydrate phase stability pressure (Figure 41). While pressure was maintained to avoid dissociating the in-place hydrate, the composition of the produced gas quickly rose to greater than 70 mol% CH_4 (Figure 46).

The rate of gas production during this period was erratic and prone to periods of no flow. In addition, downhole pressure displayed periods of "saw tooth" behavior with periods of pressure buildup and rapid fall-off under stable and constant wellhead pressure operations (Figure 56). This could indicate hydrate formation or dissociation in the reservoir or the wellbore. Marked heterogeneity in the thermal response of the perforated zone also occurred during this phase of production (Figure 44). As shown in Figure 57, pressure gradients between the downhole gauges varied greatly during this production period. The gradient was often greater than expected for water (0.43 psi/ft), indicating the possible presence of dense solids (sand) in the water column. Sand production was observed on the surface during this period. The test also exhibited periods in which the gradient dropped well below 0.43 psi/ft, even into negative numbers. This was especially true for gradients calculated from the bottom gauge. This might be explained by the formation of hydrates in the wellbore tubing, creating temporary blockages that isolated the lower gauge and prevented effective communication of the true fluid head pressure in the well.

Figure 56: Example of downhole pressure behavior during the Phase 2 production with characteristic "saw tooth" behavior.

Using downhole pressure to calculate the hydrate stability temperature, the potential for hydrate formation during this phase of production can be evaluated. Figure 58 shows the unassisted flow (Phase 1) and first jet-pumping periods (Phase 2). The plot shows

that the mid-perforation temperature stayed below the pure methane hydrate stability temperature, indicating in-situ methane hydrate was stable. However, using the composition of the produced gas to predict a stable hydrate temperature, the predicted equilibrium temperature for the mixed hydrate is, in general, lower than the measured temperature. Therefore, mixed hydrates of this composition would have been unstable. Based on the produced composition, this could indicate dissociation of a mixed hydrate.

As annotated in Figure 44, production was halted twice during Phase 2 production to replace dump valves on the separator. The valves were damaged largely due to wear from sand production. Replacement of the first valve required several hours of down time. When the second separator valve was damaged near midnight on March 13, a different replacement valve with a design less prone to sand damage was ordered. The delay due to shipping halted production for ~1.5 days.

Phase 3: Jet pumping \approx CH₄-stability pressure, jet-pump flowback #2

Following the replacement of the separator valve, production restarted at 18:52 on March 15, 2012. The downhole pressure was continually reduced to pressures that approached and eventually reached the methane hydrate stability (Figure 41, red line). This phase of production saw the highest gas production rates (approaching 150 Mscf/day, Figure 44). The increase in gas rate was accompanied by increasing amounts of produced water (Figure 41). During this period, methane concentration also increased to more than 90% in the total gas production stream (Figure 46). A marked cooling was observed in the perforated zone, as seen in Figure 44. Sand continued to be produced during this phase with an average of 2.6 vol% sand (Figure 52). Compared to the Phase 2 production, downhole pressure in Phase 3 did not show the "saw tooth" behavior or marked periods of episodic flow and downhole pressure build-up. In short, a deliberate reduction in the downhole pressure below previous levels resulted in relatively high flow rates that appeared to be consistent with hydrate dissociation.

Figure 59 displays a plot of productivity index versus time. Productivity index (PI) is expressed as reservoir barrels per psi drawdown and therefore provides a relative indicator of flow potential. As the figure indicates, productivity increased dramatically during the aforementioned production period (period between the vertical lines), well beyond what would have been attributed to the absolute pressure drawdown alone given the prior production period. This dramatic increase in flow potential must be associated with a dramatic increase in permeability, which is presumed to be a consequence of hydrate dissociation. Notably, the period of high PI ended when the well was shut in. After shut-in, PIs returned to a relatively low value that gradually improved over time. During the shut-in period, either a stable hydrate reformed in the near-well region or solids rearrangement led to additional mechanical damage or skin. Finally, in the later extended production period, some concern for icing existed in that sandface pressures would require subfreezing temperatures for methane hydrate stability. An improving PI would suggest that hydrate dissociation was sustained and was moving outward with time with no impairment associated with icing.

Pressure gradients were calculated between the downhole gauges during Production Phase 3 (Figure 60). During Phase 2 shut-in and before reinitiating flow, all gradients had dropped to slightly less than 0.43 psi/ft. This may have resulted from hydrate forming in the wellbore during the shut-in period, which reduced average density in the well. Upon reopening the well, pressure drawdown appeared to be sufficient to promote hydrate dissociation. Evidence for gas and solids separation in the wellbore is noted from relative gradient values between gauge positions. The gradient above the producing interval is gassier while gradient below appears solid laden. Production during Phase 3 ended abruptly when an ice blockage developed in the flare line. The well was shut in while the blockage in the line was remedied. Upon restart, reestablishing flow proved impossible. As shown in Figure 61, downhole pressure was unresponsive upon restart of jet-pump operations after the 2-hour shut-in. Numerous attempts to return the well to flowing condition by increasing the jet-pumping rate to reduce pump suction pressure were unsuccessful. Hydrate blockages may have occurred relatively high in the tubing at relatively low temperatures such that the jetpump was ineffective at reducing the downhole pressure to initiate dissociation. A remediation of possible hydrate blockages below the jet-pump was impossible because of the standing valve (check valve) installed below the jet-pump. After a day of trying to return to flow, a new jet-pump was installed and the standing valve was removed to allow for hydrate remediation by injection of a hydrate inhibitor if needed.

Figure 61: Downhole pressure gauges showing pressure response during shut-in to unfreeze the flare line and subsequent restart.

Phase 4: Jet pumping below CH₄-stability pressure, jet-pump flowback #3

With a new jet-pump installed (Oilmaster 6C) and the standing valve removed, jetpumping Production Phase 4 began on March 23, 2012. However, initial attempts to restart the well were unsuccessful as before. A limited volume of heated glycol was injected below the jet-pump to remediate any hydrate blockages. This successfully reestablished pressure communication with the formation and the fourth and final production phase began. The goal of this phase was to step down the pressure slowly to conditions that would destabilize the native methane hydrate. During this 19-day production phase, downhole pressure was lowered in steps from 648 psia to 266 psia. The reduction of downhole pressure led to a corresponding increase in gas production rate and a cooling at the perforations (Figure 45). Gas rate increased from approximately 5 Mscf/day to more than 30 Mscf/day. During this period, the methane concentration was greater than 90 mol% in the gas stream (Figure 46). Temperature dropped to about 33-34°F at the lowest flowing downhole pressures. A temperature drop corresponding to decreased pressure is expected for gas production from hydrates due to endothermic reactions associated with hydrate dissociation and Joule-Thompson cooling. As illustrated in Figure 41, the downhole pressure continued to drop below the predicted stability pressure for methane hydrate as monitored by the temperature at the perforations. While temperature decreased with lowering of the downhole pressure, the decrease was much smaller than predicted from the position of the hydrate stability line at the measured BHP. While the temperature at the perforations reached 33-34°F, the predicted hydrate dissociation temperature for both pure methane hydrate and a hydrate based on produced gas composition was far below the freezing point of water (Figure 62). This difference could be due to an incorrect prediction of the hydrate phase

behavior. However, as the pressure-temperature behavior for methane hydrate is well known, an alternative explanation is likely. It is probable that the hydrate dissociation front has moved an appreciable distance from the wellbore. To sustain flow, the pressure at the front must be measurably higher than the wellbore and given the pressure-temperature dependency for dissociation, the front temperature must also be higher. The exact temperature at the front is difficult to estimate without using a fully coupled flow model that incorporates heat transport. Nonetheless, as shown in both Figure 45 and Figure 50, gas and water rates slowly increased over time, indicating that if ice formation occurred, it had no immediate detrimental impact on production.

Figure 62: Temperature at the perforations compared with the predicted hydrate stability temperature (based on the pressure reduction) for pure methane hydrate and a hydrate with the produced gas composition.

The pressure gradients between downhole gauges showed uniform behavior during Production Phase 4 (Figure 63). As discussed for the previous production phases, the higher gradient between the bottom and middle gauges could be due to gas-solids separation in the water column. The uniform nature of the middle-bottom gauge difference indicated that the sand content in the well probably remained constant during this time. Recall that surface-measured sand content in the produced water during this period approached zero. Hence, elevated gradients above the water reference probably reflect sand trapped in the rat hole below the screen. As Figure 63 shows, all Production Phase 4 gradients declined with time. This reflects the increase of gas rates while the water:gas (Figure 51) ratio was declining.

Figure 63: Pressure gradients between the three downhole gauges during Phase 3 of production. Gray dashed line indicates the expected gradient for a column of water.

Post-Production Period

Right after midnight April 5, 2012, the jet-pumping power fluid was replaced with glycol. The jet-pumping rate then was significantly reduced to stall-out the jet-pump. At that point, the well was shut in to conclude the field test. Almost immediately after shut-in, the temperature profiles showed warming in the perforated zone (Figure 64); likely because fluid flow ceased and no cool fluid was leaving the perforations to cool the wellbore. The temperature profile in the perforated zone behaved in a manner that provides information about the heterogeneity of the reservoir and flow paths during injection and production. After a period of immediate warming following shut-in, the middle of the perforated interval showed cooling; this gradually moved to the upper portion of the perforated interval. By April 12, the top of the interval had cooled significantly while the lower portion of the interval remained relatively warmer (although still cool compared to the initial reference temperature). Notably, the vertical location of the cooling event is coincident with cooling in the zone of persistence of post-injection warming (Figure 32). In conjunction, this may provide evidence for vertically localized hydrate formation upon injection and dissociation upon production. While this temperature segregation may reflect the effects imposed by reservoir and hydrate saturation heterogeneity, it also may reflect the effects of gravity segregation or the tendency for injection gas to override water.

Comparison with Model Predictions

At this moment, currently available hydrate flow simulators cannot model either N_2/CO_2 mixture injection into a methane hydrate-bearing reservoir or the subsequent production from said reservoir. For this reason, the internally developed cell-to-cell model (or tank model) helped guide planning for the field trial. Details of this model were given earlier and in a previous report (DOE Award No.: DE-NT0006553, Progress Report Second Half 2011). While this model is limited in its ability to capture the physics and chemistry that occurred in the formation during the field trial, a history-match between the field data and this model could provide insights into where the assumption of a well-mixed instantaneous equilibrium system succeeds and where it fails. The adiabatic cell-to-cell model was used in the history-matching attempt. It was assumed that the reservoir was homogenous and was represented by a series of cells as shown in Figure 65.

Figure 65: Cell-to-cell model configuration used to history-match the field trial.

The following example details the model protocol and results. The model was initialized with a homogeneous hydrate saturation of 65% and a water saturation of 35% in the formation. The initialized hydrate saturation is approximately the midpoint of the range determined from multiple log analysis methods. Reservoir pressure and temperature were set at 1000 psi and 40.5°F, respectively. The volume of the first tank was equivalent to the volume of the first 3.5 ft around the well assuming a 30-ft reservoir height. Note that the volume of every cell is the same except for the last cell, which is 100 times that of the basic cell volume. The number of cells in the model is 25. At the end of injection, the injected gas had only reached cell 8.

The model simulated injection of 230 Mscf of mixed gas (23 mol% CO_2 and 77 mol% N_2) followed by stepwise depressurization. The model injection pressure was fixed at the average injection pressure for the field trial, 1420 psia. The production BHP history was approximated with a series of stepwise values. As the cell-to-cell model is a volume-based model, all the simulation results are referenced to volume injected or produced. Therefore, BHP control was predicated on injected or produced volumes, which ensured at a minimum an exact volume balance agreement between the model and the actual data. All of the comparison plots with the field trial will be based on cumulative volumes instead of time. Composition is expressed on a molar basis. The first cell in the model provides the closest prediction of near-wellbore conditions. Measured sandface temperatures will be compared to cell one.

Figure 66 and Figure 67 show the predicted mole fraction of methane, nitrogen, and carbon dioxide in the hydrate phase and the vapor phase in the first cell during the injection of 230 Mscf of the CO_2 mixture. The simulated mole fraction of methane in the hydrate immediately began to decrease as nitrogen and carbon dioxide entered the hydrate phase. However, a vapor phase was not predicted during the initial stage of injection (Figure 68). Instead, the thermodynamic flash initially predicted a two-phase aqueous (liquid water) + hydrate (Lw-H) phase region equilibrium based on the total

moles of all of the species in the tank. After approximately 12 Mscf of injection, the model predicted that the cell entered a three-phase aqueous + Hydrate + free gas (Lw-H-V) region equilibrium, which persists through injection (Figure 68). The model predicted a relatively rapid initial increase in hydrate saturation at the start of injection followed by a gradual decrease. Vapor saturations continually increased over the course of injection (Figure 68).

From the compositional behavior of hydrate in the first cell (Figure 66), nitrogen uptake is rapid, more than 30% at roughly half the total injection volume. With further injection, however, predicted nitrogen in the hydrate appears to approach an asymptote. Carbon dioxide uptake is steady throughout the injection period and finally surpasses nitrogen at around 150 Mscf of injection. In the later stage of the injection, the slope of the increase in carbon dioxide in the hydrate is similar in magnitude to the decrease of methane. If injection continued, the methane eventually would be removed from the hydrate phase in cell one with only nitrogen and carbon dioxide remaining in a molar ratio of ~35% N₂ to 65% CO₂. As expected, the CO₂ is preferred over N₂ and it is concentrated in the hydrate phase relative to the injected gas phase composition (77% N₂ and 23% CO₂). Note, however, that while carbon dioxide is preferred in the hydrate phase, the model still predicted a relatively high concentration of N₂ participating in the hydrate.

Figure 66: Predicted mole fraction of methane, nitrogen, and carbon dioxide in the hydrate phase during injection using the cell-to-cell model (first tank). This is on a water-free basis.

Figure 67: Predicted mole fraction of methane, nitrogen, and carbon dioxide in the vapor phase during injection using the cell-to-cell model (first tank). This is on a water-free basis.

The injection phase is followed by the production phase, which replicates the BHP versus cumulative volume withdrawal. Figure 69 compares BHP during the production period with the BHP used in the simulation. Using the BHP history in the production simulation and adjusting the formation's specific heat, Figure 70 shows the measured

bottomhole temperature versus the best match obtained in the first tank temperature from the cell-to-cell model. Even with artificially high specific heat for the formation, the model could not obtain a good fit to the test data. In addition, after about 250 Mscf of production, all of the hydrate was dissociated from the first tank, and correspondingly, the predicted temperature became almost constant. This is far different from the field observation.

One possible explanation for this difference is that conductive heat transfer between the formation and its surroundings during the actual test helped reduce the degree of the temperature drop during the flowback. This confirms the need for a simulator with fully coupled mass flow and heat transfer.

Figure 70: Measured versus predicted bottomhole temperature of the first tank during production.

As shown in Figure 71 and Figure 72, the model also could not reproduce the produced gas composition observed in the field. Namely, the model fails to replicate the early and rapid increase in methane concentration as well as its long-term trend. In addition, the model over-predicts the nitrogen concentration. Cumulative production and underpredicts the initial carbon dioxide concentration. Cumulative water production is underpredicted as well (Figure 73). Given the large proportion of non-associated hydrate water produced (40%); it is likely that free water was displaced ineffectively from the near-well region, possibly as a consequence of gravity override during gas injection. Additional simulations wherein initial hydrate saturation was varied from 50-85% did not alter these conclusions. Likewise, varying the assumed model cell volume from an effective radius of 1 foot to 14 feet did not improve the match.

Figure 71: Methane composition of the produced gas during the pilot and predicted from the cell-to-cell model

Figure 72: Nitrogen and carbon dioxide composition of the produced gas during the pilot and predicted from the cell-to-cell model.

Figure 73: Plot of cumulative water produced and predicted from the cell-to-cell model.

The inability of the cell-to-cell model to match most aspects of the production data indicates that the major assumptions of the model may be incorrect. These assumptions include:

- The system is adiabatic and heat transfer to and from confining strata is unimportant.
- The system reaches local instantaneous equilibrium. Mixing among all constituents within the defined volume is complete and exchange kinetics are rapid and therefore do not control the observed dynamic behavior.
- The reservoir is homogeneous and uniform throughout.
- Gravity can be ignored.
- Transport of mass is limited to only liquid and gas. Solids cannot flow.

The assumption of an adiabatic system is invalid given the ample evidence for heat transfer above and below the reservoir interval as indicated from the DTS field data. With respect to equilibrium, it has been shown that local equilibrium is a poor assumption for bench-scale experiments involving "solid-state" hydrate exchange. This observation may be equally applicable to an injection or flowback field experiment in which fluid residence times are arguably closer to the bench scale than those for an actual field displacement process on a commercial scale. Nonetheless, a full accounting of heat transfer and kinetic effects must await future modeling efforts.

As regards the remaining bullet points, limited testing of the validity of these assumptions can be undertaken with the cell-to-cell model. Specifically, the potential for flow heterogeneity and solid hydrate production to improve the field history match can be explored through a series of model recombinations. The remainder of this section describes these efforts.

Model Recombinations

The process of model recombination was quite simple. Produced streams from two model simulations were recombined in a stepwise manner that replicated the field methane composition history while honoring the total produced gas volume. The quality of the history match was then assessed by its ability to reproduce both the nitrogen and carbon dioxide composition versus cumulative gas production. Three recombination cases were specifically addressed: Case One considers partial injection/production out-of-zone; Case Two regards injection into and production from zones of differing initial hydrate saturation; and Case Three speculates on the potential for the coproduction of solid methane hydrate. In the cases of solid hydrate and out-ofzone production, pure methane hydrate or injectant gas were recombined with a single model production stream, again explicitly matching the gas phase methane composition while honoring the imposed total gas production constraint. In attempting to model heterogeneous production, the act of recombining produced streams assumes that hydrate exchange occurs independently in each interval and therefore can be represented by separate models. The composition-volume response of each interval is a function of the initial hydrate saturation, the volume of injectant, and the volume of produced gas. Given that injection and production pressures are fixed, the latter are controlled implicitly by permeability-height. Permeability is not considered here, hence the reliance on mathematical mixing.

Three cases for heterogeneous mixing will be illustrated.

Case 1: Partial Injection Out of Zone

A model with initial hydrate saturation of 75% is recombined with the 23% CO₂ injectant. This would simulate the possibility that only a portion of the injected gas was delivered to the hydrate-bearing interval while the remaining portion was injected out of zone and did not react within the thief zone to form additional hydrate. Notably, the cell-to-cell model predicts that only about 60 Mscf of the injectant can be placed into the 75% hydrate saturation interval before injection ceases due to *in situ* hydrate saturations approaching 100% in the first cell. Consequently, the hydrate composition in the first cell is comparatively enriched with nitrogen at the point that injection into hydrate terminates as discussed earlier. Upon depressurization, this hydrate becomes unstable immediately and is available to mix with the gas stream injected out of zone. Figure 74 shows the produced methane composition match and the percentage of injectant required to achieve the produced methane match.

Except for the early production period, the recombination indicates that the majority of produced gas originated from the hydrate interval. Figure 75 compares the predicted nitrogen and carbon dioxide composition in the produced gas to the actual field data. The recombined prediction of produced gas compositions shows the correct trends and is dramatically improved with respect to the previously described model (Figure 72).

Case 2: Heterogeneous Mixing

Case 2, which illustrates heterogeneous mixing, recombines produced streams from a 30-ft cell model with an initial hydrate saturation of 75%, and a 5-ft cell model with an initial hydrate saturation of 50%. Injection was restricted to 60 Mscf in the higher hydrate saturation model for reasons already stated in Case 1. The remainder of the total volume of injectant (160 Mscf) was placed in the 5-ft low-saturation model. This recombined case represents a realistic scenario for the field wherein the majority of the C sandstone, except for the extreme upper portion, has a uniform, log-indicated hydrate saturation of 75% (by AIM analysis). The upper interval saturation is significantly less. Figure 76 shows the recombined methane composition history match and the percent volume contribution from the low-saturation model. The percent contribution generally increases with total produced gas volume but is noticeably erratic over the simulated production interval. The case for heterogeneous production is appealing from several aspects. The first concerns tracer production. It was observed in that the first tracer injected, SF₆, was produced coincidentally with R114 (Figure 108). While acknowledging some partitioning of tracer to the hydrate phase, this outcome suggests that SF_6 was trapped near the well, potentially in intervals of high initial hydrate saturation that received limited injection due to early and rapid build-up of mixed hydrate. In effect, these zones could receive injectant and tracer until the effective permeability to gas, as a function of hydrate saturation, approached zero. The equilibrium cell-to-cell model suggests that as much as one half the SF₆ would be sequestered in the near-well area if the initial hydrate saturation was about 75%. Furthermore, the same model predicts that depressurization would readily destabilize

the in-place mixed hydrate, resulting in a rapid desaturation of hydrate, presumably promoting much-improved permeability and early production of SF_6 coincident with a nitrogen-enriched gas phase. As Figure 48, Figure 49, and Figure 78 indicate, these predictions agree with observed produced gas trends from the field test. Field temperature data also supports heterogeneous injection and production in that during both operations, non-uniform temperature profiles were observed both within and without the perforated reservoir interval as shown in Figure 40 and Figure 64. However, cursory circumstantial evidence does not fully validate this interpretation; a more rigorous simulation approach is required. Figure 77 depicts the predicted compositions for nitrogen and carbon dioxide. Again, the trend of the prediction for each is in keeping with actual production.

Case 3: Solid Hydrate Production

The final recombination exercise addresses the potential for producing solid methane hydrate based on the observation that solids were produced readily throughout much of the production phase of the test. The production of solid hydrate could promote early methane production as well as additional water production, which the prior cases approximate poorly (Figure 73). As before, the recombination process matched the produced gas methane composition by mixing the cell-to-cell model output for a 5-ft model with initial hydrate saturation of 50% into which 220 Mscf of 23% CO₂-nitrogen was injected, with pure methane hydrate that has a water-to-gas molar ratio of six. Figure 78 represents the percentage of pure hydrate mixed to achieve the shown methane composition history match while maintaining the produced gas volumetric balance. Figure 79 details the actual composition trends for N₂ and CO₂ versus the recombined model predicted trends.

Figure 78: Plot showing the percentage of pure hydrate mixed to achieve the shown methane composition history match shown in Figure 79.

Figure 79: Plot showing details the actual composition trends for N_2 and CO_2 versus the recombined model predicted trends for Case 3.

As indicated, the amount of solid methane hydrate in the recombined produced gas stream increases almost linearly with cumulative produced gas volume in order to replicate the observed methane composition. The recombined model predicts that at the end of the field trial, nearly 90% of the produced methane is derived from solid methane hydrate. Predictions of nitrogen and carbon dioxide are somewhat in keeping with observed trends but of lower quality than those reported earlier for the heterogeneous recombination cases. Although not shown, the prediction of produced water is marginally improved. Solid methane hydrate recombination with models of variable initial hydrate saturation and reservoir thickness (0-85% hydrate saturation) did not improve upon the quality of the gas composition match.

Post Test Operations

Final abandonment of Ignik Sikumi #1 wellsite was completed May 5, 2012. Tubing, casing-tubing annulus, and FlatPak tubes were filled with cement following the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was excavated to expose well casing to six feet below tundra surface. Casing and tubing were cutoff three feet below ground level. Cement fill-up was verified, and a cap was welded on top. The excavation was refilled and graded appropriately to ensure return to original grade following spring melt back of the ice pad. The top surface of the ice pad was scraped, with residue hauled-off for disposal. Barriers to the pad entrance were erected and periodic monitoring continued during spring melt. Inspection was conducted with AOGCC representatives August 21, 2012, followed by hand-grooming of the P&A "mound" to mitigate slight (1ft wide by 3ft long) ponding. Crowned areas were shoveled into the center of the ponded area to encourage drainage, and the entire area of the ice pad was re-inspected for trash and debris. Helicopter inspection with North Slope Borough officials was conducted September 3, 2012. The final inspection was conducted by Alaska Department of Natural Resources September 5, 2012, by helicopter to minimize surface disturbance. This inspection concluded that the ice pad had "no impact on the tundra, even in the areas of variable terrain.'

Conclusions

The stated conclusions are preliminary in nature. They represent a current understanding based on limited analysis with rudimentary tools. More definitive conclusions are expected as knowledge of mixed hydrate systems mature.

- A 23mol% CO₂ N₂ mixture was successfully injected into a hydrate bearing zone in which free water was present. Although the possibility for injection out of zone cannot be eliminated, it is clear that a sizeable portion of the injectant interacted with the intended target.
- Evidence for solid state CO₂ methane hydrate exchange exists.
- Methane was produced above the methane hydrate stability pressure and temperature. This methane was produced coincident with CO₂ and N₂, whose molar ratios were different from the injected gas. The relative abundance of each gaseous component was consistent with the dissociation of a three species mixed hydrate

whose stability requirements for pressure and temperature were not met at the producing bottomhole conditions.

- Injectivity declined over time. This is consistent with simple model predictions, which indicate that total hydrate saturation generally increases with injection of this mixture at the observed in-situ conditions. It is expected that any significant dissociation of bulk hydrate would have been noted as improved injectivity.
- The formation temperature increased during injection consistent with exchange or new hydrate formation.
- A simple adiabatic homogeneous instantaneous equilibrium model cannot predict the observed production behavior.
- The observed differences between the actual data and the model may be attributable to the following: the process is kinetically dominated; heat transfer is inadequately modeled; or reservoir heterogeneity controls the observed response. Although other mechanisms may be operative, these are believed to be the most important.
- Bottomhole pressures below 400 psia are achievable during active hydrate dissociation, even though models indicate that this sandface pressure would cause icing. No evidence for icing via measured temperature or impaired productivity was observed. This likely suggests that the pressure increase between the well and the dissociation front to sustain flow is sufficiently large to avoid icing conditions at the observed sandface pressure.
- As large as eight-fold variations in productivity index were observed during production. Understanding the root cause for these changes may be crucial in maintaining commercially viable rates from hydrate production wells.
- Sufficient evidence for heterogeneous injection and production exists within the distributed temperature sensing record.
- The temperature record, furthermore, supports hydrate formation and dissociation given that the observed sandface temperature changes were in accord with those expected at the existent bottomhole pressure and in-situ composition conditions.
- Wellbore conditions must be effectively managed for efficient production of hydrates. Wellbore conditions to be managed include solids control, temperature control, pressure control and wellbore fluid levels. Operational difficulties during production were usually associated with shut-in events wherein well pressures rose and hydrates formed within the well. Many of these events were precipitated by solids production; effective application of downhole heating and water level management may have mitigated these.

Graphical List of Materials

Figure 1:	Mud log characterization	10
Figure 2:	Location of L-Pad within the Prudhoe Bay Unit	11
Figure 3:	Log characteristics of the L-pad area showing a gross reservoir interval of 125 ft in four stacked hydrate bearing sandstones, C (2), D and E. F sand is within the permafrost and is ice bearing. Mud log gas response is highlighted in red	11
Figure 4:	Photograph of the test site area that shows the approximate location of the ice pad. Well paths to underlying producing intervals are shown in red; L-106 (green) is the well with a full suite of logs, and it passes through the C sand at the pink location	12
Figure 5:	Model AOI and well control shown on the Upper F sandstone structure surface. Black points are well intersections at the top of the Upper F sandstone; blue points at the top of the B sandstone.	12
Figure 6:	Input vs. modeled top Upper F sandstone structure grid	13
Figure 7:	North-south stratigraphic cross-section (Datum is top Upper F sandstone)	14
Figure 8:	East-West stratigraphic cross-section (datum is top Upper F sandstone)	
Figure 9:	East-west-oriented structural cross-section across the framework model	15
Figure 10:	Mud log through hydrate-bearing Sagavanirktok sandstones	17
Figure 11:	Ignik Sikumi Log response with hydrate-bearing intervals (shaded)	20
Figure 12:	Log characteristics of the Ignik Sikumi Upper C sands showing homogeneous character and well-defined bounding shales, and low moveable water	21
Figure 13:	Calculated hydrate saturations in Ignik Sikumi using four different methods (Red = Archie's equation; Green = NMR method; Purple = multiple mineral solution; Black = sonic)	24
Figure 14:	Original (Track 2) and reprocessed (Track 3) NMR T2 relaxation time distributions for the C sand intervals	26
Figure 15:	Wave form displays of the monopole array (Track 2) and in-line dipole array (Track 3) across the hydrate-bearing C sand interval	28
Figure 16:	Plot of hydrate saturation and velocity. When compared to the Effective Medium model, the velocities compare favorably with the model-predicted values for hydrate-enveloping discrete sand grains, but not for grain-contact hydrate cement or pore-filling	29
Figure 17:	Log panel showing raw and calculated curves. Track from left to right: Gamma ray and caliper; total gas from mud log; resistivity; neutron density and CMR; lithology; hydrate saturation and permeability with XPT mobility	32
Figure 18:	Subsurface stratigraphy and casing location	35
Figure 19:	Completion design	36
Figure 20:	Large scale wellbore schematic showing equipment position relative to reservoir sands	38
Figure 21:	Showing permeability decrease with increasing hydrate saturation (source Tough+Hydrate)	41
Figure 22:	Comparison between Cell-to-Cell Model and STARS TM	44
Figure 23:	Temperature profiles for 4-CV N2-pre-flush & 8-CV CO2/N2 injection	45
Figure 24:	Temperature profiles for 12-CV N ₂ /CO ₂ injection (no N ₂ pre-flush)	46
Figure 25:	Hydrate saturation profiles for two different injected compositions	47
Figure 26:	Production responses at different injection slug sizes (isothermal)	49
Figure 27:	Hall plot example	50
Figure 28:	Temperature of the hydrate-bearing interval during the perforation procedure as recorded by the Distributed Temperature Sensor (DTS). The thick horizontal dashed lines indicate the targeted formation depth and the small dashed lines	
	indicate the perforated zone.	53
Figure 29:	Mid-perforation pressure and injection rate during and immediately after perforation.	53

Figure 30:	Mid-perforation pressure and injection rate during the injection phase.	54
Figure 31:	Temperature from the middle downhole gauge and DTS @ 2230.9' at the pre-injection test and during the complete injection	55
Figure 32:	Pressure, gas injection rate, and temperature (DTS) during injection. The thick dashed lines indicate the targeted formation and the small dashed lines indicate the perforated zone.	55
Figure 33:	Pressure-temperature diagram showing the hydrate phase line for the 77/23 mol% N ₂ /CO ₂ mixture (red). Operational conditions during the injection phase are superimposed in this diagram	56
Figure 34:	Composition of the injection gas recorded by the on-line GC	57
Figure 35:	Hall plot showing injectivity changes during injection.	58
Figure 36:	 A) Comparison of the Hall plot from the injection and the calculated Hall plot matching the early injection data using a constant permeability aquifer model. B) A closer view of the early injection data and the calculated fit using the aquifer model. 	59
Figure 37:	Hall plot comparison of cumulative injection performance from the pilot against the best fit from the gas injection aquifer model, assuming a constant permeability throughout the test.	60
Figure 38:	Hall plot of the injection performance compared with aquifer models that assumed: A) estimated <i>in situ</i> permeability during the injection phase and B) Calculated hydrate saturation based on the estimate permeability	61
Figure 39:	Hall plot based on field trial injection data compared with a calculated injection curve generated by manually adjusting permeability at 3-hour simulation time intervals.	63
Figure 40:	Downhole pressure and temperature response during shut-in period following injection. The thick dashed lines on the DTS indicate the targeted formation and the small dashed lines indicate the perforated zone.	64
Figure 41:	Total volumetric production rate, downhole pressure, and cumulative water and gas during the production phase. Also included is the calculated CH ₄ hydrate stability pressure based on the downhole pressure	65
Figure 42:	Total volumetric production rate, downhole pressure, and cumulative water and gas during the production phase.	65
Figure 43:	Temperature during production. Note that the DTS temperature represents temperature measured by a fiber cemented in the casing and the downhole temperature is a gauge in contact with wellbore fluid	67
Figure 44:	Thermal effects (along with gas production rate and downhole pressure) during the unassisted and the first two jet-pumping phases of production. The thick dashed lines indicate the targeted formation and the small dashed lines indicate	60
Figure 45:	Thermal effects (along with gas production rate and downhole pressure) during the third jet-pumping phase of production. Note that A and B have different temperature threshold limits. The thick dashed lines indicate the targeted formation and the small dashed lines indicate the perforated zone	69
Figure 46:	Produced gas composition during production measured with the on-line gas chromatograph	70
Figure 47:	Cumulative volumes of gas during the production period	70
Figure 48:	Percentage of injected gas recovered during production based on the total amount injected.	71
Figure 49:	Mole % CO_2 relative to N_2 on a CH_4 -free basis.	71
Figure 50:	Estimated daily water production rate (bbl/day).	72
Figure 51:	Molar ratio of produced water to produced gas based on daily cumulative values.	73
Figure 52:	Bottom sediment and water measurements of the percentage sand in the produced water stream.	74
Figure 53:	Sand in upright tank at the conclusion of the pilot	74

Figure 54:	Estimated cumulative sand production based on bottom sediment and water measurements and water production.	75
Figure 55:	Pressure gradients among the three downhole gauges during the unassisted production period.	76
Figure 56:	Example of downhole pressure behavior during the Phase 2 production with characteristic "saw tooth" behavior	77
Figure 57:	Pressure gradients between the three downhole gauges during Phase 2 of production. Gray dashed line indicates the expected gradient for a column of water (0.43 psi/ft)	77
Figure 58:	Mid-perforation temperature (from DTS) along with the predicted hydrate stability temperature for pure methane and based on the real-time produced gas composition.	
Figure 59:	Plot of productivity index versus time.	
Figure 60:	Pressure gradients for the three downhole gauges during Phase 3 of production. Gray dashed line indicates the expected gradient for a column of water.	
Figure 61:	Downhole pressure gauges showing pressure response during shut-in to unfreeze the flare line and subsequent restart.	81
Figure 62:	Temperature at the perforations compared with the predicted hydrate stability temperature (based on the pressure reduction) for pure methane hydrate and a hydrate with the produced gas composition.	82
Figure 63:	Pressure gradients between the three downhole gauges during Phase 3 of production. Gray dashed line indicates the expected gradient for a column of water	83
Figure 64:	Thermal effects along with downhole pressures after shut-in following production. The thick horizontal dashed lines indicate the targeted formation depth and the small dashed lines indicate the perforated zone	84
Figure 65:	Cell-to-cell model configuration used to history-match the field trial	85
Figure 66:	Predicted mole fraction of methane, nitrogen, and carbon dioxide in the hydrate phase during injection using the cell-to-cell model (first tank). This is on a water-free basis	
Figure 67:	Predicted mole fraction of methane, nitrogen, and carbon dioxide in the vapor phase during injection using the cell-to-cell model (first tank). This is on a water-free basis.	87
Figure 68:	Phase saturation predicted by the cell-to-cell model in the first tank during injection.	87
Figure 69:	BHP as a function of cumulative gas production from the field and BHP used in the model	
Figure 70:	Measured versus predicted bottomhole temperature of the first tank during production.	
Figure 71:	Methane composition of the produced gas during the pilot and predicted from the cell-to-cell model	90
Figure 72:	Nitrogen and carbon dioxide composition of the produced gas during the pilot and predicted from the cell-to-cell model	90
Figure 73:	Plot of cumulative water produced and predicted from the cell-to-cell model	91
Figure 74:	Plot showing produced methane composition match and the percentage of injectant required to achieve the match in Case 1	93
Figure 75:	Comparison of the predicted nitrogen and carbon dioxide composition in the produced gas to the actual field data for Case 1	94
Figure 76:	Methane match for Case 2	95
Figure 77:	Calculated N_2 and CO_2 for Case 2	96
Figure 78:	Plot showing the percentage of pure hydrate mixed to achieve the shown methane composition history match shown in Figure 79.	97
Figure 79:	Plot showing details the actual composition trends for N_2 and CO_2 versus the recombined model predicted trends for Case 3	97

Figure 80:	Methane consumption as measured in volume of gas during the formation of hydrate (blue) compared to the loss of MRI signal intensity during hydrate formation (green)	110
Figure 81:	MRI-generated profiles of water saturation along the core length at initial state (blue), following methane hydrate formation and before carbon dioxide injection (red) and following the formation of carbon dioxide hydrate (green).	111
Figure 82:	MRI Profiles collected during liquid carbon dioxide injection into a methane-hydrate saturated core plug that contained 35% excess water	112
Figure 83:	Changes in MRI profile intensity as additional hydrate formed from excess water and liquid carbon dioxide injection that started at 9:36 hours	112
Figure 84:	Progress of May_2011_B experiment as monitored with MRI	113
Figure 85:	MRI intensity in May_2011_2 sand pack after hydrate formation and during the initial stages of CO_2/N_2 injection around 6/8/2011	114
Figure 86:	Progress of June_2011_A experiment as monitored by MRI intensity	115
Figure 87:	Comparison of methane production from experiments that injected liquid CO_2 and a gas mixture of CO_2/N_2 .	116
Figure 88:	Comparison of methane production from experiments that injected liquid CO_2 and a gas mixture of CO_2/N_2	117
Figure 89:	Shrink-wrap tubing was used as mold for forming sand pack (left). Dry and wetted sand is compacted to a pre-determined volume (length) before adding the second transducer end piece (right) and completing the seal	118
Figure 90:	MRI profile along the longitudinal axis of the Bentheim sandstone core shows a uniform initial water saturation of 70% before hydrate formation	119
Figure 91:	3-D MRI images of water-saturated Bentheim sandstone sample showed a loss of signal as hydrate formed at different test stages	120
Figure 92:	P and S-waveforms collected during hydrate formation. First arrivals were identified by hand.	121
Figure 93:	Summary of Bentheim sandstone test showing hydrate formation	121
Figure 94:	Hydrate formation and CO ₂ injection test for high initial water sand pack is illustrated by changes in MRI intensity. P- and S-wave velocity values were determined by the manual first arrival picking method.	122
Figure 95:	Changes in P- and S-wave velocity at different gas hydrate saturation follow distinctly different trends, depending upon initial water saturation levels.	100
Figure 96:	P-wave velocity at different gas hydrate saturation levels fall between the theoretical values for enveloping and pore-filling models for the test with	123
	initial high water saturation.	123
Figure 97:	P-wave velocity trend as a function of hydrate saturation for a second, high initial water saturation test in a sand pack shows a trend similar to	
F igure 00.	the first test (Experiment #2), though offset to higher velocities.	124
Figure 98:	P-wave velocity trends for two tests at low initial water saturations (20%).	125
Figure 99.	low saturation core (SH=20%)	125
Figure 100:	Plot showing, DTS normalization to the downhole gauges	127
Figure 101:	DTS data with a 13-point Savitzky-Golay smoothing routine applied to the data	128
Figure 102:	DTS data. Top: absolute measured temperature. Bottom: temperature differences relative to an average temperature collected in the zone of interest on February 6, 2012. Measurements were taken before well work. The near-homogeneity of the temperature difference curve throughout the reference day helped evaluate temperature changes during the test.	128
Figure 103:	Flow diagram at the separator	130
Figure 104:	Simplified flow diagram for gas loss calculation.	131

Figure 105:	Tracer concentrations during the injection phase measured with the on-line gas chromatograph	133
Figure 106:	Tracer concentration during the production phases.	134
Figure 107:	Tracer cumulative produced volume during the production phases.	134
Figure 108:	Tracer percentage recovery during the production phases.	135
Figure 109:	Data streams and data logger used during the field trial	137

References

- Collett T., (1993). Natural Gas Hydrates of the Prudhoe Bay and Kuparuk River Area, North Slope, Alaska. American Association of Petroleum Geologists Bulletin, v77, p793 - 812
- Collett, T., and Lee, M., 2011, Well Log Characterization of Natural Gas Hydrates, Transactions of 52nd Annual Logging Symposium, Society of Professional Well Log Analysts, Paper I.
- Graue, A., Kvamme, B., Baldwin, B., Stevens, J., Howard, J., Aspenes, E., Ersland, G.,
 Husebo, J., and Zornes, D., 2006, Environmentally Friendly CO₂ Storage in Hydrate
 Reservoirs Benefits from Associated Spontaneous Methane Production, Society of
 Petroleum Engineers Paper 18087, Offshore Technology Conference.
- Hall H. N., (1963). How to Analyze Waterflood Injection Well Performance. World Oil (Oct) 128-130.
- Howard, J., Hester, K., Stevens, J., and Rydzy, M., (2011) Ultrasonic velocity measurements during experimental CH₄ hydrate formation and CO₂ exchange, Proceedings of 7th International Conference on Gas Hydrates (ICGH-2011), Edinburgh, July 17-21, 2011.
- Klein, J., Schoderbek, D., and Howard, J., (2012) Comparative formation evaluation for gas hydrate evaluation in Ignik Sikumi #1, Alaska North Slope, AAPG Annual Meeting (reference).
- Kleinberg, R., Flaum, C., and Collett, T. (2005) Magnetic resonance log of Mallik 5L-38: Hydrate saturation, growth habit, and relative permeability. In S.R. Dallimore and T.S. Collett (eds), Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well, MacKenzie Delta, Northwest Territories, Geological Survey of Canada Bulletin 585, p. 1-15.
- Kurihara M, Funatsu K, Ouchi H, et al (2011) Analysis of 2007/2008 JOGMEC/NRCAN/Aurora Mallik Gas Hydrate Production Test Through Numerical Simulation. Proc. 7th Intl. Conf Gas Hydrates Paper 449.

- Moridis G J, Kowalsky M B, Pruess K (2008) TOUGH+HYDRATE v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. Report LBNL-0149E Lawrence Berkeley Laboratory, Berkeley, CA.
- Stevens, J., Howard, J., Baldwin, B., Ersland, G., Husebo, J. and Graue, A., 2008, Experimental Hydrate Formation and Gas Production Scenarios Based on CO₂ Sequestration, Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia.
- Strobel et al, 2006 DOI:10.1021/jp062139n
- Waite, W., Santamarina, C., Cortes, D., Dugan, B., Espinoza, D., Germaine, J., Jang, J., Jung, J., Kneafsey, T., Shin, H., Soga, K., Winters, W., and Yun, T., 2009, Physical Properties of Hydrate-Bearing Sediments, Rev. of Geophysics, v. 47, p 1-38.

Wilson & Mackay, 2005 DOI: 10.1111/j.1745-6584.1993.tb00842.x

Acronym or Abbreviation	Acronym, Abbreviation, or Term Explained
μm	Micron
usec	microsecond
3-D	Three-dimensional
AIM	Advanced Interpretation Model
AOGCC	Alaska Oil and Gas Conservation Commission
API	American Petroleum Institute
bbl	Barrel
Bbl/D	Barrels per day
BHP	Bottomhole pressure
ВНТ	Bottomhole temperature
BWPD	Barrels of water per day
CH₄	Methane
CMR	Combinable Magnetic Resistance
CO ₂	Carbon Dioxide
CSV	Comma Separated Value (file format)
CV	Cell volume
DOE	Department of Energy
DPHI	Density porosity
DT	Delta T (Time)
T	Transit time
	Compressional wave transit time (well log
DTCO	measured in µsec/ft)
DTS	Distributed temperature sensing
Ft.	Feet
GC	Gas chromatograph
gpm	Gallons per minute
GR	Gamma ray
Не	Helium
Hi-Res	High-resolution
in.	Inch
JOGMEC	Japan Oil, Gas and Metals National Corporation
Lbs.	Pounds
LWD	Logging-while-drilling
Lw-H	Water and hydrate
Lw-H-V	Water, hydrate and gas
MCF/D	1000 cubic feet per day
mD	millidarcy
MDT™	Modular Dynamic Tester™
mol%	Molecular percentage
MRI	Magnetic Resonance Imaging
Mscf	Million standard cubic feet
N ₂	Nitrogen gas
NaCl	Sodium Chloride
Ne	Neon
NETL	National Energy Technology Laboratory
NMR	Nuclear Magnetic Resonance
P&A	Plug & Abandon

List of Acronyms and Abbreviations

Acronym or Abbreviation	Acronym, Abbreviation, or Term Explained
P&IDs	Piping & Instrumentation Diagrams
Pbd	Breakdown Pressure
PEX™	Platform Express™
PGHS	Methane hydrate stability pressure
PI	Productivity Index
ppg	Pounds per gallon
ppm	Parts per million
Pres	Reservoir Pressure
psi	Pounds per square inch
psia	Pounds per square inch absolute
PV	Pressure x Velocity
RHOB	Bulk Density (log file measured in g/cm ³)
RHOZ	HRDD Standard Resolution Formation Density (log file)
RKB	Rotary Kelly Bushing
Rt	Observed bulk Resistivity
Rt	Resistivity
Rw	Water Resistivity
scf	Standard cubic foot
SF ₆	Sulfur hexafluoride
Sh	Hydrate saturation
sl	Structure I (structure I hydrate formation)
sll	Structure II (structure II hydrate formation)
SLB	Schlumberger
SPE	Society of Petroleum Engineers
SSTVD	Subsurface True Vertical Depth
TCMR	Total CMR Porosity
TD	Total Depth
Tres	Reservoir Temperature
USGS	United States Geological Survey
Vol%	Volume percentage
Vp	P-wave velocity
Vs	S-wave velocity
X-over	Crossover
XPT™	Pressure Express™
Appendix A Experimental Basis for CO2 Exchange

A series of laboratory experiments between 2003 and 2009 demonstrated the viability of exchanging CO_2 with CH_4 in hydrate structure as a potential production strategy for natural gas hydrate reservoirs (Stevens et al., 2008; Graue et al., 2006). This work was used as the basis to design a field test that evaluated the exchange mechanism at a larger scale.

The early experiments were designed around a simplified scenario of hydrates forming in a gas-rich, partial water saturation environment in a consolidated rock pore system. This low initial water saturation condition contrasted with higher water saturations that are believed to be present in many hydrate-bearing settings. The advantages of these initial conditions were that hydrate formation was faster in a gas-rich system, with nearly complete conversion of all the available water into hydrate. Permeability to gas was also optimized in this system because of the connected gas phase in the pore system.

The early planning stages of the field trial identified several themes that needed further investigation. A new series of laboratory tests were run to generate critical information for the field-trial design. The major concerns were:

- 1. what happens in a hydrate-bearing system with excess water,
- 2. how is CO₂ delivered to the proper reservoir interval, and
- 3. what is the impact of a fine-grain, unconsolidated sediment on the effectiveness of the exchange process?

The first concern was that hydrate-bearing sands in the Arctic regions have high hydrate saturations along with water in the pores. Wireline log interpretation at Milne Point and Mallik used a combination of conventional resistivity and porosity measurements along with the nuclear magnetic resonance (NMR) logging tool to estimate fluid and hydrate saturations in the reservoir intervals. These interpretations also indicated the presence of "free" water in the hydrate-bearing sands (Collett and Lee, 2011). Free water, whether a near-wellbore effect or a reservoir characteristic, would be available to interact with injected CO_{2} , and form new hydrate and thus reduce injectivity.

The second concern was how to deliver a pure, liquid CO_2 stream to the face of the reservoir layer 2000 ft. below the surface. The liquid CO_2 column weight at that depth would exceed the parting pressure of the hydrate-cemented sediments. A potential solution was to transform the CO_2 into a mixed gas phase by adding nitrogen. The impact of mixed-gas on exchange was investigated experimentally.

The third major concern was whether the hydrate cements, which control the strength of the reservoir, would be affected by exchange and whether formation integrity would be maintained.

Excess Water Saturation

These experiments were designed to evaluate the impact of free water in the hydrate pore system and to quantify permeability reduction from hydrate formation as a result of injecting CO_2 into a water-filled pore system.

In this experiment, a Bentheim sandstone core plug was partially saturated with 0.1N NaCl by imbibition to a final water saturation of approximately 50%. The imbibition process generally led to a uniform distribution of water along the core length as monitored by magnetic resonance imaging (MRI) techniques. Methane gas at 1200 psi was introduced to the core at one end of the core plug to fill the remaining pore space. The sample was then cooled to 4°C, which initiated the formation of hydrate in the core as monitored by MRI (Figure 80). In this experiment, the methane volume was constrained so that roughly half of the available water was converted into hydrate and free water remained in the pore system. Water and hydrate saturations were each approximately 25% and the remaining pore volume was gas. The comparison of methane consumption with the loss of MRI intensity as hydrate forms showed a general agreement (Figure 80). A series of rapid permeability measurements were made using small volumes of nitrogen. Permeabilities of 2 to 3 mD were determined on this sample in the presence of excess water.

Liquid carbon dioxide was then injected into the hydrate-bearing core with excess water. As expected, the carbon dioxide converted all of the available free water into a hydrate as monitored by the MRI (Figure 81). The saturation profile along the core length showed the somewhat uneven distribution of the initial water saturation (blue) and then the water saturation after methane hydrate formation and partial dissociation with the large volumes of injected nitrogen (red). The

noise in this intermediate curve results from greatly reduced scan time. The final profile following the introduction of carbon dioxide showed the conversion of the remaining free water into hydrate (green). Permeability measured on the core after carbon dioxide injection and returned values of 0.045 mD, almost two orders of magnitude smaller than the pre-CO₂ injection measurement.

This test was repeated with a higher starting water saturation of 70%. The initial water saturation was uniformly distributed along the core length as monitored with MRI profiles. Injection of methane, cooling and pressurization resulted in final saturations of approximately 35% free water and 43% hydrate, due to the expansion as hydrate formed (Figure 82, red curve). Hydrate saturations were slightly higher at the outlet end (Figure 82).

Permeability to nitrogen gas measured at this point in time was 4-18 mD. Again, the injection of liquid carbon dioxide converted much, but not all of the available excess water into a hydrate (Figure 82, lowermost blue curve).

Figure 82: MRI Profiles collected during liquid carbon dioxide injection into a methane-hydrate saturated core plug that contained 35% excess water.

Permeability measurements collected during the injection of liquid carbon dioxide started at 0.9 mD and dropped quickly to 0.2 mD (Figure 83). After that point, the permeability remained relatively constant even though additional water was being converted to hydrate. The average intensity of the profiles collected during the injection dropped from 0.007 to 0.0018, but did not reach zero.

Figure 83: Changes in MRI profile intensity as additional hydrate formed from excess water and liquid carbon dioxide injection that started at 9:36 hours.

From these tests it was concluded that CO_2 injection into a hydrate saturated pore system containing free water and gas would result in reduction in permeability, but that the permeability would not be reduced to zero. Permeability reduction in a system with no gas in the pores could not be tested experimentally and remained a concern that was addressed through phase modeling.

CO₂ Delivery Mechanism

Experiments were performed to validate the efficiency of exchange with mixed N_2/CH_4 gas. The first experiment (May_2011_B) had an initial hydrate saturation of 58% and gas-filled pore space. Injection of a 60/40 mol% CO_2/N_2 gas mixture did not alter the water and hydrate saturation in any appreciable manner (Figure 84).

Figure 85: MRI intensity in May_2011_2 sand pack after hydrate formation and during the initial stages of CO₂/N₂ injection around 6/8/2011.

Figure 85 shows no change in intensity, which indicates that there was no additional hydrate formation when the mixed N_2/CO_2 gas was introduced.

A second experiment (June_2011_A) continued evaluating the effectiveness of the gas versus liquid sourcing of the CO₂ for exchange. The initial parameters were similar to those used in the May_2011_B test, but in this case liquid CO₂ was used. After initial hydrate formation, liquid CO₂ was injected at a rate of 0.01 cm³/min to 0.05 cm³/min. The introduction of CO₂ converted trace amounts of water in the system to a hydrate as shown by an additional loss of MRI intensity (Figure 86).

Figure 86: Progress of June_2011_A experiment as monitored by MRI intensity.

A comparison of the produced methane from the two experiments indicated that the CO_2/N_2 60-40 mixture was as efficient in the rate and extent of exchange with the methane hydrate as was liquid CO_2 (Figure 87). The initial production of methane from the pores was independent of the volume of injectant, corrected for experimental conditions. After that initial stage, the liquid CO_2 produced the same molar volume of CH_4 as the CO_2/N_2 mixture, but only used one-quarter of the injected volume.

Figure 87: Comparison of methane production from experiments that injected liquid CO_2 and a gas mixture of CO_2/N_2 .

When the injected volumes of the liquid and gas mixture were converted into moles of CO_2 , the gas mixture proved to be more efficient in terms of total moles of available CO_2 in the production of the CH_4 (Figure 88). In this instance, the efficiency of the exchange was greater with the gas mixture. The liquid CO_2 system likely was inefficient in the exchange because much of it was forced through the system before it had time to interact with CH_4 -hydrate sites. The exchange process was less affected by the driving force, as represented by the moles of available CO_2 , as by the reactivity. Note that surface area and abundance of interfaces, as determined by the initial water saturation, were the same for these two tests.

Strength of Unconsolidated Sand

The hydrate-bearing sand reservoirs in the Arctic are composed of poorly consolidated, fine-grained sands that are cemented primarily by hydrate. Loss of sediment strength caused by large-scale dissociation of the load-bearing hydrate cement during CO_2 exchange process was a concern. To assess this risk several exchange tests were run in a core holder that included ultrasonic transducers, which measured compressional and shear wave velocities on the hydrate-saturated sand. Analysis of the velocities is a standard technique to provide information on the elastic moduli of the hydrate-bearing sands (Waite et al., 2009)

The experimental setup for measuring ultrasonic velocity properties in samples while simultaneously monitoring reaction progress was developed at ConocoPhillips in 2010. A key step in this procedure was the design and construction of PEEK end pieces to house the piezoelectric P- and S-transducers (500 kHz). Wave speeds were measured with a conventional pulsed-transmission method. Waveforms were collected at regular intervals and evaluated, initially by hand. Eventually, these data were evaluated by a waveform sonic analysis tool LogIC, a commercial petrophysics software package that was modified to accept the laboratory data format, and with a MATLAB signal processing module developed in this lab.

A series of sand packs were formed with Ottawa F-110 sand that was being used by hydrates researchers as an inter-laboratory standard. A mold was formed by using shrink-wrap Teflon tubing around one of the PEEK end pieces (Figure 89, left). Dry or wet sand was then added to the mold, followed by compaction to a pre-determined volume that resulted in an initial porosity of ~40% (Figure 89, right). Initial water saturation was determined by the amount of water mixed with the sand before placing it in the mold.

Figure 89: Shrink-wrap tubing was used as mold for forming sand pack (left). Dry and wetted sand is compacted to a pre-determined volume (length) before adding the second transducer end piece (right) and completing the seal.

For samples with higher initial water saturation than the wet sand mixture could establish additional water was added. The distribution of water in these sand packs was determined by MRI profiles. Hydrate saturation was determined by monitoring the changes in the MRI images as signal intensity decreased when water and methane combined to form hydrate. Previous tests established a strong correlation between MRI image intensity and moles of consumed methane during hydrate formation, which made the MRI approach a valid means to estimate hydrate saturation while gaining additional spatial information.

Initial tests were run with a Bentheim sandstone sample, which was the standard medium used in ConocoPhillips' earlier tests on hydrate formation and CO_2 exchange. This test had an initial water saturation of 70%, which was uniformly distributed along the core length (Figure 90). The sample was pressurized with methane at 1200 psi and then cooled to 4°C. Hydrate formation was monitored with a series of 3-D MRI images (Figure 91).

Figure 90: MRI profile along the longitudinal axis of the Bentheim sandstone core shows a uniform initial water saturation of 70% before hydrate formation.

In Figure 90, note that there was some redistribution of water when the sample was pressurized with 1200 psi of methane.

Figure 91: 3-D MRI images of water-saturated Bentheim sandstone sample showed a loss of signal as hydrate formed at different test stages.

In Figure 91, the MRI was sensitive to the presence of water and methane, but the MRI did not detect hydrate because of its very fast relaxation properties.

Ultrasonic waveforms were collected every minute during the hydrate formation. Selected waveforms during the test were evaluated for first arrival times (Figure 92). The arrival times were converted into velocities by assuming a constant sample length and corrected for the offset from the PEEK transducers (Figure 93). The complete test included a stage of hydrate formation where P- and S-wave velocity increased to 4300 msec and 2200 msec respectfully. After most of the water was converted to hydrate, the methane pore pressure was dropped below dissociation pressure. This released free water and methane, causing an increase in MRI signal intensity. There was a concomitant decrease in velocity to 3300 msec and 2000 msec for the P- and S-waves. The system was then re-pressurized to 1200 psi and the remaining water was reconverted to hydrate with Vp and Vs approaching the original values.

Figure 92: P and S-waveforms collected during hydrate formation. First arrivals were identified by hand.

Figure 93: Summary of Bentheim sandstone test showing hydrate formation.

Figure 93 charts the Bentheim sandstone test hydrate formation. Hydrate formation is shown, followed by depressurization below dissociation pressure.

Then, Figure 93 shows re-pressurization to 1200 psi and finally, CO_2 injection. The MRI intensity is a reflection of hydrate saturation (water saturation). P- and S-wave velocities were determined manually (Figure 92).

Additional tests with a sand pack were run with initial low and high water saturations. The first test had an initial water saturation of 80%. Hydrate formation caused the velocities to increase to 2800 – 3000 msec for Vp and 1200-1300 msec for Vs (Figure 94). On approximately June 16th, the pore pressure was dropped below the hydrate dissociation pressure. The increase in MRI signal intensity did not approach the levels associated with the initial water saturation. This fact, along with the observation of water in the outlet lines, indicated that much of the water was lost from the sand pack during depressurization. Repressurization of the system converted the remaining water, now in a low water saturation state of approximately 20%, to hydrate. Note that even with the lower initial water saturation that converted to hydrate, the velocities were slightly greater than when the hydrate formed at the higher initial water saturation (Figure 94).

The MRI results allowed for periodic estimates of gas hydrate saturation during the hydrate formation process and CO_2 exchange tests. The relationship between hydrate saturation and velocity followed two distinct trends, depending on whether there were high or low initial water saturation levels (Figure 95). The trends from the two initial water saturation levels did not overlay at the same gas hydrate saturation (5% to 20%). The thought was that the initial water saturation played a significant role in how the hydrate was distributed within the pore space, even when the absolute hydrate saturations were the same. The interpretation of where this hydrate was distributed within the pore space remained unclear. The P- wave velocity results for the initial high water saturation test fell between the enveloping and pore-fill models (Figure 96).

Figure 95: Changes in P- and S-wave velocity at different gas hydrate saturation follow distinctly different trends, depending upon initial water saturation levels. Gas hydrate saturation was determined from the MRI intensity.

Figure 96: P-wave velocity at different gas hydrate saturation levels fall between the theoretical values for enveloping and pore-filling models for the test with initial high water saturation.

A second hydrate formation test with high initial water saturation levels (80%) was characterized by a similar trend in P-wave velocity at different gas hydrate

saturations (Figure 97). The second trend had a similar slope to the original experiment (Experiment #2); however, the velocity values were offset by approximately 400 msec. This offset was linked to differences in the sand packs used in the two tests. The overall trend of the second test was closer to the pore-filling model trend, especially at lower hydrate saturations.

In Figure 33, there is greater data density, especially at low hydrate saturation, where hydrate formation began.

Two tests that were run at low initial water saturations (20%) showed an increase in P-wave velocity that approached the contact-cement model of hydrate distribution (Figure 34). The second test was marred by the absence of MRI data to estimate intermediate hydrate saturation during formation. Almost 100% of the free water was converted to hydrate during the collection of one 3-D MRI image. Therefore, the only measured values were the endpoint saturations. CO₂ was flooded into the core following conversion of the water to methane hydrate. Figure 99 shows that both the P- and S-wave velocities decreased during the CO₂ flood and exchange process. In Figure 98, the first test (black scatter diagram) shows a trend of increasing velocity that passes from enveloping to contactcement distribution. The second test (orange scatter diagram) shows velocities centered near the enveloping model.

Figure 98: P-wave velocity trends for two tests at low initial water saturations (20%).

Figure 99: Changes in P- and S-wave velocity during a CO₂ flood of a low saturation core (SH=20%).

Ultrasonic measurements from hydrate-bearing samples formed by methane injected into partially-saturated sand showed that P- and S-wave velocities increased when hydrate was present. The increase in velocity depended upon the amount of water initially present and the location of gas and water in the pore space. At low saturations, the hydrate in the sediment acted as a "cementing," element, and increased the ultrasonic velocities dramatically. However, the final velocities decreased with initial water saturation. At high initial water saturations (about 80 percent), the gas hydrate acted as a "load bearing," element, even at low gas hydrate saturations.

This work led to the conclusion that the formation was unlikely to fail during exchange. However, loss of competency during dissociation is likely as demonstrated by the Mallik field test.

Appendix B Distributed Temperature Sensing Data Processing

Distributed Temperature Sensing (DTS) data was collected from surface to a depth of 2575.4 ft. Based on standard practice by the vendor, the DTS data was normalized to a "known" temperature to account for shifts in the data. The two normalization approaches were: normalizing to the top and bottom downhole gauges and normalizing to an interval in the rathole (2449-2562 ft). Based on the DTS processing software, the spatial resolution of the data was 3.28 ft. Following normalization, the DTS temperature was compared to the middle downhole gauge temperature. As shown in Figure 100, the normalization to the downhole gauges produced a result in better agreement with the static middle gauge temperature. The discrepancies seen at later times could result from the DTS being cased in cement while the middle gauge measured wellbore fluid temperatures directly during flowing operations. Based on this result, much of the DTS data in this report was normalized to the downhole gauges (the raw and rathole normalized data are available in the project database). A second processing step, a 13-point Savitzky-Golay smoothing routine, was applied to smooth the data and remove noise in the measurement (Figure 101). Finally, changes in temperature during the pilot test are reported with respect to the baseline geothermal gradient. The baseline thermal gradient of the reservoir was calculated by averaging the calibrated DTS data collected on February 6, 2012, before the well was opened for the 2012 testing (Figure 102). This created a reference temperature curve for each depth point used to calculate changes in temperature in the interval during the field trial. While a nearly 2.0°F difference in temperature existed between the top and bottom of the hydrate-bearing interval, the temperatures at any given depth were stable within 0.1°F during the entire reference day. The calculated average geothermal gradient in the perforated zone was $\sim 1.8^{\circ}$ F/100ft.

Figure 100: Plot showing, DTS normalization to the downhole gauges.

Figure 101: DTS data with a 13-point Savitzky-Golay smoothing routine applied to the data.

Time in days since Feb 6, 2012

Figure 102: DTS data. Top: absolute measured temperature. Bottom: temperature differences relative to an average temperature collected in the zone of interest on February 6, 2012. Measurements were taken before well work. The near-homogeneity of the temperature difference curve throughout the reference day helped evaluate temperature changes during the test.

Appendix C Lost Gas Correction due to Dissolved Gas

Measurements were taken of the gas flow rate and produced gas composition during the flowback stage. However, no measurements were made of the dissolved gas composition of aqueous phase from the separator. Ignoring the amount of gas dissolved in the aqueous phase could affect instantaneous gas rates, total gas, and recovery factor for each component. Due to the expected significance of CO_2 dissolved in the aqueous phase, the amounts of gases dissolved in produced water were estimated and were treated as production corrections.

Water Production Rate

Water production data required for gas loss calculation are unavailable because the flow meter broke during the early production period (damaged by sands in the production stream). Estimations of the water production rate were based on changes of water volume in each water tank and calculated using Equation 7.

Equation 7: Estimated water production rate calculations

Volume change = $A_{tank} \times (H(t_2) - H(t_1)) + volume removed by vac truck$

Where:

 $H(t_2)$ = represents water levels at t_2 $H(t_1)$ = represents water levels at t_1

Daily water production was calculated from tank water levels taken every 30 minutes plus the total volume change during each 24-hour period.

As water leaving the tanks (recycle water) was sometimes higher than water entering the tanks during some short periods, the calculated water productions were often less than zero in those periods. Total water production during longer periods did not display this issue. Therefore, the average water production rate was calculated from the daily water production values.

Dissolved gas calculation (aqueous phase composition)

Material balance and flash calculations provided the basis for determining the composition of the aqueous phase from the separator. Figure 103 illustrates the flow diagram at the separator.

Gas rate and its composition were measured, whereas water rate from the separator was set to be equal to the summation of the water production rate (in the previous section) and the water recycle rate (measured).

Equation 8: The total amount (mole) of each component in the inlet stream was determined from the material balance at the separator

$$(Component i^{th})_{inlet stream} = (Gas rate \times y_i) + (Aqueous rate \times x_i)$$

The aqueous phase composition (x_i) was estimated from Henry's law, and the total mole of each component in the inlet stream was calculated using equation B2. At that point, a flash calculation obtained gas and aqueous phase compositions (y_i, x_i) . The entire calculation process is repeated (with different x_i) if the calculated gas compositions (y_i) are very different from the measured gas compositions. However, the estimation of aqueous phase composition using Henry's law was adequate after adjusting the constant for each component. The maximum difference of the calculated and measured gas compositions was less than 1%.

The next step used the calculated aqueous phase compositions for the loss calculation. Figure 104 illustrates the simplified process flow diagram used for the gas loss calculation.

Figure 104: Simplified flow diagram for gas loss calculation.

Equation 9: Material balance at the water tank system

$$(component \ i^{th})_{loss} = (Aqueous \ rate \times x_i)_{separator} - (Aqueous \ rate \times x_i)_{recycle}$$

Compositions of the aqueous phase from the separator were calculated in the previous step. The recycling water compositions were determined from flash calculation at the water tank conditions. Temperature at the water tank was measured, whereas water tank pressure was set to 14.7 psi (open tank).

The loss from Equation 9 includes the loss with vented gas at the water tank and the loss with produced water. This calculation assumes that the CO_2 concentration in the aqueous phase is in equilibrium with the CO_2 concentration in the produced gas phase at the separator. This assumption should be valid unless the flow to the separator is too high, meaning the fluid does not have enough time to reach equilibrium at the separator conditions.

Appendix D Tracer Gases

The field trial design included "non-interacting" conservative chemical tracers to the CO_2/N_2 injection mixture as a way to reconcile mass balance issues associated with the trial. This decision was based on the premise that a proper selection of tracers would allow monitoring of the production stream to determine how much of the original injected gas mixture was recovered with respect to a noninteracting component. The selection criteria included identification of a tracer that would stay in solution with the injection gas and would not participate in the hydrate phase. Two classes of molecules were considered: very small chemical species (for example, He, Ne) and larger species that do not fit in the cages of the sI hydrate. The very small chemical species form hydrates on their own but only at high pressure. While these small molecules could enter into empty cages of existing hydrate, their partitioning into the hydrate phase is relatively low (Strobel et al, 2006, DOI:10.1021/jp062139n). However, some finite partitioning of these small species would have to be accounted. The second class included larger molecules too large to fit in the sI hydrate, the expected crystal structure for natural CH₄ hydrate and CO₂ hydrate. Although these molecules form sII hydrate on their own, sufficiently low concentrations will exclude them from the hydrate phase. Low concentrations cannot produce a driving force sufficient to cause a hydrate crystal structural transition.

The two selected molecules, SF_6 and R114, are too large for sI structures. They were used in the gas injection mixture at a sufficiently low concentration to avoid sII hydrate formation. SF_6 is a commonly used tracer for subsurface studies (Wilson & Mackay, 2005, DOI: 10.1111/j.1745-6584.1993.tb00842.x). R114 was selected based on its size and low water solubility. The desired injection concentration was based on the GC detector sensitivity. The desired concentration came to 1 ppm/v for SF_6 and 30 ppm/v for R114. Using Multiflash (Infochem), SF_6 was predicted to be excluded from the hydrate at the desired injection concentration. Experimental conditions predicted the need for at least 600 ppm/v SF_6 to create a stable sII hydrate-trapping SF_6 . Below those concentrations, SF_6 should remain in the gas phase. R114 was unavailable in the program for prediction.

Two tracers added detail to the characteristics of the flowback. SF₆ was the first tracer injected (for roughly half of the desired injection volume) and R114 followed for the remainder of the injection. The tracers were delivered using a positive displacement pump and metered into the injection stream through a check valve. Figure 105 shows the tracer concentrations during the injection phase. A number of operational challenges affected the injection of the first tracer, SF₆. These included inefficient filling of the pump due to gas instead of liquid flowing into the system, leaks, and tubing configuration issues. A check valve positioned downstream of the analog valve V-127 generated the main configuration issue. The check valve was repositioned upstream of V-127 before the R114 injection, which allowed injection at a more controlled and steady concentration. Based on

the integrated signal from the GC composition and flow rate data, the total injected SF_6 was 0.1988 scf and 2.9169 scf for R114.

Unexpectedly, both tracers were present immediately in the production stream upon flowback. Figure 106 shows the tracer concentration during the production phases along with the cumulative volumes in Figure 107. The first conservative tracer in a "huff-and-puff" style test should not be present until later times, as it would have been displaced into the formation during the R114-traced phase of injection. In addition to being present immediately on flowback, the estimated recovery factor for SF_6 was greater than R114 (Figure 108).

To investigate whether these tracers actually were non-interacting, follow-up laboratory tests were performed using two gas mixtures: 1) 77/23 mol% N₂/CO₂ with 1ppm/v SF₆ and 2) 77/23 mol% N₂/CO₂ with 10ppm/v SF₆ and 50ppm/v R114. Hydrate was formed at ~34°F and 1420 psi from a water-filled sand pack under constant pressure conditions. Following hydrate formation, the head space gas was sampled and the cell was vented rapidly. After venting, the hydrate was allowed to dissociate and the hydrate gas was collected and analyzed. In both cases, the hydrate gas was enriched on CO₂ relative to N₂, as expected. The R114 was depleted in the hydrate case, indicating that it would act on a non-partitioning tracer. However, in both cases, the SF₆ was enriched in the hydrate gas. This indicates that, at least for the case on new hydrate formation, the SF₆ was not acting as a non-interacting tracer. While this was not the result desired from SF₆, it may explain the tracer's anomalous behavior during flowback (Figure 108). More work is needed to explain the behavior of the tracers and to determine how to interpret them in relation to the field trial.

Figure 106: Tracer concentration during the production phases.

Figure 107: Tracer cumulative produced volume during the production phases.

Figure 108: Tracer percentage recovery during the production phases.

Appendix E Isotopic Gas Analysis

69 70	67	8 65 64	: 23	62 61	2 8	58 8	70	1 55	5 G	2 23	52	<u>a</u> 8	3 3	48	47	40	44	43	42	÷ 4	39	8	37 8	8 <mark>8</mark>	34	8	3 93	85	228	27	22 23	24	3 8	3 23	20	: 22	ರೆ	ರ್ ಇ	≰ ದ	10	⇒	9		7	о о +	ω Ν -
• Nitro	nd = 1	249 249	249	249	249	249	249	249	249	249	249	249	249	249	249	010 042	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	249	2490	2490	249	2490	2490	F	Isote		Job	Isot		
ogen is	ot dete	42	40	33 33	37	88	5 3 4	88	122 I	38	29	2 83	3 26	125	24	2 2	312	20	33	8 17	1	3	¥ 7	3 23	=	30	88	07 8	8 3	9	88	3 3 3	88	88	997	99	ē 3) <u>9</u> 2	ğ 9	ē	č <u>h</u>		8298	ech		\triangleright
otope a	oted, n	319	319	3/96	3/94	0110	3.8/94	419	4/90	4/93/1	4.7/95	5/95/	888	10/86/1	10/88/	14100	5/93/0	6/92/0.	7/91/1.0	10107	28/70/	30/10	29/6	28/69	20/75/2	29/68	24/74	19/77/	32/62	30/64	29/65	58/38/	34/60	41/5	557287 43	66/1	78/0	73/0	78/0					Gas	1501	ิยโ
analyse	a = not	7717.05	5/17.057	717.063	110.07	0/17.072	1.9741	5/17.084	3/1/0.09	12/10.10	71.470.1	1.770.15	7/3/0.2 2/0 (72	666/0.0	1.1/0.29	20.01712	766/0	871/0.14	5440.20	2.470.44	0.9/0.3	3/4/1.16	9/3/0.7	12/0.71	1370.5	121.747	1.210.6	3/0.57	1210.74	1310.68	7970.34 7470.77	5.208/	15/107	1/8/1.16	1570.97 1/39/14/	5/17/0.5	122101	125707	12010.0	Name	Sampl			Dat	ICH LAB	ğ
's adde	: analyz	12.111 87.11	7.113	97.121	10.129	27.143	791.16Z	H.121	1.193	3/0.206	19/0.28	10.302	10.7	31870.96	441.815	27/12	1137.408	\$3/0.43	0970.516 0970.559	12/2.76	73/1.57	16.844	15.036	144.766 ELA ED	25/3.29	914.423	03/4.14	9/2.359	3/6.530	8/5.860	370.610 775.116	0.681/16	75.348 8/5.591	2/8.6	7/15.75	124.4	2,908	0.003	9104/?		æ			m	DEATORI	E E
d on 8	2	<u>t</u> t	÷	t t	: ±	± ±	: :	: ±	4 9	2 22	35	22.0	2 22	91 3/3	38.0	2 9	۵ بو	0 2	≁ ຊ;ς	۔ بو	 	ω. 	۲ دی	2 42	⊛ ⊊:	ب ب ب	2 42	ي چ	2 42 2	<u>د</u>	۔ بي ي	2 2 2	2 4	2 42	ू स्		2 22	22	2 12		ω		\square		IS INC	Η,
02/20t		9/2012	8/2012	772012 872012	6/2012	5/2012	210245	2/2012	1/2012	30/2012	9/2012	28/2012	2672012	25/2012	2472012	2107403	18/2012	17/2012	17/2012	2102/91	15/2012	13/2012	12r2012	12/2012	11/2012	11/2012	11/2012	0/2012	9/2012	8/2012	8/2012	8/2012	2012	7/2012	5/2012	5/2012	2472012	20/2012	15/2012	Date	ample					
~ ~ ~		23:4	16:0	0:14	8:04	815	2.48	8:00	8:11	2:56	2:42	2:34	9:07	3:15	9:04	2101	2:59	15:00	3.04	0:29	19:20	16:00	808	16:00	23:5	16:02	1:14	9:08	3.00	22:0	16:00	3:52	16:0	8:08	15:5:		10:50	20:0	20.4	Ē	Samp				W	\at
		88	28	82	88	88	38	88	88	38	8	88	38	8	28	38	38	8	28	38	8	8	88	38	# 8	88	38	88	38	8	98	38	22	8 8	88	281	38	88	38		ē		\square		/w.is	
)P Igni)P Ignii)P Igni) P Ignii) P Ignii) P igni	0 P Igni)P Ignii	P q		0P Igni)P Ignii		PIgni)P Ignii		i Pigni)P Igni)P Ignil	D D Ig	0 P Igni)P Ignil	Plani	PIgni)P Ignii	i Pigni)P Ignil	D P Igni) Pigni	Plani	PIgni	Pigni	Pigni	D P Igni	0P Igni	i Pigni	z	п				otec	Γ.
		k Sikur	Sikur	Sikur	Sikur	Sikur	SIKur	Sikur	Sikur	Siku	Sikur	Sikur	Siku	Sikur	Sikur		Sikur	Sikur	sikur	Sikur	Sikur	Sikur	Sikur	Siku	Sikur	r Sikur	Sikur	Sikur	Siku	Sikur	C Sikur	Sikur	sikur	Sikur	Sikur	Sikur	Siku	Sikur	Siku	1.	ield				hlab	
		1. 11 11 11	. <u>2</u> . ±	2. 2 ± ±	. <u>2</u> . ±	⊒. ≡ ± ±	2. 2 ± ±	. <u>2</u> . ±	2. = ± ±	2. <u>2</u> . ± ±	2. ±	⊒. ≡ ± 1	2. <u>2</u> . ± ±	2. ±	2. 8 ± 5	2. 2 # *	! ⊒. ! ±	⊒. ±	2. 2 # *	! ⊒. ± ±	2. ±	2. ±	2. = # 1	2. <u>2</u> . ± ±	2. ±	2. 2 ± ±	. <u>2</u> . ± ±	2. 2 ± 1	2. <u>2</u> . ± ±	2. ±	2. 2 ± ±	. <u>2</u> . ;	2. 2 # #	. <u>2</u> . ±	2. 2 ± ±	. <u>.</u>	2. 2. ± ±	2. = ± 1	2. <u>2</u> . ± ±						s.cor	*
		5/30/2. 6/5/20	6/5/20	6/5/20	6/5/20	6/5/20	5/30/2	6/5/20	5/30/20	5/30/2	6/4/20	6/4/20	6/4/20	5/30/20	6/4/20	210010	2000	6/4/20	6/4/20	5/30/2	6/4/20	6/4/20	6/4/20	6/4/20	6/4/20	6/4/20	6/4/20	5/30/20	6/1/20	6/1/20	6/1/20	6/1/20	6/1/20	6/1/20	6/1/20	5/30/20	5/29/2	5/29/20	5/29/2	Date	ទ				3	42
		12 12	57 72	12 12	17	7	3 22	17	72 72	3 문	⊼ ₹	73 27	ತ್ರ ನ ೭ ಪ	012 n.	73	2 2	5	ਨੇ 2	73 F 2 2	3 12	173	지	7 7	3 73 7 2	친	ਨ ਨ 2 2	지	22 7	ಕನ	10 2	고 고		ਰ ਨ 2 2	2	지 지	122	32	012	32		Ŧ		\vdash			6, 5
		a 0.00	a 0.00	a 0.00	0.00	a a		0.00	a a		a 0.00	a 0.00		a 0.00	a 0.00	, 00	2.7	a 0.00		0.01	a 0.01	a 0.01	a a a	,	a 0.0	a 0.00	a 0.00	a 0.0	, a 0.01	a 0.01	a 0.0			a 0.00	a 0.00	0.00		a 0.00			ю I		\square			ń
		0.0	63 0.0)67 U.U	52 00	20 07	142 0.0	600	34 0.0	4 03 0 00	148 0.0	49 0.0	0.069	0.0	92	4		074	83	04	09 0.0	109 0.0	92 0.0	92 0.0	119 0.0	0.0 280	88	101	0.0	105 0.0	00 0H	42	195 D.U	0.0	070 0.0	523	ž ‡	554	227		•		\vdash			
		1296 0	1274 0	1203 0	0161 0	0158 0	175 0	149 0	0 660		043 0	042 0	0147 O	028 0	2 a		2	а 0	a a		025 0	0019 0	054 0	045 0	020 0	1026 0	2 D	0 0 0 0	035 0	0021 0	0 800	058 0	01810	021 0	022 0		2 Z	23	12	×	ĩ					e.
		.0213	.0218	.0220	.0214	.0215	0268	.0217	.0216	0214	.0225	.0218	.0215	.0228	.0227	2020	32	.0208	6610	0224	.0207	.0226	0213	0223	.0216	.0244	.0216	.0225	10191	.0188	0205	.0156	JUZ37	.0196	.0136	0151	055 R	E S	i a	×	2					
		0.032	0.064	0.058	0.046	0.053	0.20	0.054	0.041	0.054	0.085	0.087	0.048	0.053	0.044	0.070		0.081	0.048	0.045	0.052	0.062	0.053	0.081	0.079	0.10	0.060	0.084	0.047	0.047	0.072	0.045	0.045	0.12	0.091	0.21	0.050	0.071	0.057	×	0					
		0.85	0.70	0.78	0.77	0.86	8 9	0.92	0.95	1 1 1 1 1 1 1 1	1.32	158	1.98	1.53	1.04	5	3 Z	.83	102	100	0.87	2.83	247	1.80	2.14	199	2.25	2.56	2.79	3.13	3.54	4.98	£ 5	7.78	15.U9 14.42	17.57	21.00	23.23	26.33	×	8					
		2.99	3.19	3.32	3.42	3.57	9 4.21	3.82	3.91	4.25	4.70	5.32	8.45	10.37	9.86	0.00	5	5.74	7.23	20.06	22.94	21.60	28.25	28.05	20.20	28.77	20.76	18.40	33.14	30.66	29.95	58.04	34.60	41.07	45.29	67.66	78.95	76.69	73.61	×	Ζ.					
		nd 96	. nd 95	nd 195	. a. 895	nd 12 95 93	2 2 9 4	. nd 2 95	nd 12 95	22 22 22	nd 93	nd 12 92	2 Z 8 8	лd 88	nd 12	2 3 , 0	12	nd 93	2 3 9 9	2 R 8 7	nd 76	nd 75	8 2 89 2	2 2 2 2	nd 77.	nd 13	nd 76	nd 78	3 23 3 23	nd 66	20 BR	1 a i 3 8 i	22 82	. nd 51	nd 28	. a : ; # :	22	23	22	X	8		\vdash			
		29 0.0	99 0.0	33 0.0	72 0.0	47 0.0	38	.16 0.0	06 9	20 0.0	86 0.0	98 0.0	* * 0.0	.01 0.0	02 0.0	, 10 10	5 °	32 0.0	67 80 0.0	29 0.0	.10 0.0	47 0.0	19 0.0	803	54 0.0	.12 0.0	8 0.0	92 0.0	3 8 0.0	.13 0.0	40 0.0	99 90 90	28 00	800	10 00 10 00	54 0	• •	• •	<u> </u>	ľ.	1'		\vdash			
		043	042	042	042	041	041	040	04 f	043	041	040 0	037	1037	036	200	5	039	038	3030	028	<u>0</u>	033	034	<u>0</u>	032	032	029	027	1027	1026	08	025	021	0 6100	05	ia	đ đ	1 2	×	ņ					
		23	쾹	23	. Z	23	2 3	. Z	23	김	a	2.3	김	a	Z 3	2 3	2	a	2 3	김	. Z.	립	2 3	2 2	2	2 2	ם	23	김	a	2 3	리	2 2	. Z	.00 00	. Z i	3 3	23	김	×	Ť					
		22	. Z	2 Z	. Z	2.3	2 2	. Z	2 3	2 00	a	Z. 3	2 2	a	a 3	2 3	2	a	a 3	2 2	ם	a	a a	2 2	a	2 2	리	Z 3	2 2	Z	a 3	리	2 2	. a	2 Z	. z i	3 3	Z 3	2 2	×	Ω					
		22	a	a a	. Z	Z. 3	2 2	. Z	2.3	2 Z	a	Z. 3	2 2	a	a 3	2 3	2	a	a a	2 2	. Z.	a	2 Z	2 Z	a	2 Z	a	Z 3	2 2	a	a 3	리	2 2	a	2 Z	a 8	2 Z	Z 3	2 2	×	С,H					
		33	. Z	2 Z	. Z	2 3	2 2	. Z	23	2 2	z	23	2 2	a	a 3	2 3	2	a	2 3	김	2	2	2 Z	2 2	a	2 Z	2	23	2 2	Z	2 3	2 Z I	2 2	. Z	3 3	. Z i	3 3	Z 3	2 2	×	õ		\square			
		22	. a	22	. Z.	23	12	. Z.	2.2	12	a	22	12	2	리리	2 2	2	2	23	김	. a.	리	22	12	리	22	립	23	12	2	23	23	22	. a	22	. Z i	12	23	12	×	Ω					
		55	.ā.	5 5 5 5	. ā.	ā. 2	1 a , , ,	. <u>a</u> . ,,	ā. 2	1 a , , ,	ā.	ā. 2	1 a , ,	ā	ā. 8			ā. 2	ā. a	1 a , , ,	. ā.			1 a. , , ,		ā ā 2 2	. <u>a</u> .	ā. 2	1 a , ,	ā. i	ā ā 2 2		5 5 9 9	. ā.	5 5 5 5	. ā. i	1 a , ,	ā 2	1 a , ,		망		\vdash			
		2 2	. a.	2 2 2 2	. a. 	a a	, ,	. <u>a</u>	 	, ,	2		, ,	Э	а. э :			а э		, ,	. а. э	а. Э	 	, ,	а. Э	 		а. Э. :	, ,	2	 		 		2 2 2 2	. a. (, ,	2 3	, ,	ļ.,	Ω		\vdash			
		8 9	. а. 2	а а 8 8	. д. 2. 92	а. 23 9	22	. а. 2. 92	а. 20 9	1 A 2 2	a S	8.9	22	а 92	а. 8	9	2	a. ∞	а. 2. 9	22	. д. 192	а. С	а. 22. 9	2 2 2 2	а 92	2 2	2 2 2	а. 23 9	22	a R	a a 2 3	23	2 2	. <u>a</u> . 2	аа ∞ %	. a. (22	29	22	ľ	7		\square			
		2672012	26/2012	2672012	26/2012	2672012 2672012	26/2012	26/2012	26/2012	2572012	24/2012	24/2012	2472012	24/2012	24/2012	2102142		11/2012	2072012 2572012	25/2012	24/2012	11/2012	24/2012	23/2012	23/2012	23/2012	23/2012	23/2012	23/2012	23/2012	2372012 2372012	25/2012	23/2012	11/2012	2272012	22/2012	22/2012	22/2012	22/2012	Date	MS					
		-28.4	300	30.7	41.9	32.4	34	4.8	35.0	36.7	-37.2	47.2	36.9	-36.5	-36.5	-07.5	3	-35.B	60	36.7	-38	-36.6	37.0	2 4 6 S	-36.7	47.2	37.8	37.5	37.2	-37.1	-37.2	333	100	-38.0	38.9	8	2 2 2 2 2 2 2 2	40.0	3 43	24	5 ** 0		Ħ			
		8 5 -48	-48	00 6 -40	9 6 -48	60 0 -4 0 -	7 N	5 77 -48	9 4 48	4 9 40	7 -48	-7 o -48 o	• ~ • 48	3 -48	448	-40	5	4 -48	9 - 48 -	- 	2 -47	3 -48	48	π 12 48	6 -48	57 67 -4 68	5 57 -48	0 4 48	40	2-48	4 40	1 4 1 5 40 5	0 9 40	2 -48	3 48 48	, , ; ,	δN	on -	10		0, 5, 10		\square			
		34 -23	40	33 -24	36	33 8	267 27	35	28 2	3 28	34 -24	361	я S N	37 -24	36 -24	40 124	5	30 -24	40 č	3 5 2 23	85	42 -24	.01 -24 -24	2 56 -24	.41 -24	49 22	14 2	37 -24	3 25	51 -24	49 -22	2 89 1 2 12 1	50 39	853	87 -24 62 -24	1 #2 2 !X			+		Ω 8		\square			
		9.6	33	4.6	20	<u>5</u> 2	5 H.8	2.9	55 Ş 4	2 23	-0.6	12 0 4 4	3 22 4	2.8	11.9	63	5 7	2.8 -1	2 6	3 20 	27	2.9 -0	Ξč	5.7	4.3	3.0	1.9	0.3	227	11.9	H.5	94 4	1 00 4	7.9 -0	29 H.4 -0			<u>ن</u> ا			D N		\square			
	+	0.0	, , , ,	0.0	0.0	0,0	0	, 0	ю 9 с	0	.0	3 0 9	л 0.0	0		5	•	¥ 0	00	0).6 0	0,0			0.0	0,0	а 0,		0	0 9	ي و و		0.0	19 0.0	5 		¥8 	3 I 	ा द	ds N		\mathbb{H}			
		573	574	575	576	577	778	579	580	583	587	592	608 608	.612	605	- 040 640	30	586	594	662	658	.671	695	588	659	.630 676	662	655	.718	71	712	842	735	80	.935 881	<u>₽</u>	8	980	333	avity	ecific I					
		974 976	973	973 978	126	88	88	965	964	88	952	943 2	907 97	892	902	- ²	30	946	929 929	283	17	765	201	710	786	741	779	88	520	670	673	374	22	517	284 407	15	• •	0	• •		BTU					
																						•													•						Comments					

Appendix F Database

The Ignik Sikumi #1 2012 database contains all of the information recorded during the field trial along with corrections and calculations performed. Data sources include an on-line gas chromatograph (GC), three downhole gauges, flow meters, pumps, temperature and pressure sensors, DTS, and water production rates. Schlumberger (SLB) provided data logging for the entire test with data fed from other vendors, including Halliburton (DTS) and Expro (production, separation). All data were fed to a main data logger from the various sources (Figure 109) and recorded in a MySQL database with daily tables. Eight table types were used with variables categorized based on their function (for example, flow, temperature, pressure). The original raw data is provided in the *Raw_Database* folder.

Figure 109: Data streams and data logger used during the field trial.

Supporting documents are included to help future interpretations of the field trial. Additional documentation includes the P&IDs from EXPRO and SLB for all surface facilities. The database includes volumes for all surface lines and equipment in the injection and production streams as well as the wellbore volumes. An operations log contains notes from the well supervisor, SLB, EXPRO, well work, and the production engineers during the pilot. A master variable list identifies each data stream, including all available supplementary information (sensor type, model, calibration parameters, scaling parameters, and so on). In addition, a supporting data document highlights known issues, lists corrections made to the raw dataset, and details how various calculations were performed.

The "clean" dataset was formed using the original data streams from each vendor. Corrections to the dataset included correcting for time-stamping errors, reprocessing all of the GC data, correcting data spikes and noise (especially from the downhole gauges), and renormalizing the DTS data. Because of the large number of data points, one-minute and five-minute time-averaged datasets were created. The one-minute time-averaged data fed all injection and production calculations, which are provided with the database.

The final database is in MS SQL 2008 R2 format and includes an installer. Following installation of the database, the clean datasets and the time-averaged datasets must be restored into the database. A data extraction tool allows users to extract CSV format files of select data. In addition to using the database, all data are already available and included in both CSV and Matlab formatted files. DTS playbacks in mp4 format have been provided for the entire test at three ranges: full wellbore, 2150-2350 ft, and 2230-2280 ft.

Appendix G Operations Report

This section of the report contains a copy of the Time Log and Summary Report file that was generated for the Ignik Sikumi Well #1 during the test phase of this project.

Time Logs Date From 01/12/2012 24 hr Atter Spot Appl camp room flush insta 00:0	n To Summary Inded morni Precision ied heat to b. Wiring u as and kitch ing and tes	Dur ng PJSM Power eq warm up p alarm sy	<u>S. Depth</u> I at Ignik (uipment (2	E. Depth	Phase	Code			
11/12/2012 24 hr Atter Spot Appl camp room flush insta 00:0	Summary nded morni Precision ied heat to b. Wiring u ns and kitch ing and tes	ng PJSM Power eq warm up p alarm sy	l at Ignik (uipment (amp with	111030	CALCE:	Subcode	т	Comment
00:0	llation duct	nen. Supe sting. Line	equip. Se ystem (sm er - chlorin ed up 3rd p eting	2 gen sets t Wellhous oke detec ated wate party servi	camp pe s, 2 fuel ta se and ap tors), tele r has bee ces for pe	ersonell a anks, swit oplied hea ephones a en circulat otable wa	nd Prec. F ch shack, at to warm and comp red thru w ter and w	Powe equi up t uters ater s aste	r Electrician, Simplex Grannell. p. shed) in containment area. ree. Continued working on . Bullcooks continue to prep system, waiting 24 hrs before water. Held pre-planning Gen-set
	00:00	24.00			SURPR	FLOWT	RURD	Ρ	Attended morning PJSM at Ignik Camp with camp personell and Prec. Power Electrician, Simplex Grannell. Spot Precision Power equipment (2 gen sets, 2 fuel tanks, switch shack, equip. shed) in containment area. Applied heat to warm up equip. Set Wellhouse and applied heat to warm up tree. Continued working on camp. Wiring up alarm system (smoke detectors), telephones and computers. Bullcooks continue to prep rooms and kitchen. Super - chlorinated water has been circulated thru water system, waiting 24 hrs before flushing and testing. Lined up 3rd party services for potable water and waste water. Held pre-planning
00:0	00 00:00	0.00			SURPRI	RPEQP	PULL	Ρ	A set installation duct work meeting. 1-4-12 Pulled BPV and confirmed no VR plugs in annulus valves. Installed integral flanges and associated treated
1/13/2012									njeweny.
00:0	0 00:00	24.00	ianks, Sw	iich Shack	SURPR	FLOWT	o warm u RURD	T	All outside work ceased due to Phase weather conditions. Continued on inside camp work (fire detection system and water). Sent water samples to Lab for potable water. Install fire detection control panel.
1/14/2012 Wea	ther hold P	hase II C	Continue o	n camp in	side work	<			
00:0	00 00:00	24.00		. oump in	SURPR	FLOWT	RURD	Т	Weather day, all outside work on

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	00:00	24.00			SURPR	FLOWT	RURD	Т	Clear snow after blizzard. Set rig mats & cribbing prepping for floats. Start installing duct work on Gen Sets. Precision Power connected fuel tanks to Gen Sets, preped Gen Set and Swich Gear Shear for start up. Continued prepping camp for
01/16/2012										move in.
01/10/2012	Cloars	now from	a nad from	n hlow Sr	ot two flo	ate and r	ia mate fo	or setting (202	& N2 tanks Install platform
	inside v	vellhouse	e and inst	tall Skimp	v Panels f	or both S	SV's. Co	ontinued ho	ooku	ups for Prec. Power GenSets.
	Shut do	own all o	utside wo	rk becaus	e of Phas	e II weat	her.			
	00:00	00:00	24.00			SURPR	FLOWT	RURD	Т	Clear snow from pad from blow. Spot two floats and rig mats for setting CO2 & N2 tanks. Install platform inside wellhouse and install Skimpy Panels for both SSV's. Continued hookups for Prec. Power GenSets. Shut down all outside work because of Phase II weather.
01/17/2012										of Phase II weather.
017172012	Weathe Civil cre for cryo	er hold, 2 ew worke tanks.	5-35 MP ed on per	H winds / manent w	Phase I/II. ell head p	Continu latform a	ied workii nd hung o	ng on Hool one Skimp	k up y pa	os to Gen sets until weather hold. Innel. Spotted rig mats and floats
	00:00	00:00	24.00			SURPR	FLOWT	RURD	Т	On weather hold, Phase conditions.
										Plan to perform camp safety
01/19/2012										inspection pending weather.
	Attemp conditic 00:00	ted to rea ons. Win 00:00	ach camp Ids reduc 24.00	o mid day t ed during	for safety the night I	inspectio DTH able SURPR	n convoy to remov FLOWT	turned arc /e snow wi RURD	ith d	d at 1D pad due to poor driving lozer and loader. All outside work shut down due to
										installation completed and tested
)1/19/2012	CPAIS second tanks, 0	afety per surface CO2 tank	rformed c safety va k, GMS, L	amp safet Ive panel ine Heate	ty inspecti and contir r, and SLI	on. Cam nued wor B tool ho	ip is appr k on pern use	oved for or nanent wel	ccup II he	pancy. Civil crew Installed ad platform. Spotted SLB N2
										Page 2 of 6

	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		00:00	00:00	24.00			SURPRI	FLOWT	SFTY	P	Performed camp safety inspection mid morning with AI Bergh - Gary Gauthier CPAI safety and Keith Dukowitz Nordic camp manager. Camp is approved for occupancy. Precision power back up genset (power to block heaters on mains) went down during the blow. Back up has been taken in for servicing. Construction need to build stairs and a cat walk to fuel the Precision power tanks. Ordered out additional snow removal around precision power equipment and SLB staging sites. Two light plants and one heater down, requested service. Lynden delivered SLB equipment standing by for Peak crane. Civil crew continues to work on permanent well head platform. Second skimpy panel mounted. 3:50 pm spot crane to pic
											N2 tanks, CO2 tank, GMS, Line
	1/20/2012										Heater, and SLB tool house.
0	1/20/2012	Off load lights a site Ge	ded rema nd heat. n set #1.	aining pal Unloade	letized SL d GC, GM	B equipmo IS comput	ent from t ters, and	trailers. I Well Site	nstalled te Data Hub	mpc . In:	orary power the GMS unit for stalled exhaust louver on Well
		00:00	00:00	24.00			SURPR	FLOWT	RURD	Ρ	Phase 1 Level 1. Contacted SimOps for scaffolding crew to build stairs and catwalk to access fuel hatch during fueling of well site generators. 9:00 Held prejob safety meeting with AI Bergh CPAI safety, loader operator, SLB crews. Discussed off loading of remaining pallets from Lynden trailers, installation of well site gen set louvers. John Brooks Precision power to investigate temp power to GMS unit and SLB skid until main gen sets can be fueled. SLB crews pulled shipping plywood from GMS and removed snow from revetments around the 400 bbl upright tanks and 125 bbl Glycol tank and begin rigging up fittings. Precision power was able to run a temp power line to the GMS. The lights are on and the unit is warming up. One exhaust louver was successfully installed on Gen set #2. SLB transported the Gas Chromatograph, GMS computers, and the Well Site Data Hub to location. Phase 1 canceled at 5:30 pm Scaffold crew scheduled to walk down job site at 7:00 am.
											Page 3 of 64

Time Logs		T	-	0.0	5 0 <i>1</i>	0	0.1	0.1	-	2 1
Date	From	To	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
1/2 1/2012	Held n	re ioh sa	fetv meet	ing Unlos	ded and a	staged or	onstructio	n material	Ins	stalled exhaust louver on well
	site de	nerator ±	2. Scaff	old crew w	alked dow	n joh wil	return to	construct	stai	rs to access fuel tanks Crews
	installe	d SLB tr	eating lin	e revetme	nts. GMS	unit is w	arm, Well	head plat	orm	work ongoing.
	00:00	00:00	24.00			SURPR	FLOWT	RURD	P	06:00, held pre job safety meeting in
										conference room. DTH loader
										operator stuck behind rig move
										showed up after 9:00 with trailer of
										construction material. Unloaded and
										staged construction material.
										Installed exhaust louver on well site
										generator #2 and fuel lines to both
										generators. Civil crew also stuck
										begin working on permanent well
										bead platform. Platform required
										extensive modification due to tree
										design with double SSVs above the
										deck. Scaffold crew showed up
										~10:00 to walk down job and left.
										Hand-Y-Berm & SLB crews laid out
										treating line revetment for all SLB
										lines. Temporary gen set on GMS
										and Precision Power main generator
										block heaters failed. Gen set rigged
										down, removed and replaced. Temp
										Power to GMS back on entire unit is
										day platform work ongoing Held
										post job safety / planning meeting
										19:00.
2/2012	Held p to assi	rejob saf st in tren	ety meeti ching. in	ng. On we stalled SLI	eather hold 3 and HES	d, ambier 6 fiber op	nt temp b otic leads	elow -35. from camp	DTH to v	I loader opperated under variance well house and GMS.
	Termin	ated SLI	B leads in	camp and	at GMS.	Termina	ated HES	leads at ca	amp	·

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	00:00	24.00	2. 20041	2. 2001	SURPRI	FLOWT	RURD	P	0600 pre job safety meeting. Wind chills -50 - conducted safety assessment. 0700 HES crew on location prepping to lay fiber optic cable. 0730 ambient temp dropped to -36 all hydraulic equipment idled,
										per support groups cold weather operating policy. Canceled trenching operations regrouped and held ops meting. 0800 SLB mechanic and Precision power electrician on site moving forward with burner installation. 0900 cold weather variance signed with DTH allowing loader operations below -35F ambient. DTH dispatched with materials for insulated containment and loader mounted trenching device. 1030 -38 F ambient. HES setting up DAS DTS equipment. 1515 making up 1" jointed conduit to burry SLB and HES lines. Gouged out a 4" trench from camp to the well house. Made up 1" rigid conduit, snaked HES and SLB lines through conduit
										to well head and GMS unit, lay conduit in trench and packed ice back in the trench. Terminated SLB leads in the GMS and camp. Terminated the HES leads in camp. -42 F.
01/23/2012	Held pr from co tanks. for all S SLB los installed to test f	e job saf ontainme Watered SLB surfa st conneo d the line fire the b	ety meet int. Vehic in the treace lines a ctivity bet heater b urner but	ng. Wind o le secured ench conta and installo ween their ourner asso had issue	chills -80, d, Security ining the f ed the 150 fiber opti- embly and s with the	-51F am notified fiber optio 22 high p c line sor 1 Peak pr controlle	bient. Fo and PIR e clines to f ressure tr ne time b ecision po r.	und ATF le e-mailed. the well. C reating iror etween 11 ower hook	eak Sca Crew 1 ga 00 a ed u	on pad after truck backed away ffold crew installed stairs to fuel /s laid out blue board insulation s line from the GMS to the well. and 1200. SLB mechanic /p temporary power. Attempted
										Page 5 of 64
Time Logs	5									
------------	--	---	--	--	---	--	---	--	-------------------------------------	--
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
Date	00:00	00:00	24.00	<u>o. Depir</u>		SURPR	FLOWT	RURD	P	0600 pre job safety meeting. Wind chills -80, -51F ambient - conducted safety assessment 0844 found ATF leak on pad in front of camp. Found Peak truck # K307 with transmission leak. Truck turned off, containment pool placed under transmission and tow truck called. Security notified
										and PIR e-mailed out. 0945 scaffolding crew on location setting stairs to fuel tank. 0952 watering in the trench containing the fiber optic runs to the well. SLB crew drove to DTH to cut support blocks for treating iron. 1200 scaffold crew finished stairs and catwalk to fuel tanks. Bulk fuel truck ordered, ETA 0800 1-24 Crews laid out blue board bandation and SLB surface linea.
										and installed the 1502 high pressure treating iron gas line from the GMS to the well. SLB lost connectivity between their fiber optic line some time between 1100 and 1200. Efforts were made to reestablish connectivity through all 6 pairs but failed. HES aided by measuring the distance of the continuous fiber optic line. It appears as if the break is near the well head. SLB mechanic
0.10.10010										installed the line heat - OLD internation installed the line heater burner assembly and Peak precision power hooked up temporary power. Attempted to test fire the burner but had issues with the controller. SLB is scheduled to call burner manufacturer in the am. Temperatures continue to be very cold all outside work is very slow with warm ups.
01124/2012	Held pr forward heaters policy, succes	re job sat d. All out s to provi traction p sfully. N	fety meeti side labo de protec policy, im o succes	ing. Wind r shut dow tion from pact glove s reestabl	chills -80, vn unless the eleme es, and wh ishing con	-51F am work can nts. SLB en to go nectivity	bient. Dis be carrie safety pro to the me in the SL	cussed co d out with esented C dic to the B fiber opti	ntin an o OP crev c lir	ued cold weather and plan enclosure and use of direct fired cutting policy, foul weather v. Burner on the line heater fired nes.
										Page 6 of 64

Time Logs	5									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	00:00	24.00			SURPR	FLOWT	RURD	Т	0600 safety / ops meeting.
										Discussed continued cold weather
										and plan forward. Well site fuel tank
										prepped for fuel delivery, wind break
										set up and nut plug down. 0800 call
										from town to discuss cold weather
										down upless work can be carried out
										with an opelosure and use of direct
										fired beaters to provide protection
										from the elements. Walking traffic
										allowed between the camp and
										GMS, work allowed in the GMS, well
										house, equipment connex, and line
										heater hooch, with hand tools, no
										power tools, large hammers or saws.
										On weather hold. Called CH2Mhill
										dispatch and canceled bulk fuel
										delivery until the weather breaks.
										Non mobile fuel continues as well as
										trucking of potable and waste water.
										1328 SLB established connectivity to
										the Well Site Data Hub through the
										COP fielwork. 1517 Peak wrecker
										K307 1530 SI B safety held safety
										presentation covering COP cutting
										policy foul weather policy traction
										policy, impact gloves, and when to
										go to the medic. Burner on the line
										heater fired successfully. No
										success reestablishing connectivity
										in the SLB fiber optic lines. Water
										found in the conduit may have
125/2012					-					expanded and damaged the cable.
/25/2012	Held pr	e job sat	ety meet	ing. Wind	chills -80,	-51F am	bient. Fo	und ice fre	e c	onduit 70' back from the well
	head b	ut unable	e to move	cable. Mo	ounted Isc	o syringe	pump in	GMS. Cr	ew o	change. Extreme cold weather
	hold.		04.00				EL OVE	0	-	
	00:00	00:00	24.00			SURPR	FLOWI	RURD	Р	Held pre job safety meeting. Wind
										chills -80, -51F ambient. 0/29 found
										the well head attempting to move
										wire It windles freely but will not pull
										by hand. Took 100' of 3" soft hose to
										KIC to warm it up in the shon
										Mounted Isco syringe pump in GMS
										Precision Power electrician checked
										fluids on the temp power gen set.
										Crew change.
/26/2012	Continu	ue to wai	t on weat	her. Revi	ewed site	control/s	afe work	area with o	crew	vs. Fiber optic line pulled free in
	conduit	. Held p	re job me	eting to di	iscuss rei	nstalling o	cable ther	n pulled ac	ditio	onal cable to well head through
	new co	nduit. R	eestablis	hed conne	ctivity to	the GMS	skid thou	gh the SLI	3 fib	per optic line. Established
	connec	tivity with	n XPIO, O	Gauge #1	937.602 p	si Temp 4	41.004F,	Gauge #2	909	9.061 psi Temp 40.236F, Gauge
	#3 816	.561 psi	Temp 36	557F Wh	ile fueling	temp ge	nerator ri	ser burpec	spi	illing1/2 gal diesel into secondary
	contain	ment. Di	esel clea	ned from o	containme	ent with a	dsorbent	and bagge	ed fo	or disposal.
										Page 7 of

Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode		Comment
	00:00	00:00	24.00			SURPR	FLOWT	RURD	Ρ	0600 ops / safety meeting, new crew
										orientation. 0630 engineering ops
										call in. 0700 site control/safe work
										are review with crews. 0824 GMS
										temp gen set went down 1/2 tank of
										fuel, GMS still warm. 0900 lost three
										heaters. 0930 water truck
										attempting delivery frozen off,
										returning to shop to thaw. Fill in
										camp manager and staff alerted.
										Comm with crews to conserve water.
										1100 attached cable clamp and com
										along to SLB fiber optic bundle.
										Applied a small amount of tension
										and cable popped loose, entire string
										is moving freely. Crews in for funch
										to discuss reinstalling coblo
										replacement heaters on location
										Performed Visible fault locator (VEL)
										check of SI B cable checked ok
										Cleared trough of drifted snow and
										residual ice. Lay out replacement
										conduit. 1500 temp gen set back
										online, water delivered to camp.
										1530 pulled additional cable to well
										head trough new conduit. 1545 new
										fiber pulled to GMS and well house.
										Checked SLB with VFL, checked ok.
										Pulled HES line into well house and
										SLB cable into GMS break for warm
										up. Spliced connectors onto the end
										of SLB fiber. 1900 connectivity to
										the GMS skid though the SLB fiber
										optic line. Temp gen set to GMS
										back down. Called electrician to
										replace GMS generator. No spare
										gen set at this time. Bringing new
										alternator. Established connectivity
										With XPIO, Gauge #1 937.602 psi
										nei Temp 40.226E Course #2
										816 561 nei Temp 26 557E 2100
										electrician on site fueler on site
										While fueling temp generator riser
										burned spilling 1/2 gal diesel into
										secondary containment Diesel
										cleaned from containment with
										adsorbent and bagged for disposal.
										Well Supt, notified, security notified.
										PIR emailed.
/27/2012				DTO						
	HES ad	cquiring o	data with	DIS and	DAS. Opt	Modified	stablishe	d conectio	n fre	om GMS through Well Site data
		eting wit	berver an	u transfér Hill fuelers	s Filled to	mp den s	et with pr	i power ter bissues	np (gen set luer ill riser. Had safety /
	opo me	isting wit		1001010		p goir c	or manife			

Time Logs	6									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
Date	From 00:00	To 00:00	Dur 24.00	S. Depth	E. Depth	Phase SURPR	Code FLOWT SV with P	Subcode RURD	T P	Comment 0600 ops / safety meeting, new crew orientation. 0630 engineering ops call in. Water truck and fuel truck on location. Filling camp and non mobile equipment then bulk generator fuel tank. Additional safety/ spill discussion outlining fill procedure and spill mitigations regarding temp generator and bulk well site fuel tank. 0900 HES at well head terminating DTS and DAS lines. Optimation established connectivity from GMS through Well Site Data Hub (WSDH) to SLB interact server in Sedalia. Precision power on location, installed shorter fuel riser ~ 4", stood by for fueling procedure, flagged and attached long fuel riser to generator for reinstallation before temp gen set is moved. Gen set fueled with no issues, elevated the front end, installed 4" riser. Discussed fueling the generator bulk tank. This is not the bulk hose, they have no connection to dry lock. Abort attempt until proper hose with dry lock can be used. Held safety ops meeting with CH2M Hill fuelers regarding 5000 gal bulk tanks fill procedure. 2" dry lock male to be installed on ULSD generator tank. 3" male dry lock to be installed on LEPD tank for line heater. Small fuel truck to be used for filling camp, non mobile equipment, and well site generators. Large bulk truck will be used to fill SLB line heater. 1425 HES terminating their fiber optic cable at the camp. 1500 acquiring DAS data. 1600 acquiring DTS data. 1800 SLB crew performed walk around. Temp GMS gen set still operating. Rigged iron from GMS to edge of e. Hooched and heated main
	power s	use on fi	ura side â			10 125 DI	UI LATIK ON		sid	e. Hooched and heated main
										Page 9 of 64

Date From To Dur S. Depth E. Depth Phase Code Subcode T Comment 00:00 00:00 24.00 SURPRI FLOWT RURD P 0600 ops / safety meeting. 0630 engineering ops call in. Phase 1 driving conditions due to slick roads, drifting snow, and lack of maintanance.	
00:00 00:00 24.00 SURPRI FLOWT RURD P 0600 ops / safety meeting. 0630 engineering ops call in. Phase 1 driving conditions due to slick roads, drifting snow, and lack of maintanance. Schoduled Down Hole	
Diagnostics (DHD) crew to perform MITT / MITIA on 1/22/12. Contacted valve shop re service tree valves. Discussion over wind chill as it relates to equipment. Scheduled to service tree as soon as reasonably possible. Lost 3 heaters during the night. 0900 day mechanic on location to start loader. Requested Peak Precision power bring grinder and ground plates for bonding. 1320 loader up and running waiting on DT operator. 1400 valve crew on location to service tree. 1420 loader operator on location spotting power cables. 1530 valve crew serviced tree valves and filled flow back SSV with hydraulic fluid. Attempted to fill injection side SSV with hydraulic fluid, exterior mounted dump valve failed and was leaking by to dump reservoir. Rigged iron from GMS to edge of well house on fluid side and from well house to 125 bbl tank on flow back side. Hooched and heater main power spools. Loader operato Stopped loader, attached drip pan te Stopped loader, attached drip pan te loader with sash cord and returned	s, le d 20 TH er / l o d ed or
01/29/2012 Pulled wire to all SLB equipment, ongoing. Lay out and rigged up hard hose, ongoing. Performed MIT-T - Passed, MIT-IA, passed. IA shows communication with the chemical injection line. Drift well to 3.58" to 2350'	0 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	т	Comment
	00:00	00:00	24.00			SURPR	FLOWT	RURD		0600 ops / safety meeting. 0630
										engineering ops call in. 0800 DHD
										on location, held pre job, issues with
										wellbore sync, reviewed well bore
										schematic and procedure with
										crew.0926 DTH on location delivering
										cut plywood for revetment base.
										Peak Precision power on location
										running small gauge wire. 0930 DTH
										update on loader approximately 1 hr
										out. 1030 DHD on location to
										perform MITT / MITIA. Fluid levels at
										surface, 1/1/O = 0/0/40 CI=0 Heater
										=0 Pumped IA to 400 and tubing to
										3000 psi. Start 1/1/0 = 3000/440/40
										CI = 420, Heater 510. 15 min
										1/1/O = 2900/400/40 C1 = 445 Heater
										CI=440 Heater 400 45 min T/I/O =
										2850/400/40 CI=325 Heater = 390
										Tubing passed, Bleed CI line, IA
										tracked, Bleed Tubing, MITIA initial
										T/I/O = 600/75/40/ CI = 0 Heater =
										50. Start T/I/O = 100/3000/40 CI
										2950 Heater = 2950. 15 min T/I/O =
										1050/2800/40 CI=2800 Heater=
										2810. Bumped pressure, T/I/O =
										1100/3000/40 CI=3000 Heater=
										3000. 15 min T/I/O= 1100/2960/40
										CI=2960 Heater = 2950. 30 min T/I/O
										= 1100/2950/40 CI=2940 Heater =
										2950 Passes IA to T but CI in
										line T/I/O 1080/2525/40 CI=2500
										Heater = 2500 Bleed Ci line second
										time T/I/O 980/1950/40 CI=1925
										Heater 1960 Shut down stung into
										test port with test tool, void at 0 psi.
										clean test fluid. Tried to bleed Cl
										again will not bleed down, frozen line
										at bleed tank. Thaw lines and pump
										10 gal diesel down Cl line. Rig down
										DHD. Run power lines to all
										electrical. SLB equipment and begin
										to terminate lines. Lay hard hose
										from 125 bbl tank to GMS continue
										to build insulated boxes. Slick line
										on location, RU, drift W 3.58" to
01/30/2012					L					2000 KDIVIO
01100/2012	Temps	dropped	to -40 F	Filled we	ell site aen	erator ta	nk. Instal	led discha	rae I	noses from GMS to SLB line
	heater	and GMS	S to 125 b	obl tank. S	Staged tre	e iron in v	well house	e. Termina	ted	GMS power lead at switch
	shack a	and both	leads of	SLB conn	ex.					
										Page 11 of 64

Time Logs									_	
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	00:00	24.00			SURPR	FLOWT	RURD	Ρ	0600 ops / safety meeting. 0630
										engineering ops call in. 0700 walked
										through possible wellview reporting
										issues with support Can't find a
										problem Note some time log
										entries on second page of report
										because they are too long and not
										broken out 0745-355 winds calm
										0859 cold weather clast 265 cll
										budroulie driven equipment need
										Supt verience to exercise 0015
										Supt variance to operate. 0915
										alerted that the camp has no water
										service. Water back up, then down,
										nen up again. Fueleo the well site
										Genetry ated and installad all
										Constructed and installed all
										discharge hose from SLB line heater
										to GMS and GMS to 125 bbl open
										top tank. Valves and T's placed to
										tie into Expro treating lines once on
										location. Heated all high pressure
										valves on SLB heater, shut in
										bypass, opened suction and
										discharge valves. Staged tree iron in
										well house. 1245 -40 F ambient
										crews traveled to KOC for CPA Supt
										orientation meeting and to construct
										hard hoses in KOC shop. Precision
										power terminated GMS power leads
										at switch shack and both leads of
0.1.00015										SLB connex.
0 112012	Unload dilivery Inter-Ac	ed 3700 of 4000 ct chann	gals. US gals N2 a els for da	D fuel for and loaded ta transfer	r Glycol H d into N2 t	eater. Co anks H	ntinue bu ardwire C	ilding blue O2 tank e	boa lect	ard boxes for hoses. Accepted rical plug. Optimation worked on
	00:00	12:00	12.00			SURPR	FLOWT	OTHR	Т	Cold weather alert -36F all hydraulic
										driven equipment need Supt variance
										to operate.Current conditions -44F
										Winds SW 6 mph. Unloaded 3700
										gals. USLD fuel for Glycol Heater.
										Continue building blue board boxes
										for hoses.
	12:00	00:00	12.00			SURPR	FLOWT	RURD	Ρ	Accepted dilivery of 4000 gals N2
										and loaded into N2 tanks. Discovered
										that CO2 tank plug is incorrect.
										Made dicission to hardwire CO2 tank
										(original plan). Optimazation worked
										on Inter-Act straightening out
										channels.
01/2012										
	Attend disconr	morning nects for	PJSM. C transfer h	ontinue S Iouse.	LB hookup	o as muc	h as poss	ible under	we	ather conditions. Peak ordered
	00:00	12:00	12.00			SURPR	FLOWT	OTHR	Т	Cold weather alert -36F all hydraulic
										driven equipment need Supt variance
										to operate.Current conditions @
										0600 hrs -46F Winds SW 6 mph,
5					3	0				temps dropped to -51 F.

	Time Logs										
1	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
ſ		12:00	00:00	12.00			SURPR	FLOWT	OTHR	Ρ	Continued blue board construction.
											Change out day for SLB. Built
											blanking caps for PT lines w/N2.
											Hang fall retractable harness on line
											heater. Put double thread 206 on
											suction and discharge of 125 bbl
											tank for Expro hookup. Worked on
											connex. Work on N2 guages. Made
											supply and return hoses for N2 and
											CO2. Peak ordered disconnects for
											transfer house. Waiting on parts for
											finishing electrical.
ſ)2/02/2012										
		Electric	ians pull	ed wire, i	relocate ar	nd reconne	ect transf	ormer. G	round all e	quip	oment present on location . SLB
ŀ		continu	ed blue	12 00	kes. Press	ure test a	LINES. P	ressure te	est all lines	an	d work on blue board.
		00:00	12:00	12.00			SURPR	FLOWI	RURD	Р	Temps warmed up this morning -29
											F. Resumed work. Electricians
											pulled out 500 MCM cable from GMS
											skiu. Kelocaated ou amp tuse
											tool house. Beconnect heaters to 50
											amp disconnect to SLP test house
											nower feeder. Eventhing on site
											except Expro equipment (not arrived)
											has been arounded. Mounted 100
											amp disconnect to CO2 tank Parts
											have been Goldstreeked today, ETA
											= Friday
ŀ		12.00	00.00	12 00			SURPR	FLOWT	RURD	Р	SLB pressure test hoses & secure
		.2.00	00.00	.2.00							to hard line. Work on blue board
											Expro crew arrived set in on
											Kuparuk Orientation and issued
											badges.
Ō	2/03/2012										
		Filled li	ne heate	r w/Trithe	erm 42 bbl	s. Tested	chem. inj	. line to 1	100 psi (ic	e pl	lug?). Performed PPOPT test on
		uper se	eal seal c	f W.H. P	ressure tes	st hoses w	ith air. Ir	stalled kr	nife for cor	inex	heat and CO2 tank.
											Page 13 of 64
											Faye 13 01 64

	Time Logs										
1	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	2	00:00	12:00	12.00			SURPR	FLOWT	RURD	Ρ	PJSM & opts meeting w/ SLB &
											crientations site control Kuparuk
											and the 2012 Denali Ascent Load
											SI B line heater w/42 bbls TriTherm
											Performed PPPOT Test on top seal
											of wellhead. Set rack of N2 bottles
											near wellhouse. Installed a high
											pressure hose from the IA to the
											open top tank w/needle valves to
											control bleed to the bleed tank.
											Install high pressure hose from the
											N2 bottles to the Chemical Injection
											bottles to the needle value on the
											chem ini line (1100 psi bottle
											pressure) Open needle valve to the
											chem inj. line and it pressured up
											immediately to 1100 psi. Held
											pressure for 10 min. No movement.
											Closed needle valve, bled press from
											hoses and disconneted. Bled
											from 1100 psi to 0. Closed peodle
											valves RD
F		12:00	00:00	12.00			SURPR	FLOWT	OTHR	Р	Pressure test discharge hoses.
											Attempt to run line heater and adjust
											burners but unable to get fuel from
											Precision fuel tanks. Applied heater
											to suction lines. Hooked up pressure
											sensor cords from GMS to tanks.
											Pressure test hoses from N2 & CO2
											CO2 tank Knife switch for the
											connex heat installed
0	2/04/2012									-	
		Finish E	Blue boa	rd, work	on Fuel Ta	anks, dial	in Heate	r, install S	SV Contro	ol in	GMS, mounted all disconnet &
┝		wired, t	erminate	to GMS	& bring G	en on line). SURPRI	FLOW/T	RURD	Р	DISM w/ both crows (SLD & Evera)
		00.00	12.00	12.00			SORFIC				SI B clear fuel lines and get fuel
											flowing from tank to line heater and
L											generators. Start up line heater and
L											adjust burner. Install SSV control in
L											opts cab of GMS. Installed battery
L											covers on valves on N2 & CO2 tanks
											& electric cords. Finished blue board
┝		12:00	00:00	12.00			SURPR	FLOWT	RURD	Р	Mounted and wired 4 disconnects
										255	Terminate to GMS and bring
											Generators on line. Expro cleaning
											out tank farm containment removing
											snow and prepping for arrival of
L											equipment.
Γ											Page 14 of 64

	Time Logs										
1	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
1	02/05/2012	24 hr Su	mmary		0. 0000						
		Receive	ed and u	nloaded	Atigun Hou	ise and tv	vo other l	oads for	Expro.		
		Ria up	to well fo	or warmin	a ons. Do	uble chec	k that we	are able	to pump c	lowr	the flatpack, or the annulus,
		Alsove	rified we	can circi	ilate as pla	anned			to benub e		
		DT Lar	dline for	Glucol cu	indic do pic	annea.					
		Mine in	AC to C	O2 Tenk	Test Der	al.					
		vvire m	ACIOC	Oz Tarik,	Test, Pea	aK					
		CO2 18	ank Pow	er	12						
		Umbilic	al for CO	02 Transp	port						
		Pressu	re test H	P Glycol	lines.						
		Ensure	we have	e valves t	o circulate	through t	he heatir	ig coils.			
l		Displac	e Diesel	into 125	BBL Tank						
		00:00	12:00	12.00			SURPR	FLOWT	OTHR	Ρ	Received and unloaded Atigun House
											and two other loads for Expro.
											Rig up to well for warming ops.
											Double check that we are able to
											nump down the flatnack or the
											pullip down the hatpack, of the
											annulus. Also verified we can
											circulate as planned.
											PT Hardline for Glycol system
											Wire in AC to CO2 Tank, Test¿ Peak
											CO2 Tank Power
											Umbilical for CO2 Transport
İ		12:00	00:00	12.00			SURPR	FLOWT	OTHR	Р	Pressure test HP Glycol lines.
		83 SA	8/8 19/24	0.525					S 1		Ensure we have valves to circulate
											through the heating coils
											Disalase Disadists 405 DDL Tank
ł	00/06/0010					_					Displace Diesel Into 125 BBL Tank
	J2/06/2012										r
		Iranste	er load of	CO2 to t	ank. Conti	nue to cir	culate wa	arming we	ellbore. I ro	buble	e shoot main generator, and
ļ		connec	t up Exp	ro. Expro	o continue	to rig up.					1
		00:00	12:00	12.00			SURPR	FLOWT	OTHR	Р	Continue circulating Glycol/water
											adjusting the circulation temps &
											rate through the line heater to
											manage the wellbore temperature.
											Brought temps up at 60' to 32 E_61E
											at the turn around 1968'
ŀ	s	12.00	19.00	7.00			SURPRI	FLOWT	OTHR	Р	Expre continue rig up and waiting
		12.00	10.00	1.00				LOWI	OTTIK		delivery of last two loads of a min
											delivery of last two loads of equip.
											CO2 arrived, purged tank and loaded
											22 tons into our tank. PP electrician
											trouble shoot generator and hard wire
											power from the gen-set to the heater
											for the CO2.
ŀ		19:00	00:00	5.00			SURPR	FLOWT	OTHR	Т	Ceased operations to work on CO2
		ansone State State		20000333222						28/50	tank Wait on CO2 transport to return
											and ompty tank. Contexted PD L 21/
											and empty tank. Contacted BP Lav
											Pad Operator and advised of small
	0/07/0010										CO2 leak and will keep him advised.
	52/07/2012										
		Install g	guard rai	is around	CO2 tank	upwind.	Wait on A	Air Liq. CO	02 transpo	rt to	come back and empty CO2
ļ		tank.		01.05					0.7110		
		00:00	00:00	24.00			SURPR	FLOWT	OTHR	Т	Install guard rails around CO2 tank
											upwind. Wait on Air Liq. CO2
											transport to come back and empty
											CO2 tank. Monitor and keep
											prossure on CO2 tank above 200 psi
											All work on pad on hold until problem
											is remedied
3									I		
											Page 15 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
02/08/2012	24 hr Su	mmary								
	Offload Hootch	over CC	onto truc 02 tank to	k. Depress keep war	surized ta m. Expro	nk. Repa cont'd ric	ired tank. up. Elec	Started fill trician trou	ling ble :	CO2 tankw/N2 for PT Built shooting generator.
	00:00	12:00	12.00			SURPR	FLOWT	OTHR	P	0300 Air Liquide CO2 truck arrived on location. Off load CO2 from tank to truck. Depressurize CO2 storage tank. Inspected tank in area of leak and found 1 1/2" nipple not screwed into coupling tight enough and nipple was broken in the thread section. Chased threads on collar, replaced 1 1/2' nipple, secured all fittings with proper torque.
00/00/2012	12:00	00:00	12.00			SURPR	FLOWT	RURD	P	Re-start circulating Glycol, warming up wellbore. Start filling CO2 tank with N2 for pressure test. Sent CO2 truck to KIC shop to warm up. Built a hootch over the CO2 tank and applied heat to keep tank temp above 0 °F. Expro continued rig up. Electrician trouble shooting generator problem. Rig up prep for Coil Tubing.
02/09/2012	Continu shoot ti	ue warmi he Prima	ing well b arv Gener	ore. Pluml ator.	b GC unit.	Termina	te the ele	ectrical on t	the (GC unit. Continue to trouble
	00:00	12:00	12.00			SURPR	FLOWT	OTHR	Ρ	Continue pumping glycol warm the well bore. Plumb in the GC unit and terminate the electrical.
	12:00	00:00	12.00			SURPR	FLOWT	OTHR	Ρ	Precision Power (Peak) continue to trouble shoot the Primary Generator. Expro continue rigging up for flowback. 12:00 Reversed Glycol flow to down the annulus and return up the Flat pack. Shut down heating of well bore, temps were over 40°F thru-out the annulus.
02/10/2012	Increat		nk Trouk	ala abaat (Concrator	CT alog	n out of u	voll boro C		et goor box. Stort repair
~	Inspect	07:00			Serierator					
	55.50	57.00	1.00							PUMPERS, LRS, CTS, WELL ENGINEER, WELL SITE SUPERVISOR. COMPLETE RIGGING UP CT, LRS, N2 UNIT AND GMS SKID. PRE- JOB ON PT. PT HARDLINE AND LUBRICATOR WITH LRS TO 350/4000 PSI. PT N2 LINES AND GMS UNIT WITH N2 TO 500/3800 PSI.
	07:00	09:00	2.00			SURPR	FLOWT	OTHR	Р	DISPLACE CT WITH 30 BBLS, 104 DEGREE SEAWATER. MU SOL ONLINE FOR 8 BBLS 1.1 BPM CIRC PRESS = 3000 PSI.
	09:00	09:30	0.50			SURPR	FLOWT	OTHR	Ρ	OPEN WELL. ZERO AT TBG HANGER, PUH TO BUMP AT STRIPPER. RIH PUMPING AT 1 BPM. CIRC PRESS = 2750 PSI. MU-SOL AT NOZZLE AT 2000 FEET.
										Dana 46 of 64
										Page 16 of 64

Ti	me Logs										
Da	ate	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		09:30	10:15	0.75			SURPR	FLOWT	OTHR	Ρ	INCREASE RATE TO 1.2 BPM PUH AT 60 FT/MIN TAG STRIPPER.
		10:15	11:00	0.75			SURPR	FLOWT	OTHR	Ρ	ONLINE WITH SEA WATER RIH TO 2039' CTMD COLD WATER ONLINE AT 140.7 MM TOT. CIRC PRESS = 3850 PSI. WAIT AT 2039' FOR COLD WATER TO EXIT NOZZLE.
		11:00	11:30	0.50			SURPR	FLOWT	OTHR	Р	RIH TO 2139' AT 30 FPM PER K.L.M. WAIT AND MONITOR TEMPERATURES.
		11:30	11:45	0.25			SURPR	FLOWT	OTHR	Ρ	DECREASE RATE TO .8 BPM CIRC PRESS = 2037 PSI. DECREASE RATE TO .5 BPM. CIRC PRESS = 1116 PSI.
		11:45	12:45	1.00			SURPRI	FLOWT	OTHR	Ρ	LINE UP SLB N2 DOWN THE CT TAKING RETURNS UP THE CT ANN. AT 350 SCF. RIH AT 30 FPM. TAG AT 2353.6' PUH 10 FEET AND WAIT ON N2 TO EXIT NOZZLE. PUH DISPLACING H2O FROM TBG AT 35 FPM.
		12:45	14:15	1.50			SURPRI	FLOWT	OTHR	Т	LOST ALL HYDRAULIC PRESSURE TO UNIT.CLOSED PIPE RAMS. AND MANUALLY LOCKED. INCREASED N2 TO 1500 SCF BLOW DOWN CT AND CT ANNULUS.MECHANIC ON LOCATION. DIANOSED PROBLEM UNIT SHUT DOWN PENDING REPAIRS.
		14:15	00:00	9.75			SURPR	FLOWT	OTHR	Т	Expro continue rig up 90% complete. SLB work on GC w/Keith. Prec. Power trouble shoot Generator. Alaska State Boiler & Vessel Inspector on location and inspected SLB's CO2 Tank with no problems.
02/ [,]	11/2012	Finishe	d repairs	s on gearl	box of Coil	I Tubing U	Init. Com	pleted we	ellbore cle	an oi	ut. Purge coil tubing with
		00:00	05:00	2.50	tabing w/		SURPR	FLOWT	RURD	T	Precision Power Electrician waiting on Cummins Technician and parts to repair Primary Generator. SLB repair software delay. Practice, set up for testing. flowed mixed gas out Bruce valve w/tracer, tested with GC. Opened CO2 tank to make sure lines are clear. Expro and Scaffolding crew constructed Hootch over end of Atigun Building. Waiting on crane for setting up flare and adjusting upright tanks. Will share crane with perforators.
		05:00	08:30	3.50			SURPR	FLOWT	OTHR	ſ	WAIT FOR MECHANICS TO COMPLETE REPAIRS TO UNIT.
											Page 17 of 64

									_	
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	08:30	09:00	0.50			SURPR	FLOWT	OTHR	P	PJSM AND OPS MEETING,
										RIH SPEEDS TO FUNCTION
										COOLING DOWN RIH TAG PO
										BUSHING CORRECT DEPTH TO
										2371', PUH TO 2361'
	09:00	09:45	0.75			SURPR	FLOWT	OTHR	Ρ	PT N2 PUMP TO 500/4000
										POUNDS. ONLINE N2 DOWN CT AT
										500 SCF. INCREASE RATE TO
										1500 SCF.
	09:45	10:45	1.00			SURPR	FLOWT	OTHR	Ρ	WHP = 150 PSI PUH AT 15 FT/MIN.
										CIRC PRESS = 1475 PSI. PARK
										CT AT 1994' CIRCULATE N2 DOWN
										THE CT AND UP THE CT ANN.
	10:45	12:00	1.25			SURPR	FLOWT	OTHR	Ρ	SHUT DOWN N2, LINE UP TO
										REVERSE CIRC DOWN THE CT
										ANN AND UP THE CT. RIH TAG AT
										2371' REVERSE CIRCULATE.
										WATER AT SURFACE H/L AT
										TANKS FREEZING HOOKED UP
										HEATERS HAD METH.
										DELIVERED. SLIPSTREAM DOWN
							_			STREAM OF CHOKE .
	12:00	14:30	2.50			SURPR	FLOWT	OTHR	Р	POOH TO SURFACE BLEEDING
										DOWN WELLHEAD AND CT. H/L
										CONTINUING TO FREEZE OFF.
										WORK TO BLEED DOWN. CT
-	14.20	16.20	2.00		-	SUPPP	EL OW/T	ОТНР	D	PROZEN.
	14.30	10.30	2.00			JURPR	LOWI	UIIK	L L	
										2200 DEL DRESS PROVE OVED
										TO 1000 PSI PRESS INCREASED
										TO 2100 PSI BROKE OVER TO
										1400 PSI PRESSURE
										INCREASED TO 2400 PSI
	16:30	17:45	1.25			SURPR	FLOWT	OTHR	Р	PRESS, BROKE OVER, GETTING
		2000000120770	100.000						200	N2 BACK AT TANKS.
	17:45	18:15	0.50			SURPR	FLOWT	OTHR	Ρ	PURGE CT. 750 SCF INCREASE
										RATE TO 1000 SCF
	18:15	19:00	0.75			SURPR	FLOWT	OTHR	Ρ	CONTINUE PURGING CT CIRC =
										1230 PSI. SHUT DOWN N2 FOR
										PRE JOB
	19:00	19:45	0.75			SURPR	FLOWT	SFTY	Ρ	PJSM TO PUMP N2/CO2 BLEND.
										ON LINE N2 DOWN THE CT AT MIN
										RATE RIH TAG AT 2364' PU TO
										2360'
	19:45	20:15	0.50			SURPR	FLOWT	OTHR	Ρ	ONLINE WITH N2/CO2 DOWN THE
										COIL WHP = 500 PSI. DHP AT 2292'
										MD = 555 PSI. RATE = 220 KG/HR
	20:15	20:45	0.50			SURPR	FLOWT	OTHR	Ρ	WHP = 540 PSI, DHP = 560 PSI,
										RATE = 220 KG/HR TRACER GAS
										STILL MONITORING LOW.
				×	XC.			7		

Time Logs	S									
Date	From	To	Dur	S. Depth	E. Depth	Phase	Code	Subcode	T	Comment
	20:45	21:15	0.50			SURPR	FLOWT	PULL	Р	POOH AT 75 FPM RATE = 220 KG/HR, BHP = 565 PSI, WHP = 540 PSI.
	21:15	22:15	1.00			SURPR	FLOWT	OTHR	Ρ	ON SURFACE CLOSE IN CHOKE. INCREASE WHP TO 600 PSI. SHUT IN SWAB. ONLINE WITH N2
0	22:15	00:00	1.75			SURPR	FLOWT	RURD	Ρ	RDMO LOCATION STAGE ON PAD
02/12/2012	MIRU E Perfora	E-line an ite.	d crane.	Run tie-in	Log & Map	o cables.	Adjust B	HP. MU P	erfor	ating assy. RIH and Tie-in
	00:00	04:00	4.00			SURPR	FLOWT	RURD	Ρ	SLB. Bled down CO2 and N2 tanks. Found and repaired leak in the Tracer line. Continued rig up of hoses for Heater string for the upright tanks. BHP = 625 psi.
	04:00	08:30	4.50			SURPR	FLOWT	SFTY	Ρ	Depart Deadhorse WL shop to Gun Shop and secure 2 ea. 30' guns.Travel to Ignik Sikumi.Arrive on location and obtain clearance to access Ignik Sikumi Pad. Meet SPOC. Tailgate PJSMN and wait on final ramoval of coil tubing set-up equipment. Spot up e-line unit and spot-up third party crane.
	08:30	13:30	5.00			SURPR	FLOWT	PULD	Ρ	Make up lubricator; test lift to confirm crane and grease hoses will reach. Finish picking up pressure equipment. Make up tools (completion mapper, WPPT and Gyrodata gyro tool) and perform tool checks. Move to well. Stab on well and line up for pressure testing using field triplex and diesel. PT 500-psi low: 1400-psi high.
	13:30	15:00	1.50			SURPR	FLOWT		Ρ	Bleed/blow down. Break off stack at quick connect. Stab off at quick connect and pump out all excess PT fluid below pump in sub and above swab valve
	15:00	22:30	7.50			SURPR	FLOWT		Ρ	Open well and RIH WPPT with gyro. Performed completion mapping to 2350' using completion mapper with WPPT and Gyrodata tools. Determined clockwise tool spin (both RIH & PUH) at one full rotation per approximately 210' travelled or 1.7-deg/ft. Confirmed good signature from metal blast protectors on cable outside tubing, but rotation change from centralizer drift requires additional interpretation/investigation.
	22:30	00:00	1.50			SURPR	FLOWT		Ρ	POOH and rig back for night.
02/13/2012	Continu	ued com	pletion m	apping log	ging to co	nfirm too	lface orie	ntation for	r Per	forating.
16	1									-
										Dana 40 -60
										Page 19 of 6

Time Logs	i									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	12:00	12.00			SURPR	EVALWE	ELOG	Ρ	Continue completion mapping logging to confirm toolface orientation
										for perforating.
	12:00	00:00	12.00			SURPR	FLOWT	PULD	Ρ	Change out AES crane and replaced
										w/Peak crane for possible 24 hr
										coverage. Used AES crane for
										setting up flare stack and putting
										containment around truck loading
										area.
02/14/2012	Added control	30' secti module	on to crar and starte	ne to lubrio ed same.	cate long Pressure	perforatin tested SI	ig tool stri LB GMS t	ing. Repla o 2000 ps	iced i and	primary well site generator d loaded tubing with traced 77%
	NZ : 23	12.00	12 00 ps	il.	(SURPR	FLOWT	OTHR	Р	Changed out at E-wing and drove to
	00.00	12.00	12.00				LOWI	Onne		location Peak crane crew added a
										30' extension section of lattice.
	12:00	00:00	12.00		-	SURPR	FLOWT	OTHR	Т	Peak Precision Power on site with
										Cummins mechanic to change out
										the engine control module of the
										primary well site generator.
										Generator successfully started and
										20:40 SLB E-line arrived on location
										performed safety / SimOps meeting.
										E-line crew MIRU and surface tested
										tools. 21:00 performed pre job
										safety and SimOps meeting with
										SLB wells services crew. Pressure
										tested SLB GMS and treating iron to
										the wing valve to 2020 psi. Walked
										pressure up to 1100 psi shut down
										and walked treating lines. Pressured
										valve to 2020 psi and shut in Test
										good. Bled tubing to 1000 psi.
										21:30 lined up to the tubing and
										began to load well with mixture of
										traced 77% N2 : 23%CO2. 22:37
										slowed rate to 200 kg/ hr @ 1403
										psi. 22:45 down on the pump T =
2/15/2012								2		1425 psi.
2/10/2012	Perfora	ated 2243	3'-2273' w	rith 2.88" F	J Omega	gun load	ded 2 SPI	F 0/180 ph	ase	d. Shots oriented 90 deg from
	blast pr	rotectors	. Establis	hed injecti	ion of SF6	traced g	as mixtur	e 77% N2	:23%	6CO2 into zone.
	00:00	00:30	0.50			SURPR	PERF	PERF	Ρ	E-line PT'd lubricator to 3000 psi
	00:30	02:30	2.00			SURPR	PERF	PERF	Р	Bled and drained lubricator. Re shot
										through tools to confirm
										communication. Pick up perf guns.
										Perforating charges 2- 7/8" OD
										Power Jet Omega, 2906, 0&180
										phase, 2 spf.
										Page 20 of

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	02:30	05:00	2.50		s	SURPRI	PERF	PERF	Ρ	RIH tied in and oriented guns in preparation to fire. Encountered electrical issue with GMS unit. N2 soft start relay is tripping. Replacement parts located and Peak electrician dispatched from Deadhorse.
	05:00	08:00	3.00		s	SURPR	PERF	PERF	Т	Wait on electrician. 0700 electrician on pad with replacement parts. 0755 Soft start repaired pumps back on line.
	08:00	08:30	0.50			SURPRI	PERF	PERF	P	0803 Come on line with SF6 traced N2:CO2 blend venting out the Bruce valve 2" valve closed to well. Tubing pressure 1342 psi at the second gauge. 0815 fired guns, indication of fire noted. CCL to top shot 25.8' CCL stop depth 2217.2' Shot 2243-2273' with 2.88" PJ Omega gun loaded 2 SPF 0/180 phased. Shots oriented 90 deg from blast protectors. Open 2" to well close Bruce valve. E-Line pulling out of hole.
	08:30	08:45	0.25		S	SURPR	CHEMTI	OTHR	Ρ	Down on pumps. Shut in pressure
	08:45	09:45	1.00		S	SURPRI	CHEMTI	OPNW	Ρ	Observe pressure fall off to 1351 adn 43 F at gauge #2. WHP 1110 psi. SLB E-line rigged off the well. All shots fired. Released crew.
	09:45	10:45	1.00		S	SURPR	CHEMTI	OPNW	Ρ	Start pumping 1354 psi and 43 F, mass flow 200 Kg/Hr (1 Kg/hr is approx 710 SCF/day). Shut down pumps at 1552 psi and 43 F at second gauge. Monitor pressure and term @ 10:45 1507 psi and 42F
	10:45	11:15	0.50		Ş	SURPR	CHEMTI	OTHR	Ρ	Start pumping at 200 kg/hr with 2" open. At 1598 psi stop pumping 2" closed
72	11:15	14:00	2.75		5	SURPR	CHEMTI	OTHR	Ρ	Monitor pressure fall off to 1391 psi
	14:00	16:00	2.00		S	SURPRI	CHEMTI	OTHR	Ρ	start pumping at 50 Kg/hr 1383 psi at gauge # 2. Gauge #2 pressure slowly increasing to 1417 psi. at 20:00
	16:00	00:00	8.00		Ş	SURPR	CHEMTI	OTHR	Ρ	Continue to inject mixed traced gas reducing rate to maintain 1420 psi at gauge #2
02/16/2012	Set sar	nd screer	n and loa	ded Nitroge to same.	en storage	tank # 2	2 with 190	00 gal prod	luct.	Started primary wellsite
	00:00	05:30	5.50		S	SURPR	CHEMTI	OTHR	Ρ	Pumping traced, mixed N2:CO2 into formation
	05:30	07:00	1.50		S	SURPR	CHEMTI	OTHR	Ρ	SLB / Expro morning Safety / Ops meeting and Morning call in
										Page 21 of 64

	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		07:00	10:30	3.50			SURPR	CHEMTI	OTHR	Ρ	Slickline on location with sand
											screen assembly. Hold pre job with
											crew and third party crane operator.
											Walk down well head, SLB & Expro
											equipment with HES slickline crew.
											Valve crew on location, service swab
											and injection side wing. Slickline
											assembling lubricator and screen.
		10:30	11:30	1.00			SURPR	CHEMTI	OTHR	Ρ	Problem Wells Supervisor on
											location to inspect location and prep
											for Alaska Oil and Gas Commission
											witnessed Mechanical integrity test
											of the Inner annulus. Walked down
	-	11.00	40.00	2.00		-		OUENT	OTUD	0	side and discussed procedure.
		11:30	13:30	2.00			SURPR	CHEMIN	UTHR	Р	Continue to pump traced, mixed
											N2:CO2 into formation. Start to lift
											upricator. Snut down pick due to
											excessive flex in lubricator. Discuss
											additional 5.5" lubricator
		13:30	15:30	2 00			SURPR	CHEMT	OTHR	Р	Shut down CMS @ 13:16 to swap to
		10.00	10.00	2.00			CONTR.		STIK		primary well site generator and install
											undated GMS software
	5	15:30	16:30	1.00		-	SURPR	CHEMT	OTHR	Р	Primary well site generator on line
		.0.00						0	•••••	8	GMS well hore heater string
											circulation back on line 15:01 GMS
											cryogenic pumps cooled down.
											pressure up, and operating 15:15.
											HES Nitrogen tanker on location
											16:00. Off loaded 1900 gal liquid N2
											into Nitrogen tank # 2.
- [16:30	17:30	1.00			SURPR	CHEMTI	OTHR	Ρ	Picked up SL lubricator and rigged
											up to the well. Shut in upper master
											and opened the swab. Pressure
											tested the lubricator with traced
											mixed N2:CO2 to 1400 psi. Bled
											lubricator to 1240 and opened up to
											well. Drift and tag with 3.60" gauge
											ring. Tagged at 2371' POOH. Shut
											swab and bled off lubricator to bleed
											tank. Lubricator plus surface
											equipment is 22° of 41/2 (ID 3.958")
											and 60 of 5 1/2 (ID 5.00'). Pumping
											20 ko/br
	5	17:30	19:30	2.00		-	SURPR	CHEMTI	OTHR	Р	Out of hole, lay down lubricator
		11.00	10.00	2.00			Join N		Sint	8	make up sand screen OL 56'8 5"
											load in lubricator Third party crane
											crew changed out from day to night
											operator.
		19:30	21:30	2.00			SURPR	CHEMTI	OTHR	Р	19:15 picking lubricator with sand
											screen. Pressure tested lubricator to
											1310 psi with traced, mixed N2:CO2.
											20:06 RIH, set down, hand spang
											sand screen into seal assembly, pull
											to establish latch, sheared off 20:38.
											POOH. 21:07 slickline off the well
											and rigging down surface equipment.
											Page 22 of 64

Date From To Dur S. De 21:30 02:30 5.00 5.00 02/17/2012 Continued pumping traced mix 2226' MD. Performed Mec 02/26' MD. Performed fluid not a leak 00:00 02:30 2.50 2.50	ed gas (77% N2:23%)	Code CHEMTI	Subcode OTHR	P	Comment Continue pumping traced, mixed N2:CO2 into formation @ 1410 psi
2/17/2012 Continued pumping traced mix @ 2226' MD. Performed Mec contraction of fluid not a leak 00:00 02:30 2.50	ad gas (77% N2:23%)		UIRK	P	N2:CO2 into formation @ 1410 psi
2/17/2012 Continued pumping traced mix @ 2226' MD. Performed Mec contraction of fluid not a leak 00:00 02:30 2.50	ed gas (77% N2:23%)				N2:CO2 into formation @ 1410 psi
2/17/2012 Continued pumping traced mix @ 2226' MD. Performed Mec contraction of fluid not a leak. 00:00 02:30 2:50	ed gas (77% N2:23%)				Internet and the second s second second s second second s second second se
/17/2012 Continued pumping traced mix @ 2226' MD. Performed Mec contraction of fluid not a leak 00:00 02:30 2.50	ed gas (77% N2:23%)				middle down hole gauge and 20 Kg/
2/17/2012 Continued pumping traced mix @ 2226' MD. Performed Mec contraction of fluid not a leak 00:00 02:30 2.50	ed gas (77% N2:23%)	S			hr.
Ontinued pumping traced mix @ 2226' MD. Performed Mec contraction of fluid not a leak 00:00 02:30 2.50	d das (77% N2:23%)				
@ 2226 MD. Performed Mec contraction of fluid not a leak 00:00 02:30 2.50	J	CO2) at 17	-24 kg/hr	to m	aintain 1420 psi on XPIO gauge
00:00 02:30 2.50	anical Integrity Test c	of the Inne	r Annulus	(MII	IA) - failed. Suspect thermal
00.00 02.30 2.30					Description from the state of t
STORAGENERAL CONSCIENTS STORAGENERAL	SURPR		UIRK	Р	Pumping traced mixed gas (77%
					N2:23%CO2) at 18 Kg/nr 1410 psi on
00.00 00.00 0.50	CUDDD	CUENT		D	XPIO gauge @ 2226' MD
02:30 06:00 3.50	SURPR	CHEMIN	OTHR	Р	Bled gas from top of N2 pump.
					Pumping traced mixed gas (77%
					N2:23%CO2) at 18 Kg/hr 1411 psi on
	011000		OTUD	-	XPIO gauge @ 2226' MD.
06:00 09:00 3.00	SURPR	CHEMII	OTHR	Р	Pumping traced mixed gas (77%
					N2:23%CO2) at 18 Kg/hr 1412 psi on
					XPIO gauge @ 2226' MD. Increased
					pump rate to 21 KG/hr to hit target
					bottom hole pressure of 1420 psi at
					0900.
09:00 09:30 0.50	SURPR	CHEMTI	OTHR	Ρ	Walking up pressure to 1420 psi
					max. Pumping traced mixed gas
					(77% N2:23%CO2) at 23 Kg/hr 1415
					psi on XPIO gauge @ 2226' MD.
09:30 10:00 0.50	SURPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77%
					N2:23%CO2) at 23 Kg/hr 1418 psi on
					XPIO gauge @ 2226' MD.
10:00 10:30 0.50	SURPR	CHEMTI	OTHR	Ρ	Slow rate to 22 Kg/hr. Pumping
					traced mixed gas (77% N2:23%CO2)
					at 22 Kg/hr 1420 psi on XPIO gauge
					@ 2226' MD.
10:30 11:30 1.00	SURPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77%
					N2:23%CO2) at 20 Kg/hr 1421 psi on
					XPIO gauge @ 2226' MD. Reduce
					rate to 19 Kg/hr to maintain pressure
					at 1420.
11:30 14:30 3.00	SURPR	CHEMTI	OTHR	Р	Pumping traced mixed gas (77%
					N2:23%CO2) at 19 Kg/hr 1420 psi on
					XPIO gauge @ 2226' MD_1421 psi
					@ 14:45 Reduce rate to 18 Kg/hr to
					maintain pressure at 1420
14:30 17:30 3.00	SURPR	CHEMT	OTHR	Р	Pumping traced mixed gas (77%
			•	÷	N2.23% CO2) at 17 Kg/br 1420 psi on
					XPIO gaugo @ 2226'MD 1420 psi 01
					@ 14:45 Pre job for MITIA at 17:40
					Open swah to monitor Tubing
					property for MITIA Tubing
					pressure for with A. Tubing pressure
					at mode gauge dropped to 1418
					then 1415 psi. Increased rate to 24
					kg/nr to raise tubing pressure.
					Page 23 of

Time Logs	;							_		
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	17:30	18:30	1.00			SURPR	CHEMTI	OTHR	Ρ	Performed pre witnessed MITIA -
										failed. Shut down glycol circulating
										pump. Double blocked returns to the
										125 bbl glycol open top tank at the
										wellhead. Begin o pressure up IA.
										Mechanical gauge on IA companion
										valve not reading correctly. Decision
										made to continue test with GMS
										pressure gauge. Pressured the IA
										up to 1919 psi and blocked in at the
										pump. Pressure dropped 145 psi in
										the first 15 minutes and 98 psi in the
										second 15 minutes for a total of 243
										psi. Max pressure loss may not
										exceed 10% in 30 minutes or 5% in
										the first 15 minutes. Will reatempt
										the test in the morning with new
										gauges.
	18:30	00:00	5.50			SURPR	CHEMTI	OTHR	Ρ	Continue pumping traced mixed gas
										(77% N2:23%CO2) at 16 Kg/hr 1420
										psi on XPIO gauge @ 2226' MD.
2/18/2012										
	Continu	ued pum	ping trace	ed mixed g	gas (77% I	N2:23%C	CO2) at ap	prox 20 k	g/hr	to maintain 1420 psi on XPIO
	gauge	@ 2226'	MD. Per	formed N	lechanical	Integrity	Test of the	ne Inner A	nnul	us (MITIA) - Passed. Had to
	shut do	wn GMS	6 du to po	or pump o	control. Ad	djusted th	ne propor	tion portion	n of t	he Proportion, Integral,
	Derivat	ive (PID)) controlle	er. Gas m	ixing / pun	nping iss	ues solve	d.		r
	00:00	05:00	5.00			SURPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77%
										N2:23%CO2) at 17 kg/hr and 1415
										psi on XPIO gauge @ 2226' MD.
	05:00	10:00	5.00			SURPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77%
										N2:23%CO2) at 20 kg/hr and 1419
										psi on XPIO gauge @ 2226' MD.
	10:00	15:30	5.50			SURPR	CHEMTI	OTHR	Р	Pumping traced mixed gas (77%
										N2:23%CO2) at 19 kg/hr and 1420
										psi on XPIO gauge @ 2226' MD.
										Starting to pump rougher.
	15:30	16:00	0.50			SURPR	CHEMTI	OTHR	Р	Pumping traced mixed gas (77%
										N2:23%CO2) at 19 kg/hr and 1420
										psi on XPIO gauge @ 2226' MD.
										Discussing shutting down to
										condition tanks when well site
										generator accidentally taken off line.
										Down on the cryogenic pumps.
										Secondary generator started in 2
										minutes and transferred power.
										Conditioned tanks (N2 and CO2)
										Transferred liquid N2 from storage
										tank to working tank and ordered out
										N2.
	16:00	16:30	0.50			SURPR	CHEMTI	OTHR	Ρ	Start pumping mixed gas. Fighting
										the pumps unable to mix the product
										on spec. Shut down cryogenic
										pumps.
										Page 24 of 64

1	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		16:30	18:00	1.50			SURPR	CHEMTI	OTHR	Ρ	Conditioning tanks and priming pumps in attempt to bring pumps back on line with in spec blend.Started heating well and started pumping traced mixed gas (77% N2:23%CO2) at 15 kg/hr and 1379 psi on XPIO gauge @ 2226'
		18:00	10.30	1 50				СНЕМТІ		D	MD.
		10.00	10.00	1.00				ONLINIT			1391 at on XPIO gauge @ 2226' MD. Nitrogen transport arrived on location. Need to fill both tanks. Shut down N2 pumping and closed 2" to well. stopped circulation of the IA in preparation for MITIA.
		19:30	20:30	1.00			SURPRI	CHEMTI	OTHR	P.	While transferring N2, perform MITIA - Passed. Pre T/I/O=1200/0/NA. Pumped up IA to 1900 lbs and double blocked in at well head. Initial T/I/O = 1200/1900/NA, 15 min 1200/1800/NA, aborted test. Repressure to 1900 psi. Initial T/I/O = 1200/1950/NA, 15 minute T/I/O = 1200/1795/NA. Total loss of 155 psi
		20:30	21:30	1.00			SURPR	CHEMTI	OTHR	Ρ	Restart circulating heated glycol through the inner annulus and restart injecting traced mixed gas (77% N2:23%CO2) at 100- 75 kg/hr and 1347 psi on XPIO gauge @ 2226' MD.
		21:30	00:00	2.50			SURPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 30-20 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Starting to pump very rough again. Large spikes in the N2 and CO2 rates. GC samples indicate N2 concentrations are high at ~81%.
		00:00	00:30	0.50			SURPR	CHEMTI	OTHR	Ρ	Adjust GMS blend setting to 72% N2 : 28% CO to achieve 77% : 23% respectively on GC results.
		00:30	01:00	0.50			SURPR	CHEMTI	OTHR	Ρ	Continue to fight blending issues. Discuss options. Investigation of pump rate charts suggest that the N2 pump is leading the CO2 pump. As the CO2 pump falls behind the N2 pump drops off to zero output followed by the CO2 dropping to zero creating a saw tooth pattern. Wake up Optimation operator and discuss problem. P in PID changed from 0.25 to 0.01. Rate instantly stabilizes.
		01:00	01:30	0.50			SURPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 20 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Rate response is very smooth with the noise at approx +- 5kg/hr.
											Page 25 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
02/19/2012	Continu	ued num	ning trac	ed mixed c	as (77%)	12.23%	:02) to m	aintain 14	20 n	si on XPIO gauge @ 2226' MD
	Perform	ned Me	chanical l	Integrity Te	est of the l	nner Anr	ulus (MI	FIA) - incor	nclus	sive. Continue to pump. All
	Expro I	less three	e put on s	standby an	d left the	slope. S	cheduled	to return F	eb 2	29 th for initiation of flow back.
	00:00	08:15	8.25			SURPR	CHEMT	OTHR	Ρ	Pumping traced mixed gas (77%
										N2:23%CO2) at 18-20 kg/hr and
										1418-1420 psi on XPIO gauge @
	09.15	09.20	0.25				CHEMT		D	2226' MD.
	00.15	08.30	0.25			SUKFK		UIIK	Г	and 2" values to 125 bbl tank shut in
3	08:30	09:00	0.50			SURPR	CHEMT	OTHR	Р	Tubing pressure fell from 1420 to
	1220000 10010 001200									1412 psi because of thermal
										contraction. Increased rate to
										maintain pressure.
	09:00	10:00	1.00			SURPR	CHEMT	OTHR	Р	Increased rate to maintain pressure
										at 1420 psi on XPIO gauge @ 2226'
9 7	10.00	11.00	1.00			SURPRI	CHEMT	OTHR	P	MD. Borform AOGCC witnessed MITIA
	10.00	11.00	1.00			o or a ra		OTTIC		with Chuck Scheve Passed with
										regard to total pressure loss but
										failed to stabilize. State man
										recorded a Fail Pre
										T/I/O=1268/0/NA. Pumped up IA to
										1910 lbs and double blocked in at
										well head. Initial 1/I/O =
										1265/1828/NA 30 min T/I/O =
										1264/1770/NA 45 minute T/I/O =
										121264/1716/NA, Total loss of 140
										psi in 30 minutes however pressure
										drop was nearly linear. Bled IA and
										resumed well bore heating.
	11:00	12:00	1.00			SURPR	CHEMT	OTHR	Р	Reduced pump rate to 15 kg/hr.
										I ubing pressure rising because of
										to maintain pressure. Pumps erratio
	12:00	13:00	1.00			SURPR	CHEMT	OTHR	Р	S/D pumps, heat well bore, condition
										tanks.
	13:00	14:30	1.50			SURPR	CHEMT	OTHR	Ρ	Bring pumps online at 28 kg/hr and
										1409 psi. Adjust rate to achieve
										1420 psi. Control screen turned full
										green. manually shutdown pumps.
	14.30	16:30	2.00			SURPRI	CHEMT	OTHR	P	Screen reverted to normal.
	14.00	10.50	2.00			SUITER		OTTIK	r	to working tank. Cool down numps
										start pumping at 44 kg/hr and 1375
										psi.
	16:30	18:30	2.00			SURPR	CHEMT	OTHR	Ρ	Pumping traced mixed gas (77%
										N2:23%CO2) at 44-22 kg/hr and
										1420 psi on XPIO gauge @ 2226'
	18.20	10.00	0.50			SUPPR	CHEMT	ОТНР	P	MD. HES N2 transport on location
	10.30	19.00	0.50			JURFR		UIIK	Ľ.,	
	19:00	19:30	0.50			SURPR	CHEMT	OTHR	Ρ	N2 transport contained 2040 gal. Off
										loaded and left with 7.5" or 534 gal
										on board. Off loaded 1506 gal into
5								I		IN∠ storage tank.
										Page 26 of 64

	From	То	Dur	S. Depth	E. Depth Ph	nase	Code	Subcode	Т	Comment
	19:30	22:00	2.50		su	JRPR	CHEMTI	OTHR	P	Pumping traced mixed gas (77% N2:23%CO2) at 20 kg/hr and 1420 nsi on XPIO gauge @ 2226' MD
	22:00	00:00	2.00		SL	JRPRI	CHEMTI	OTHR	Ρ	Continue pumping traced mixed gas (77% N2:23%CO2) to maintain 1420
00/0040			o							psi on XPIO gauge @ 2226' MD.
12012012	Institute SOP. N event v Pumpe failed N	ed proac 12 pump vas antic d approx /ITIA. Pe	tive shut appears ipated to a 10.2 MS ermission	down to tr to gas out day and su CF produ to continu	ansfer fluids and loose pr uccessfully m ct by 6 pm 77 e injection gr	and co rime al nitigate 7.2 MS ranted	ondition ta fter appro d by blee CF total. . AOGCC	anks. Pun ximately ding gas Contacte requires	nps ru Bhrs from d Jim a rep	unning extremely well under new continuous pumping. Initiation of the top of the pump chamber. a Regg - AOGCC regarding port of operations (pressures and
	00.00	00.15	0.25		SI	IRPR	CHEMT	OTHR	Р	Experienced a short upset while
	00.00	00.10	0.20				ONE		4.5	pumping. Bled the back side of the N2 pumps slowly nad let the GMS PID controlers pump through the upset.
	00:15	04:45	4.50		SL	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~21 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	04:45	05:30	0.75		si	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2. Greased N2 and CO2 pumps. Transfered 160 gal N2 from storage to working. 1730 gal remaining in storage.
	05:30	16:30	11.00		SL	JRPR	CHEMTI	OTHR	Ρ	Bring pumps back on line at 1395. Increase rate to 51 kg/hr to reach target of 1420 psi. Pumping traced mixed gas (77% N2:23%CO2) at ~20 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	16:30	17:30	1.00		SL	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2. Transferred 101 gal N2 from storage to working. 1629 gal remaining in storage. Cool down pumps. Restart pumps
	17:30	00:00	6.50		SL	JRPR	CHEMTI	OTHR	Ρ	Bring pumps back on line at 1395. Increase rate to reach target of 1420 psi. Pumping traced mixed gas (77% N2:23%CO2) at ~20 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
2/21/2012	N2 pun event v down a Iniectio	np still ap vas antic ind condi	ppears to ipated ag itioned ta	gas out a jain today nks to miti sed slowly	nd loose prim @ apporx 13 gate. Pumpe today from 2	ne afte 330. P ed app 22 kg/h	r approxii umping c prox 12.2 pr to 25 kc	mately 8h ontinued MSCF pro	rs co for a oduct	ntinuous pumping. Initiation of few hrs after the event. Shut t by 7 pm for a total of 92 MSCF.
	00:00	01:15	1.25		SL	JRPRI	СНЕМТІ	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 22 kg/hr and 1420 psi on XPIO gauge @ 2226' MD
	01:15	01:30	0.25		SL	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~22 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.

Date F	rom	То	Dur	S. Depth	E. Depth Phase	e Code		Subcode	T	Comment
C	01:30	04:30	3.00		SURF	RICHEN	ΝTF	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 22-24 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
C	04:30	05:00	0.50		SURF	RICHEN	NTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2. Transferred 238 gal N2 from storage to working. 1500 gal remaining in storage.
C	05:00	06:15	1.25		SURF	RICHEN	ΝTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 1420 psi on XPIO gauge @ 2226' MD.
C	06:15	07:00	0.75		SURF	RICHEN	NTI	OTHR	Ρ	GMS lost communication to the well site data hub. Optimation crew worked with SLB Interact support to reestablish communication.
C	07:00	13:00	6.00		SURF	RCHE	ITN	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 25 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Removed Tioga heater from CO2 tank @ 09:08
1	13:00	14:00	1.00		SURF	RICHEN	NTE	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 1420 psi on XPIO gauge @ 2226' MD. Forced to bleed off the back side of the pump, fighting the N2 pump.
1	14:00	15:30	1.50		SURF	RICHEN	ITN	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 25 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Removed Tioga heater from CO2 tank @ 09:08
1	15:30	16:30	1.00		SURF	RCHEN	ITN	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2. Added 20 bbls of potable water to glycol tank to compensate for evaporation. 125 bbl tank level 70 bbls.
1	16:30	00:00	7.50		SURF	RICHEN	NTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 28 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
2/22/2012 P R ht kş (Pumpin Replace ole. P g/hr to 00:00	g traced ed SF6 t umped a <u>26 kg/h</u> 05:30	l mixed g racer wit approx 12 r. 5.50	as (77% N h R-114 tra 2.9 MSCF	2:23%CO2) at 2 acer. Received product by 20:3	24-26 kg/ 20,000 lb 0 for a to PRI CHE	hr a os C otal MTI	ond 1420 O2, trans of 109 M OTHR	psi o sferre SCF.	n XPIO gauge @ 2226' MD. ed on the fly while pumping down . Injection rate today was 24 Pumping traced mixed gas (77% N2:23%CO2) at 24-26 kg/hr and
C	05:30	05:45	0.25		SURF		NTI	OTHR	Ρ	MD. Forced to bleed off the back side of
C	05:45	06:00	0.25		SURF	RICHEN	ΝTI	OTHR	Ρ	the pump, fighting the N2 pump. Pumping traced mixed gas (77% N2:23%CO2) at 24-26 kg/hr and 1420 psi on XPIO gauge @ 2226' MD
C	06:00	06:15	0.25		SURF	RICHEN	ΝTI	OTHR	Ρ	Forced to bleed off the back side of the pump, fighting the N2 pump.
C	06:15	08:30	2.25		SURF	RCHEN	NTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~ 25 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.

Time Lo	ogs									
Date	From	То	Dur	S. Depth	E. Depth Pl	hase	Code	Subcode	Т	Comment
	08:30	09:15	0.75		s	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2. Purged ISCO tracer pump of SF6 Tracer. Replaced SF6 tracer bottle with R-114 tracer. Flushed ISCO pump with R-114 tracer. Loaded both
										colunms A and B to 103 ml each. Set pump rate at 0.01 ml/min.
	09:15	18:30	9.25		s	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~ 25 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Transport of CO2 on location, Pre job safety meeting, transfer from tanker to working tank on the fly, complete 13:00.
	18:30	19:15	0.75		รเ	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
	19:15	00:00	4.75		SI	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 24-26 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
02/23/20	12 Pumpir Pumpe 26 kg/h	ng traceo d approx nr.	l mixed g < 12.4 MS	as (77% N SCF produ	2:23%CO2) ct by 19:00	at 24-2 for a to	26 kg/hr a tal of 124	and 1420 p .7 MSCF.	osi o Inje	n XPIO gauge @ 2226' MD. ction rate today was 24 kg/hr to
	00:00	03:30	3.50		SI	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at 27-28 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	03:30	04:00	0.50		รเ	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
	04:00	15:30	11.50		รเ	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~26 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	15:30	16:15	0.75		รเ	JRPR	CHEMT	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
	16:15	00:00	7.75		รเ	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~26 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
02/24/20	12 Pumpir Pumpe	ng traceo d approv	f mixed g < 14.5 MS	as (77% N SCF produ	2:23%CO2) ct by 20:00 f	at 29-3 or a tot	30 kg/hr a al of 143	and 1420 p .9 MSCF.	osi o	n XPIO gauge @ 2226' MD.
e)	00:00	00:30	0.50		รเ	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
	00:30	03:30	3.00		รเ	JRPR	CHEMTI	OTHR	Ρ	Pumps Acting Erratically. Pumping traced mixed gas (77% N2:23%CO2) at ~29-30 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	03:30	08:00	4.50		SI	JRPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~29-30 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	08:00	09:15	1.25		รเ	JRPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
										Page 29 of 64

ate	From	То	Dur	S Denth	E Depth Pha	ise	Code	Subcode	. т	Comment
	09:15	16:30	7.25		SUF	RPR	CHEMTI	OTHR	P	Pumping traced mixed gas (77% N2:23%CO2) at ~29-30 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Refilled ISCO Pump A with R-114.
	16:30	17:45	1.25		SUF	RPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
	17:45	00:00	6.25		SUF	RPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~29-30 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
25/2012	Pumpir Shuttle unsucc	ng traced d power essfully	l mixed g from prin to update	as (77% N nary well s GMS and	2:23%CO2) a ite generator t InterAct softw	t 31-3 o sec /are-	33 kg/hr a condary a ongoing.	and 1420 Ind back f Pumped	psi o for oil l app	n XPIO gauge @ 2226' MD. change. Attempted rox 13.7 MSCF product by 17:00
	for a to 00:00	tal of 16 05:15	1.3 MSCI 5.25		SUF	RPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~31-32 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	05:15	05:45	0.50		SUF	RPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2.
	05:45	08:00	2.25		SUF	RPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~31-32 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	08:00	08:07	0.13		SUF	RPR	CHEMTI	OTHR	Ρ	Shut down pumping briefly to swap power from primary generator to secondary well site generator for scheduled oil change.
	08:07	08:37	0.50		SUF	RPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~32-44 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	08:37	08:52	0.25		SUF	RPR	CHEMTI	OTHR	Ρ	Shut down pumping briefly to swap power from secondary generator to primary well site generator for scheduled oil change.
	08:52	16:59	8.12		SUF	R	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77% N2:23%CO2) at ~32-44 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
	16:59	19:59	3.00		SUF	RPR	CHEMTI	OTHR	Ρ	Shut down pumping to condition N2 tanks & transfer N2. Installed new software in GMS unit, coordinated changes with SLB Interact. Unable to effect change. Reloaded original software.
	19:59	20:29	0.50		SUF	RPR	CHEMTI	OTHR	Ρ	Glycol pumps on line. Resume well bore heating. Cool down cryogenic pumps. Bring pumps online.
	00.00	23.02	2.55		SUF	RPR	CHEMTI	OTHR	Ρ	Pumping traced mixed gas (77%

ale	From	То	Dur	S. Depth	E. Depth Phase	Code	Subcode	Т	Comment
	23:02	23:59	0.95		SURPR	CHEMT	OTHR	Ρ	Surface Safety valve tripped
									inadvertenetly. Reset and resumed
									pumping traced mixed gas (77%
									N2:23%CO2) at 1420 psi on XPIO
									gauge @ 2226' MD.
/26/2012	Pumpir Swapp	ng traced ed inlet/c	I mixed g	as (77% N heater strin	2:23%CO2) at 31- ig with IA. Pumpe	33 kg/hr a d approx	and 1420 14.7 MSC	psi o F pr	n XPIO gauge @ 2226' MD. oduct by 21:00 for a total of
	176.0 N	ASCF.							
	00:00	05:00	5.00		SURPR	CHEMT	OTHR	Ρ	Pumping traced mixed gas (77%
									N2:23%CO2) at ~33 kg/hr and 1420
									psi on XPIO gauge @ 2226' MD.
	05:00	05:30	0.50		SURPR	CHEMT	OTHR	Ρ	Shut down pumping to condition N2
									tanks & transfer N2.
	05:30	12:30	7.00		SURPR	CHEMT	OTHR	Ρ	Pumping traced mixed gas (77%
									N2:23%CO2) at ~33 kg/hr and 1420
									psi on XPIO gauge @ 2226' MD.
									Raised SLB line heater from 100 F to
									120 F in 10 deg F increments over a
									2 hour peroid from 06:45 to 08:45
	12:30	13.00	0.50		SURPR	CHEMT	OTHR	Р	Shut down pumping to condition N2
	12.00	10.00	0.00		CORT	Onewith	OTTIK	·	tanks & transfer N2
	13:00	19:15	6.25		SURPR	СНЕМТІ	OTHR	Р	Pumping traced mixed gas (77%
	12.12.27						S		$N_2^{23\%}(\Omega_2)$ at ~33 kg/br and 1420
									nsi on XPIO gauge @ 2226' MD
	10.15	10.45	0.50		SURPR	CHEMT	OTHR	P	Swapped inlet/outlet on heater
	19.15	19.40	0.50		SOILFIL		OTTIK	<u> </u>	swapped merodulet on neater
									strings while contining mixed gas
	10.15	00.00	4.05		CUDDD				injection.
	19:45	()()()()()	// //5		SIDDD				Dumping traced mixed asc (77%
		00.00	4.20		SORFIC	CHEIMIN	UIHR	Р	Fumping traced mixed gas (77%)
		00.00	4.25		SORFIC	CHEMIN	UIHK	Р	N2:23%CO2) at ~33 kg/hr and 1420
		00.00	4.23		SONFIC	CHEIMIN	UIHK	Р	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
27/2012		00.00	4.20				UTHR	P	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
27/2012	Pumpir	ng traced	4.25	as (77% N	2:23%CO2) at 33-	35 kg/hr a	and 1420	psi o	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
27/2012	Pumpir Pumpe	ng traced	4.25 d mixed g	as (77% N CF product	2:23%CO2) at 33- by 23:00 for a tot	35 kg/hr a	and 1420 MSCF Hal	psi o	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume.
27/2012	Pumpir Pumpe 00:00	ng traced d approx 06:00	4.23 I mixed g < 21 MS(6.00	as (77% Ni CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR	35 kg/hr a	and 1420	psi o I Plo	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77%
27/2012	Pumpir Pumpe 00:00	ng traced d approx 06:00	4.20 d mixed g <u>< 21 MS(</u> 6.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tota SURPR	35 kg/hr a	and 1420	psi o I Plo	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and
/27/2012	Pumpir Pumpe 00:00	ng traced d approx	4.23 d mixed g < 21 MS(6.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot SURPR	35 kg/hr a al of 205 l	and 1420	P psi o I Plo P	n XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226'
27/2012	Pumpir Pumpe 00:00	ng traced d approx 06:00	4.20 d mixed g < 21 MS(6.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR	35 kg/hr a	and 1420	P psi o I Plo P	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
27/2012	Pumpir Pumpe 00:00	ng traced d approx 06:00	4.20 d mixed g < 21 MS(6.00 0.50	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR	35 kg/hr a	and 1420	P psi o I Plo P P	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2
27/2012	Pumpir Pumpe 00:00	ng traced d approx 06:00	4.23 d mixed g < 21 MS(6.00 0.50	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tota SURPR	35 kg/hr a al of 205 t	and 1420	P psi o I Plo P	N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2.
27/2012	Pumpir Pumpe 00:00 06:00 06:30	ng traced d approx 06:00 06:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR	35 kg/hr a al of 205 t	and 1420	P psi o I Plo P P	A uniping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. t volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77%
27/2012	Pumpir Pumpe 00:00 06:00 06:30	ng traced d approx 06:00 06:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR	35 kg/hr a al of 205 M	and 1420 MSCF Hal	P psi o I Plo P P P	A miphing raced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and
27/2012	Pumpir Pumpe 00:00 06:00 06:30	06:30 06:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hai	P psi o I Plo P P	A with the second secon
27/2012	Pumpir Pumpe 00:00 06:00 06:30	obio0 ng traced d approx 06:00 06:30 18:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR	35 kg/hr a	and 1420 MSCF Hai	P psi o I Plo P P	A signal states of the set of the
27/2012	Pumpir Pumpe 00:00 06:00 06:30	o traced d approx 06:00 06:30 18:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR	35 kg/hr a al of 205 l	and 1420 MSCF Hal	P psi o I Plo P	A straight for the set of the set
27/2012	Pumpir Pumpe 00:00 06:00 06:30	06:30 06:30	4.23 I mixed g < 21 MS(6.00 0.50 12.00	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR	35 kg/hr a al of 205 f	and 1420 MSCF Hai	P psi o I Plo P	Authong traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 c.pm
27/2012	Pumpir Pumpe 00:00 06:00 06:30	06:30 06:30 18:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hai	P psi o I Plo P P	Authoring traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm.
27/2012	Pumpir Pumpe 00:00 06:00 06:30	06:30 06:30 18:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hal	P psi o I Plo P P	Autipuing traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30	06:00 06:00 06:30 18:30	4.23 d mixed g < 21 MS(6.00 0.50 12.00 0.50	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR	35 kg/hr a al of 205 !	and 1420 MSCF Hal	P psi o I Plo P P	Authoring traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2.
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	06:00 06:00 06:30 18:30 19:00 22:09	4.23 d mixed g 21 MS(6.00 0.50 12.00 0.50 3.15	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 f	and 1420 MSCF Hal	P psi o I Plo P P	Autipuing traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:02) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm.
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	19 traced d approx 06:00 06:30 18:30 19:00 22:09	4.23 d mixed g < 21 MS(6.00 0.50 12.00 0.50 3.15	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hai	P psi o I Plo P P	Autipuing traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	19:00 06:30 18:30 19:00 22:09	4.23 d mixed g < 21 MS(6.00 0.50 12.00 0.50 3.15	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 t	OTHR	P psi o l Plo P P	Autipuing traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. Volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD.
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	06:00 06:00 06:30 18:30 19:00 22:09	4.23 d mixed g <u>21 MS(</u> 6.00 0.50 12.00 0.50 3.15	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hall	P psi o I Plo P P	Autipuing traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumping traced mixed gas (77%
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	19 traced d approx 06:00 06:30 18:30 19:00 22:09	4.23 d mixed g 21 MS(6.00 0.50 12.00 0.50 3.15	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hal	P I Plo P P	Pumping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumped up both SSV hydralic panels to 4000 psi at 20:00 hrs.
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	19 traced d approx 06:00 06:30 18:30 19:00 22:09	4.23 d mixed g < 21 MS(6.00 0.50 12.00 0.50 3.15	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 t	and 1420 MSCF Hai	P I Plo ⁱ P P	Pumping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumped up both SSV hydralic panels to 4000 psi at 20:00 hrs. Investigating an error that is creating
27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	19 traced d approx 06:00 06:30 18:30 19:00 22:09	4.23 d mixed g < 21 MS(6.00 0.50 12.00 0.50 3.15	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 t	OTHR	P psi o I Plo P P	Pumping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumped up both SSV hydralic panels to 4000 psi at 20:00 hrs. Investigating an error that is creating a time delay in the data storge.
/27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	06:00 06:00 06:30 18:30 19:00 22:09 22:45	4.23 d mixed g < 21 MS(6.00 0.50 12.00 0.50 3.15 0.60	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 t	OTHR	P si o I Plo P P	Pumping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. tvolume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumped up both SSV hydralic panels to 4000 psi at 20:00 hrs. Investigating an error that is creating a time delay in the data storge. Took the GMS offline and attempted
/27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00	ug traced d approx 06:00 06:30 18:30 19:00 22:09 22:45	4.23 d mixed g <u>21 MS(</u> 6.00 0.50 12.00 0.50 3.15 0.60	as (77% N: CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR	CHEMTI	OTHR	P psi o I Plo P P	Pumping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. volume. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumped up both SV hydralic panels to 4000 psi at 20:00 hrs. Investigating an error that is creating a time delay in the data storge. Took the GMS offline and attempted to restart the computer to correct the
/27/2012	Pumpir Pumpe 00:00 06:00 06:30 18:30 19:00 22:09	19;00 06:00 06:30 18:30 19:00 22:09 22:45	4.23 d mixed g 21 MS(6.00 0.50 12.00 0.50 3.15 0.60	as (77% N) CF product	2:23%CO2) at 33- by 23:00 for a tot: SURPR SURPR SURPR SURPR SURPR	35 kg/hr a al of 205 f CHEMTI	OTHR	P psi o I Plo P P	Pumping traced mixed gas (77% N2:23%CO2) at ~33 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. n XPIO gauge @ 2226' MD. Pumping traced mixed gas (77% N2:23%CO2) at ~33 to 34 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~34 to 35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Raised SLB line heater to 135 F at 08:00. Raised glycol circ rate to 15 gpm. Shut down pumping to condition N2 tanks & transfer N2. Pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. Pumped up both SSV hydralic panels to 4000 psi at 20:00 hrs. Investigating an error that is creating a time delay in the data storge. Took the GMS offline and attempted to restart the computer to correct the data latency problem.

Time Logs	;									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	22:45	00:00	1.25			SURPR	CHEMTI	UTHR		Resumed pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. The data latency problem has not been fixed
02/28/2012	Shut in	injectior	n, begin p	ressure fa	ll off. Star	nd by for	weather	(currently -	44)	
	00:00	02:00	2.00			SURPR	CHEMTI	OTHR	Ρ	Continued pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. The data latency problem has not been fixed and is continuing to worsen
	02:00	04:00	2.00			SURPR	CHEMTI	OTHR	Т	HMI system crashed, injection offline. Optimation troubleshooting and attempt to restart.
	04:00	07:45	3.75			SURPRI	СНЕМТІ	OTHR	Ρ	Continued pumping traced mixed gas (77% N2:23%CO2) at ~35 kg/hr and 1420 psi on XPIO gauge @ 2226' MD. The data latency problem continuing. Met with project team, decided to halt injection. Minimum injection volume has been met.
	07:45	00:00	16.25			SURPR	CHEMTI	OTHR	Т	Shut-in iinjection, begin pressure falloff. Stand-by for Weather - current temperature (-44 F, -75 F windchill) below minimum.
02/29/2012	Monitor	r data an	d standb	y for weath	ner warmir	ng trend.	Optimiza	tion workir	ng o	n computer/data issues.
	00:00	05:27	5.45			SURPR	CHEMTI	OTHR	T	Monitor data and standby during Cold Weather Shut Down (-42)
	05:27	05:57	0.50			SURPR	CHEMTI	SFTY	Ρ	Morning Pre-Job Safety Meeting with SLB and Expro.
	05:57	17:27	11.50			SURPR	CHEMTI	OTHR	Т	Monitor data and standby during Cold Weather Shut Down
	17:27	17:57	0.50			SURPR	CHEMTI	SFTY	Ρ	Evening Pre-Job Safety Meeting with SLB and Expro
	17:57	00:00	6.06			SURPR	CHEMTI	OTHR	Т	Monitor data and standby during Cold Weather Shut Down
03/01/2012	Data w	as monit	ored and	on standb	oy until Co	ld Weath	er Shut D	own was l	ifted	around 1300hrs Began
	00:00	13:00	13.00			SURPR	CHEMTI	OTHR	Т	Monitor data and standby during Cold Weather Shut Down (-42). #1 glycol pump was shut down due to bad beaing and/or shaft. Parts on order.
	13:00	00:00	11.00			SURPR	CHEMTI	PRTS	Ρ	Cold Weather restrictions lifted (-31) and work commenced towrads completing Procedure 11. Expro's hardline and the GC lines were pressure tested successfully. 290 bbls of 140 dgree water was off loaded into uprights. Expro Stack Pac lines were connect3ed and PT'ed and glycol circulated.
										Page 32 of 64

Time Logs	.	т.	Du	0.0."	E D "	Dha	0	Out-	-	0t
Date	From	10	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Τ	Comment
13/02/2012	Z4 nr Su	<u>mmary</u>	444		ومعالمة أولام	4h 6				well as setting the basis second
	valves	on the E	xpro sep	arator.	validating	the gas r	low meter	rs and GC	as v	ven as setting the back pressure
	00:00	13:00	13.00			SURPR	CHEMTI	PRTS	Ρ	Continue making progress in
										completing Procedure #11. Finish
										pressure testing lines, setting the
										back flow valves on the Expro
										separator, validate the gas flow
										meters and GC. Increase glycol
										pump rate to warm wellbore back up.
	13:00	00:00	11.00			SURPR	CHEMTI	PRTS	Т	Lost Prime on pumps had to
										recondition Nitrogen tanks and
										transferr N2.
										Flow readings on small gas meter
										match GMS MicroMotion readings.
										Began testing larger gas meter wirth
										N2.
										Large gas meter showing difference
										of 10 to 7 % from GMS MicroMotion
3/03/2012				1	1				<u> </u>	
0.00.2012	Continu	ue workin	ng gas m	etering iss	ues. Move	ed meter	FM 201 f	rom GMS t	o ga	as outlet leg of Expro separator
		13:00	13 00	system.	ř			DDDT	т	Continue working goe motoring
	00.00	13.00	13.00			SURFR	FLOWI	FRUI	a c	Continue working gas metering
	12.00	00.00	11.00						т	Issues.
	13.00	00.00	11.00			SURPR	FLOWI	PRDT	4	Testing meters with CO2 and still
										finding offset between thermal
										conductivity and the MicroMotion in
										the GMS. While testing still, lost
										prime and basically emptied the CO2
										tank. Had 3,000 gal of N2 delivered
										and offloaded. Moved MicroMotion
										meter FM 201 from the GMS to the
										gas outlet of the Expro separator and
										tied into the automation system.
										Began testing with N2 with the new
										meter in place
3/04/2012										
	back.	ete i estir	ng of Micr	o Motion r	neter rigge	ed up in t	ne Atigun	House an	aev	aluate data. Started flowing well
	00:00	06:00	6.00			SURPR	FLOWT	PRDT	Ρ	Start testing of Micro Motion meter
										rigged up in Expro Spearator skid.
										Testing with N2 at four different rates.
	06:00	09:30	3.50			SURPR	FLOWT	PRDT	Ρ	Finished testing of the four varving
	000000000000000000000000000000000000000	1000	(Statester)						-50	rates and added a fifth rate test
										which is actually a re-test of the
										lowest rate test performed providuely
										in order to validate/compare date
	00.20	13.24	3.00			SIIPPP			D	Finished the re test of the lowest of
	09.30	13.24	3.90			SURPR	FLOWI	FRUI	P	Finished the re-test of the lowest rate
										and determined this data was
										acceptable. Shut down testing and
										lined the Expro separator up for flow.
										Optimization person was requested
	10.01	12.54	0.50				EL OW/T	RETV	D	to make several changes in software.
		13.54	0.50	1		SURPR	FLOVI	SFIY	۲	Hold Pre-Flow Back Safety Meeting
	13:24									
	13:24									with SLB, Expro, Halliburton hands
	13:24									with SLB, Expro, Halliburton hands in the Atigun House.
	13:24									with SLB, Expro, Halliburton hands in the Atigun House.

Time Logs	E	Te	Dur	C D	E D	Dhar	Code	Subcal	T Comment
Date	13:54	00.00	10 10	S. Depth	E. Depth	SURPRI	ELOW/T	PRDT	Open well to commence flow back
l	10.04	00.00	10.10			SUNPR	1 20001		As of 2005 hrs approximately 4 100
l	ļ				1				of of das has been flowed back
3/05/2012	'	L	L	<u> </u>	L	L		. <u> </u>	Jor or gas has been nowed back.
	Continu	ue with fl	owback o	perations	and moni	tor data.			
	00:00	00:00	24.00			SURPR			Continue with flow back operation.
l									Have flowed back approximately
							1		42mscf gas. BHP started at 1080psi
Ì	ļ				1				and as of 2030 hrs is around 750psi.
l									Well is loading up. Decision made to
l	ļ				1				start prepping for Procedure #13 ("Jet
Ì	ļ				1				Pump Running and Pulling) after
Ì	ļ				1				2300nrs. Pump truck and tanker with
Ì	ļ				1				F/vv ordered for after midnight.
Ì	l I				1		1		start actives let any
3/06/2010	⊢	L	<u> </u>	,		L	L	ب	jətart setting jet pump.
5.00/2012	Continu	Je imple	menting F	rocedure	#13 (.let ¤	oump Ru	nnina & P	'ullina) Flu	sh glycol out of well with N2 After
l l	bleedin	g down l	N2, pumr	heated F	W down	annulus	Slickline	drift & tao	set standing valve, set catcher, pull
	dummy	valve. n	oull catch	er, and run	jet pump			,	
	00:00	12:00	12.00			SURPR			Start implementing Procedure #13
l l	l I			j i	1		1	l I	(Jet Pump Running & Pulling) by
l l	l I			j i	1		1	l I	displacing glycol from the IA with N2.
l l	l I			j i	1		1	l I	Re-rig piping in wellhouse to facilitate
Ì	l I				1				this operation. Begin displacing the
l l	ļ				1				glycol by taking returns up the
l l	ļ				1				hearter string.
l	l I			I I	1		1		Bleed down N2 after all gycol out of
	12.00	16:20	1 50		ļ	SUPPE		├ ──┤	Well.
l l	12.00	10.30	4.50		1	JURPR			with 200bble EAV Basis bastic
l l	l I			i i	1		1	l I	F/W to 175 degrees and sums down
Ì	l I				1				annulus in order to equize process
l	l I			I I	1		1		at the GLM.
	16:30	17:30	1.00			SURPR			RDMO Pump Truck and tanker.
ł	17:30	19:00	1.50			SURPR			MIRU Slickline.
	40.00	10.45	0.75			011000	ļ		DIOM
Ì	19:00	19:45	0.75		1	SURPR			PJSIVI WITH Halliburton Slickline crew
	10.15	00.00	4.25		ļ	SUPPO			PT Lubricator to 500 pci with NO
Ì	19.45	00.00	4.20		1	SURPRI			Bleed down to 250 pci open will as t
Ì	ļ				1				BIH Commence slickline operations
Ì									as per Procedure #13
3/07/2012		•				·			
	Finish I	Procedur	re #13 by	setting jet	pump an	d began l	Procedure	e #14 (Jet	Pump Operations). Commence flow
	back to	Upright	#1 by sta	arting the je	et pump. N	Monitored	BHP and	d took BS8	W samples every 30min. BS&W
	sample	s started	around	8% and as	of 2100h	rs sample	es were re	eading abo	out .9% and at this time the total
	amount	t of prod	uced fluid	s was 42b	bls.	let := -			
	00:00	01:30	1.50			SURPR			Finish Procedure #13 by setting the "5-C" let Pump @1919'SLM
<u> </u>	01:30	02:00	0.50			SURPP			RDMO location with the slickling
I			2.00					L I	unit.
	02:00	02:24	0.40			SURPR			Line up well to flowback through
l				i i	1		1	l I	Expro separator and into upright tank
Ì									#1. Start up jet pump and begin
									taking returns.
									Page 34 of

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth Ph	ase (Code	Subcode	Т	Comment
	02:24	03:24	1.00		SU	RPR				Begin taking samples for the GKBU
										Lab and the USGS. Samples were
	02.24	06:24	2.00		C	DDD			_	moderately "silty".
	03:24	06:24	3.00		50	RPR				Continue flowing back well and
										enter separator around 0530brs
										Heavy silt samples taken from
										separator.
	06:24	20:55	14.52		SU	RPR			-	Continue flowing back into upright
										#1. Begin taking BS&W samples.
										First sample was about 8% solids.
										Subsequent solids were 7%, 5%,
										3.5% 2.8%, 1.5%, .5% and
										eventually went back up around .9%
										by 2100hrs. Total bbls of fluid
										produced by 2100hrs is about
	20.55	23.50	3.08		91	RPR			_	42001s.
	20.00	20.00	0.00		30	A IX				monitoring data strapping flowback
										tank and take samples
3/08/2012						-				
	Continu	ue Jet Pu	ump oper	ations, mo	nitoring data,	and ta	aking BS	&W sample	es.	
0	00:00	06:27	6.46		SU	RPR				Continue Jet Pump operations.
	06:27	06:46	0.33		SU	RPR				Air line to air/hydraulic SSV froze off
										ca suing the SSV to slowly shut in.
										Clear air line, open SSV and resume
										flow back operations. Air line was
										eventually placed inside heated "blue
										compressor was installed to allow for
										the compressors to be shut down
										and the Tanner Gas air drver re-filled.
	06:46	07:01	0.25		SU	RPR				Flow back was switched to upright
	07:01	23:58	16.96		SU	RPR			-	#2. Continue let Pump operations A
	01.01	20.00	10.00		00					snanshot of BS&W samples from
										midnight up to 2100 hhrs were from
										.8, 26, 1.3, 4.5, 1.2, 2.2, .6.
										Total bbls of produced fluids to
										uprights since startup is now at
										96.07 as of 2100hrs as well as
										98mscf gas. BHP at midnight was
										663psi and at 2100 hrs was 659psi.
					SU	RPR				
3/09/2012										
	Normal	Jet Pun	np operat	ions until 1	11:00am whe	n sepa	rator pre	ssure was	lost	t. No gas in fluids. Implementing
	00.00	11:00	11 00		SI	RPR		ssoure.	Р	Continue flowing back well and
	00.00								1	monitoring data.
	11:00	11:15	0.25		SU	RPR			Ρ	Pressure drops in separator and
	au 22 Grada C	2002 1000000000000000000000000000000000	510 180877.5520							wellhead. Very little gas coming
										back with fluids causing the
										separator to lose charge. Close
										choke to allow for pressure bulid up.
										Dogo 25 -5 64
										Page 35 of 64

٦	Time Logs									
	Date	From	То	Dur	S. Depth	E. Depth Phase	Code	Subcode	Т	Comment
		11:15	11:30	0.25		SURP	2		Ρ	Open choke to minimum flows. No
				1					1	gas.
				1					1	Adjust Jet Pump rate to ensure Jet
					L		<u> </u>			Pump operating.
		11:30	13:15	1.75		SURP	र।		Ρ	Pump N2 across wellhead to Expro
				1					1	separator to re-charge separator up
				1					1	to 125psi approximately.
				1					1	Switch to upright #1 to facilitate tank
				1					1	strapping (too much agitation
				1					1	causing plumb bob strap to give
		10.15	10:00	0.05	┥──┤	0	-	4	<u> </u>	Inaccurate readings).
		13:15	13:30	0.25		SURPI	x		Р	Snut down N2 pump. Continue
		12.00	14.07	1.40	┥──┤	01000	2	+	P	Deep abake furthers to a land
		13:30	14.37	1.12		SURPI	Ň			Wellbood process down at a first
				1					1	around 650 points and low on 545 point
				1					1	and then started to alight toward
				1					1	700nsi resulting in cheking back the
				1					1	well
	<u> </u>	14:37	15:22	0.75	+	SURP	ર	+	Р	Pressure slowly falls back Continue
				5.10						making adjustments with nump and
				1					1	choke to maintain flow
		15:22	17:31	2.15		SURP	રા		Ρ	Well essentially died and failed to
		4.59973339 77 3					1			produce fluids. Continue making
									1	adjustments to regain flow.
		17:31	18:31	1.00		SURP	5		Ρ	Pump started behaving erratically. It
				l						was fluctuating between 4 & 18 gpm.
		18:31	19:01	0.50		SURP	2		Ρ	Shut down pump. Flush lines and
				1					1	remove screen on suction line.
				1					1	Screen and line were clogged with
				1					1	sand. Re-route hoses on uprights
				1					1	tanks to facilitate suction from Tank
				1					1	#1 and flow into Tank #2 in order to
ļ		10.0	00.55	1	<u> </u>		1	1 1	L	allow "settling" of solids.
		19:01	23:59	4.98		SURP	x.		Р	Restart Jet Pump and establish flow.
				1					1	continue to monitor data and make
				1					1	aujustments to nelp retain flow. Start
				1					1	and replace with new pump in GMS
				1					1	2100brs, well has produced 16monf
				1					1	and 25 bils of fluid Spanshot of
				1					1	BS&W samples were 2.0 1.5 05
									1	.64. 1.22515
	03/10/2012					L	1		_	
		Normal	jet pum	o operati	ons until at	oout 1330hrs whe	n well wa	s shut in so	ac	ontrol valve on separator could
		be repla	aced. Re	sumed fl	low back of	peration after val	ve replace	ment.		
		00:00	00:45	0.75		SURP	2		Ρ	Continue efforts to keep well flowing.
				1					1	Vac arrives and hauls off 110 bbls of
									Ļ	returns for disposal.
		00:45	01:00	0.25	1	SURPH	<.		Ρ	Shut down power fluid pump 301 in
				1					1	order to remove 302 pump and install
ļ		01.01	00.01	F 4-	<u> </u>		1	1 1		new pump.
		U1:00	UE:00	5.00		SURPI			Р	Resume jet pump operations.
		06:00	06:15	0.25		SURP	۲		Ρ	Shut down pumping in order to
				1					1	re-configure pumps 301 & 302 piping.
									1	(This modification will facilitate a
										Iquicker pump installation next time)
	-								_	
										Page 36 of 64

Time Loas										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	06:15	13:30	7.25			SURPR			Ρ	Resume jet pump operations.
										Struggle to get well to previous
										performance level. Make adjustments
										to improve flow characteristics.
	13:30	18:36	5.10			SURPR			Ρ	Liquid level control valve on EXPRO
										separator washes out. Caught early
										when only a drip. Well shut in and
										flowline from wellhead to separator
										blown down with N2. Work
										commences on swapping out the
										washed out valve with a similiar valve
										already bolted in-line, but not being
	10.00								-	used. This location was blinded off.
	18:36	00:00	5.41			SURPR			Р	Open well and start Jet Pump
										operations. As of 2100hrs, in the
										previous 24hrs the well has produced
11/2012										81bbls of fluid and 15.5 mscf of gas.
11/2012	Finally	back to i	normal ie	t pump op	erations. N	Ionitorin	data and	d taking B	S&V	V samples.
	00:00	02:00	2.00	1		SURPR			P	Continuing jet pump operations. Gas
										ceases to flow before midnight.
										Lower BHP and well begins to flow
										again with gas around 2:00am
	02:00	00:00	22.00			SURPR	5		Ρ	Continue Jet Pump Operations. The
										well has a tendency to flow for a
										period of time then lose gas and go
										to minimum flow or even cease to
										flow until pressure builds back.
										Monitor data and continue to flow
										well. Some of the BS&W samples
										ranged from .2%, .5%, 2.0%, 4.0%,
										1.4%, .6%, .15%, 1.6%. As of
										2100hrs, for the previous 24hr period
										the well produced 18 bbls of fluid and
2/2012										12 mscf of gas.
12/2012	Continu	ue to low	er BHP, i	monitor da	ita, and tak	ke BS&W	samples	. Troubles	hoo	t GMS HPP issues.
	00:00	00:00	24.00			SURPR			Ρ	Currently in Jet Pump operations and
										bringing down BHP. Haul off 175
										bbls returns. Snow removal after
										blow. Shovel out around the
										buildings and piping. Troubleshoot
										pump issues. BS&W samples were
										running from .6, .22, 1.0, .5, 1.6, 3.2,
										2.8, .2, .01, .15 as of 2100 hrs for the
										last 24 hrs, the gas flowed back is
										7.2 mscf and the fluid produced are
0/0040										25 bbls.
13/2012	Continu	le to low	er BHP. I	monitor da	ita, and tak	e BS&W	samples			
	oonan				ia, and tai	io Douri	campico	•		
										Page 37 of 64

Time Lo	gs									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	23:30	23.50			SURPR	FLOWT	PRDT	Ρ	Currently in Jet Pump operations and bringing down BHP. Removed the small backpressure control valve in the Expro low rate metering skid. Controlling rate by holding surface separator pressure as low as possible. BS&W samples continue to range from 0.1 to 3.1% with a daily average of 0.9 and a spike of highest concentrations from 0930-1400 hrs. 10 mscf gas and 50 bbls H2O flowed back over the last 24 hrs as of 2030. Walked down location with CPAI environmental in preparation for ADEC visit tomorrow.
	23:30	00:00	0.50			SURPR	FLOWT	PRDT	Т	A dump valve in the flow back separator line cut out assumedly due to sand production. The well was shut in and efforts to blow down surface lines initiated
03/14/201	2 Washe water) circulat replace	d out the from the ting down	e water du inner ann n the hea ater dump	ump valve nulus with ter string a valve.	in the Exp 60/40 Trit and taking	oro test S herm (trie returns f	eparator. ethylene g rom the li	Shut in w glycol) and nner annul	ell, I initi us c	Displaced power fluid, (fresh ated well bore heating by asing valve. Waiting on
	00:00	04:00	4.00			SURPR	FLOWT	PRDT	Т	Blow down surface lines that contained power fluid (fresh water) One small section of riser found to be frozen at the well house door. Thawed same and cleared lines
	04:00	07:00	3.00			SURPRI	FLOWT	PRDT	Т	Pre tower safety / ops meeting to discuss path forward. Drafted procedure to displace inner annulus to 60/40 tritherm (triethylene glycol). Took on 200 gal of liquid N2.
	07:00	11:00	4.00			SURPR	FLOWT	PRDT	T	Walked lines and gathered necessary equipment. Broke glycol line at Expro stack pack bath. Added T with valves to facilitate blow down. Lined up lines to be able to take suction from the 125 bbl glycol tank deliver high pressure fluid to the heater string and returns from the IA to the 70 bbl sand jet tank. Returns truck on location. Shot tubing fluid level 703' @ 275 psi. Pressure up tubing with N2 to 700 psi IA at 60 psi. Re shot fluid level at 775' and 700 psi. After 10 minutes T=680 psi and IA = 260 psi.
	11:00	14:00	3.00			SURPRI	FLOWT	PRDT	Т	Loaded IA with glycol 1585 psi and 15 gpm taking returns to the 70 bbl sand jet tank. Returns truck took load to 1R-18 for disposal.
	14:00	00:00	10.00			SURPR	FLOWT	PRDT	Т	Circulating the IA with heated glycol. 929 psi and 16 gpm inlet temp 105 F
										Dogo 20 of 64
										Page 38 OF 64

Time Logs	_	-	-	0.0			0.1	<u></u>	-	
Date	From	10	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
3/15/2012	24 nr Su	<u>mmary</u> od woob	ad out w	atar duma	volvo with	differen	tatula aar	tralvalva	Die	ale se alveal from inner annulus
	(IA) with	h N2 1	ad IA wi	th nower fl	uid (fresh	water)	Start iet n	umping an	d flo	wing the well at 123 MSCE/D
	00:00	10:18	10.30			SURPR	FLOWT	PRDT	T	Circulating the IA with heated glycol.
	10.10	10.00					-		-	-
	10:18	10:30	0.20			SURPR	FLOWI	PRDT	1	Start cooling down N2 pump in SLB
										GMS. Expro crew replacing washed
2	10.30	11.48	1.30		5			PPDT	т	Out water dump valve.
	10.50	11.40	1.50			SURFR	FLOWI	FRUI		Shut in high pressure pump. S/I
										Heater and IA valves Blow down
										soft hoses to 125 bbl glycol tank
	11:48	14:48	3.00			SURPR	FLOWT	PRDT	Т	Pump N2 down the IA taking glycol
										returns up the heater string to the
										125 bbl tank. Shut down trapping
										1151 psi N2 on the IA.
	14:48	15:48	1.00			SURPR	FLOWT	PRDT	Т	Line up high pressure pump to load
										the IA with power fluid pumping down
										the heater string taking N2 returns
									_	to the sand jet tank.
	15:48	18:18	2.50			SURPR	FLOWT	PRDT	T	load the IA with power fluid while
										bleeding N2 slowly as fluid rises in
										the IA to maintain 700 psi
										hydrostatic pressure at the jet pump
0	18.18	18.12	0.40		-		EL OW/T	DDDT	т	/ CAT standing valve.
	10.10	10.42	0.40			SUITER	LOWI	FILDT		tank number 2 Expre flowing back
										through separator to tank #1
	18.42	20.06	1.40		-	SURPR	FLOWT	PRDT	Р	Come on line with jet nump at 8
		20.00							·	and Gas returns to surface well
										head pressure 494 psi, take Iso tube
										sample of gas (N2 29%, CH4 70%,
										C02 1%, SF6 0.373 ppm, R114
										1.571 ppm). Fluid to surface at
										20:00
	20:06	00:00	3.90			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1800 psi
										at the IA. Well flowing 24 MSCF/D
										gas. Slowly working well head
										pressure down. Optimized rate 123
										MSCF/D gas at 184 well head
			0				ò			pressure.
/16/2012	Marris	lat com		ene 1146 E.		halc				
	1NOrmal	jet pum	p operation	ons with 50	o pump in	noie. A	verage ra	te an WSC	Fυ	gas and T80 BWD. Off loaded
	200 001	06.00	6 00	iu.		SURPRI	FLOWT	PRDT	Р	let numping at 11 gpm and 1000 psi
	00.00	50.00	0.00			SORTIX				at the IA Well flowing 60 MSCED
										gas. Slowly working well head
										pressure down.
	06:00	12:00	6.00			SURPR	FLOWT	PRDT	Р	Jet pumping at 11 gpm and 1890 psi
										at the IA. Well flowing 110 MSCFD
										gas. Slowly working well head
										pressure down.
	12:00	18:00	6.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11.5 gpm and 1990
										psi at the IA. Well flowing 110
										MSCFD gas. Slowly working well
										head pressure down.
									_	
										Page 39 of 64

Date 3/17/2012	From 18:00	<u>To</u> 00:00	Dur 6.00	S. Depth	E. Depth	Phase SURPR	Code FLOWT	Subcode PRDT	P	Comment Jet pumping at 11-12 gpm and 1990 psi at the IA. Well flowing 110 MSCFD gas. Slowly working well
3/17/2012	18:00	00:00	6.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11-12 gpm and 1990 psi at the IA. Well flowing 110 MSCFD gas. Slowly working well
3/17/2012										neau pressure down. Rig up vac
3/17/2012				1						truck to take returns from upright number 251. Found broken valve stem on upright. Had to empty tank to break connection. Encountered
3/17/2012										packed sand in the bottom of the 400 bbl upright. Estimate 20 bbls of sand remains in tank and 10 bbls of sand off loaded with produced fluid. Total volume trucked away 280 bbls.
	Normal 9pm 3/ [.] % sedir	jet pum 16-17/12 ment.	p operatio	ons with 50 t High Pres	C pump in ssure Pum	hole. Pr np (HPP)	oduced 1 #1 HPP #	42 MSCFI #2 has app	D ga prox	s and 148 BWD from 9 pm to 50 hrs. Returns averaged 2.19
	00:00	06:00	6.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1990 psi at the IA. Well flowing ~ 137 MSCFD gas. Slowly working XPIO gauge #2 down from 555 psi.
	06:00	12:00	6.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1960 psi at the IA. Well flowing ~140 MSCFD gas. XPIO gauge #2 550 - 543 psi.
	12:00	18:00	6.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1640 psi at the IA. Well flowing ~148 MSCFD gas. XPIO gauge #2 543 - 537 psi.
	18:00	00:00	6.00			SURPR	FLOWT	PRDT	Ρ	Continue jet pumping at 11 gpm and 1740 psi at the IA. Well flowing ~148 MSCFD gas. Working XPIO gauge #2 down slowly from 537 psi. Rebuilt High Pressure Pump (HPP) #1. Expect 300-400 hrs with feed water of 0.05 % solids.
3/18/2012	Normal 3/17-18 attempt	jet pum /12. Ice to resta	p operation blockage	ons with 50 e develope wing.	C pump in ed in flare	hole. Pr line forcir	roduced 7 ng well to	5 MSCFD be shut in	gas 1 hi	and 57 BWD from 9 pm to 9pm r to clear the line. Jet pumping in
	00:00	03:00	3.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1740 psi at the IA. Well flowing ~140 MSCFD gas. XPIO gauge #2 533 psi.
	03:00	06:00	3.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1740 psi at the IA. Well flow decreasing to 100 MSCFD then climbing to 125 MSCFD gas. XPIO gauge #2 dipping some but averaging 533 psi.
	06:00	09:00	3.00			SURPR	FLOWT	PRDT	P	Jet pumping at 11 gpm and 1740 psi at the IA. Well flowing ~127 MSCFD gas XPIO gauge #2 dipping some but averaging 533-534 psi.
	09:00	11:00	2.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1740 psi at the IA. Well flowing ~125 MSCFD gas XPIO gauge #2 steady at 533 psi.

Time Lo	ogs									
Date	From	То	Dur	S. Depth	E. Depth Phase	e Code	Subcod	e T	Comment	
	11:00	12:00	1.00		SURF	RFLOWT	PRDT	Т	Ice blockage issue discovered in the	
									flare line. Forced to come down on	
									the jet pump at 11:00 and shut the	
									well in. SLB S/I and blew down	
									surface suction and discharge lines.	
									SLB pushed air across the tree to	
									blow down Expro lines by passing	
									the separator to the returns tanks	
									BOth Expro and SI B cleared the	
									blockage ice in the flare line	
~	12:00	20:00	8.00		SURF	RIFLOWT	PRDT	Р	Flood GMS HPP lines and initiate et	
									pumping at ~ 8 gpm Walk jet pump	
									rate up until a pressure of 1950 at	
									the IA ~11 apm Well NOT flowing	
									das XPIO dauge #2 climbing slowly	
									from 550 to 570 psi. Spotted Tank O	
									400 bbl upright tank in secondary	
									containment	
	20:00	00:00	4.00		SURF	RIFLOWT	PRDT	Р	Coontinue to pump at ~11 gpm and	
	10.00				- Corta				1950nsi Well NOT flowing das	
									XPIO gauge #2 climbing slowly	
03/19/20	12		1						parte gauge ne entititity slowly.	
	Unable	to resta	rt produc	tion by jet	pumping. Atterr	pted to pull	jet pump	o. Ong	going.	
	00:00	07:24	7.40		SURF	RFLOWT	PRDT	Р	Continue to pump at ~11 gpm and	
									1950 psi. Well NOT flowing gas.	
									XPIO gauge #2 climbing slowly.	
	07:24	08:09	0.75		SURF	RIFLOWT	PRDT	Р	Lower rate from ~ 11 gpm to ~8 gpm	
									and. Well NOT flowing gas. XPIO	
									gauge #2 climbing slowly. Monitor	
									pressure and raise rate back to ~11	
									gpm.	
	08:09	11:09	3.00		SURF	RIFLOWT	PRDT	Р	Continue to pump at ~11 gpm and	
									1950 psi. Well NOT flowing gas.	
									XPIO gauge #2 climbing slowly.	
									Heating well bore while preparing for	
	11.00	10.07	1.00		0.110.0	D D D D D D		_	slick line intervention.	
	11:09	12:27	1.30		SURF	RIFLOWT	PRDT	Р	Cool down N2 pumps. Shut down	
									High Pressure Pump and S/I well.	
									Blow down surface lines from well	
									head through Expro, by passing the	
									separator to return tanks with N2.	
							1		Block in Expro. Blow down suction	
							1		and hard line to 70 bbl sand jet tank	
									with air. Come online with N2 to the	
							1		tubing taking returns to the 70 bbl	
							1		sand Jet tank. Slick line on location	
						_		_	and spotting up to well.	
	12:27	15:03	2.60		SURF	RIFLOWT	PRDT	Р	Pump 11932 SCF N2 at 1600 psi to	
							1		tubing. Shut down with 1600 trapped	
							1		on the tubing and 400 trapped on the	
							1		IA. Bleed the tubing to 600 and the	
	45.00	10.00	1.50		0.155		DDDT		IA to zero.	
	15:03	16:33	1.50		SURF	RIFLOWI	PRDT	Р	Slick line RIH with 3.5 dump bailer.	
							1		1 ag top of pump at 1919' POH and	
									make up fishing tool string.	
									Page 41 of 64	
Time Logs										
-----------	----------------	------------	--------------	--------------	-------------	-------------	-----------	-------------	------	--
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	16:33	20:03	3.50			SURPR	FLOWT	PRDT	Ρ	RIH with jet pump fishing tool string
										and attempt to latch up. After ~10
										tries able to latch up and started
										hitting oil jar licks. Unable to move
										pump up hole. Attempt to sheer off
										the jet pump for 60 minutes. Slow oil
										iar action spang action not visible
										Pumped 155 gal of thritherm down
										the heater string, taking returns to
										the tubing Able to break free cand
										and silt found on tools at surface
	20.03	22.03	2.00			SURPR	FLOWT	PRDT	P	On surface with tools Add lubricator
	20.00	22.00	2.00			SORT	LOWI		1	on surface with tools. Add tubicator
										and lengthen tool string with longer
	22.02	00.00	1.05				FLOWT	DDDT	D	spangs and more weight bar.
	22:03	00:00	1.95			SURPR	FLOWI	PRDI	Р	Make up tool string with long spangs
										and thin the oil in the oil jars. RIH.
										Hard time latching up again, once
										latched working wire with indication
										of good hits. Start attempting to
										sheer off at 23:00. Free at 23:48.
										POOH and RD for night.
8/20/2012										
	Pulled	4 1/2" jet	t pump as	ssy from 1	919'. Atte	mpted to	shear kn	ockout in s	stan	ding valve. Pressure response
	from we	ell indica	ted a pos	sible shea	ir howeve	r tattle ta	I on pron	g was not	shea	ared. Continue to circulate hot
		IOWN THE	neater s	tring taking	g returns t	rom the I	nner annu	JIUS.	D	Determent weeks and the estimate and
	00.00	07.30	7.00			SURFR	FLOWI	FRUI	г	Returns truck on location to suck
										down 70 bbi sand jet tank. Vacuum
										30 bbls returned power fluid from 70
										BBLs sand jet tank. Line up Inner
										Annulus (IA) to take returns to the
										sand jet tank. Come online with the
										GMS High Pressure Pump (HPP)
										down the heater string with heated
										glycol. Pumped 50 glycol to IA, shut
										in returns to the Sand jet tank and
										initiated circulation of heated glycol
										through t SLB line heater.
	07:36	08:00	0.40			SURPR	FLOWT	PRDT	Ρ	Cold weather advisory for Kuparuk
										notification. Called CPA Wells Supt
										to discuss36 F on location.
										Called out Slick Line (SL) unit.
	08:00	09:30	1.50			SURPR	FLOWT	PRDT	Р	Continue to circulate IA with heated
	areaaaja,58852		100005305000							glycol. Organized resources for
										notential Coiled Tubing (CT)
										intervention in case SL intervention
										foiled to retrieve ist sums Class
										la setien Dre Jeb sefet d'avera
										location. Pre Job safety discussion.
										CPAI Cold Weather Equipment
										Operating Variance reviewed, safety
										discussion held and document
										signed. SL crew released to rig up.
										Expro constructing 20'x20' revetment
										for sand trap. Sand trap and iron on
										location.
	09:30	12:30	3.00			SURPR	FLOWT	PRDT	Р	SL R/U, Cut back 200' of wire, 16' 2
										5/8" stem, OJ, LSS, and stand by for
										2 1/8 jars.
										· · ·

	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		12:30	13:30	1.00			SURPR	FLOWT	PRDT	Ρ	Cold weather advisory lifted -34 F. HES delivered 3000 gal N2. 55' lubricator, 33' tool string. PT w N2 to 700 psi RIH to pull jet pump W 4 1/2 PRS, S/D Latch @ 1919' SLM. Jar 1500-1800 for 45 minutes untill pump assy came free. Drilling Tool House delivered timbers and herculite for
											sand trap revetment.
		13:30	15:00	1.50			SURPR	FLOWT	PRDT	Ρ	OOH W/ jet pump assy. Lock missing small piece of packing. Lay down assy and cut 200' of wire. Drop 8' of 2 5/8" stem.
		15:00	16:30	1.50			SURPR	FLOWT	PRDT	Ρ	Pump 42 gal of Glycol from the IA to the tubing (T) Glycol tank has 37-38 bbls. RIH W/ 5'x3" pump bailer W/ Mule shoe ball. S/D @ 1932' SLM stroke bailer a few times. POOH w metal marks on bailer bottom, recovered piece of packing from lock on jet pump assy. No other solids in bailer. Stand by SLU and deliver pump to Y-Pad shop for disassembly. Found 1/2" x 3/8" piece of metal (appears to be shear stock) lodged in the throat of the jet pump.
		16:30	18:30	2.00			SURPRI	FLOWT	PRDT	Ρ	RIH W 3.50 cent, 2' stem, 3.25 cent, 47' x 1" prong. Stop at 1850'. Bleed T to 600 psi. S/D @ 1932' SLM, attempt to tap past but unable to. POOH to inspect tools. OOH small amount of sand on tools and marks on prong.
		18:30	19:30	1.00			SURPRI	FLOWT	PRDT	Ρ	RIH W/ 3.25 cent, 2' stem, 3.50 cent, XO,XO, 37" prong, distance from bottom centralizer to bottom of prong = 44", S/D @ 1933' SLM, jar down attempt to bounce past. Pressure indication on T and down hole XPIO P1 that knockout had sheared. POOH. OOH tattle tail not sheared.
		19:30	20:30	1.00			SURPR	FLOWT	PRDT	Ρ	RIH W/ 4 1/2" PRS, S/D @ 1932' SLM Tap down lightly. Unable to latch up. One friction bite after hand spanging held to ~ 500 lbs. POOH. OOH tool has silt on it.
		20:30	21:00	0.50			SURPR	FLOWT	PRDT	Ρ	RIH W/ 3.25" cent, 2' stem, 3.50" LIB, S/D @ 1933' SLM, Tap down POOH. Tool has silt on it and no impression.
		21:00	21:30	0.50			SURPR	FLOWT	PRDT	Ρ	R/D SL unit
12	- <u>-</u>	21:30	00:00	2.50			SURPR	FLOWT	PRDT	Ρ	Continue to circulate the IA with heated glycol.
											Page 43 of 64

Т	Time Logs										
ļ	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
C	3/21/2012	24 hr Su	mmary				92.5				17. 379 N G
		Spotted valve h	d sand tr ung at 1	ap in cont 957'. Kno	tainment, ocked out	rigged up KOBE sav	same. B w XPIO #	ailed dow 3 rise fro	n to to loc m 562 psi	k, se to 9	eal bore assembly, and sanding 71 psi
ſ		00:00	08:00	8.00			SURPR	FLOWT	PRDT	Ρ	Continue to circulate the IA with heated glycol.
ľ		08:00	08:15	0.25			SURPR	FLOWT	PRDT	Р	Pressure up Tubing with N2 to 700
											psi. 40 bbls in glycol tank, S.G. = 1.087 corrected to 60 F
		08:15	09:45	1.50			SURPR	FLOWT	PRDT	Ρ	Slick line on location, perform prejob, rig up (0.125 wire), 2.125" stem, TS = RS,QC,6',QC,KJ,5',QC,LSS,QC. (OAL 28(*))
		09:45	10:45	1.00			SURPRI	FLOWT	PRDT	Ρ	PT W N2 to 700 lbs, RIH W/3" x 5' pump bailer, sit down @ 1932' SLM tap down work pump bailer. Work down to 1933' SLM stick bailer tap up to free tools POOH. OOH no marks. recover 1 quart of sand.
Ī		10:45	11:15	0.50			SURPR	FLOWT	PRDT	Ρ	PT W N2 to 850 psi
		11:15	12:30	1.25			SURPR	FLOWT	PRDT	Ρ	RIH W 3" x 5' pump bailer, sit down @ 1932 slm. Hit down 5 times work pump bailer for 30 min. Hit down 8 more times POOH. OOH recover 1 quart of sand. Good metal marks from the top of the lock.
Ī		12:30	12:45	0.25			SURPR	FLOWT	PRDT	Ρ	PT W N2 to 850 psi
		12:45	13:30	0.75			SURPR	FLOWT	PRDT	Ρ	RIH W 3.48" CEN 3" X 1.875" stem 3.61" cen barbell and 1 3/4" sample bailer (17"), Zero @ bottom of cen, sit down @ 1931' SLM. Beat down very hard. Unable to make hole. Work tools by hand. POOH, OOH sample bailer full no metal marks.
- [13:30	13:45	0.25			SURPR	FLOWT	PRDT	Ρ	PT W N2 to 800 psi
		13:45	14:45	1.00			SURPR	FLOWT	PRDT	Ρ	RIH W 3.48" CEN 3" X 1.875" stem 3.61" cen barbell and 1 3/4" sample bailer (28"), Zero @ bottom of cen, sit down @ 1931' SLM. Work tools by hand. Make 1' depth. Pull out of lock, sit back down. Work tools. Unable to make hole. POOH, OOH no metal marks very little in bailer.
ſ		14:45	15:00	0.25			SURPR	FLOWT	PRDT	Ρ	PT W N2 to 800 psi
		15:00	16:00	1.00			SURPR	FLOWT	PRDT	Ρ	RIH W 3.48" CEN 3" X 1.875" stem 3.61" cen barbell and 1 3/4" sample bailer (17"), Zero @ bottom of cen, sit down @ 1932' SLM. Work tools by hand. Worked tools down 1'. Pulled 400 over to pull free. Set down, tap down, make 1 foot, pull free. POOH, OOH no metal marks. Bailer full.
											Page 44 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	16:00	17:00	1.00			SURPR	FLOWT	PRDT	Ρ	Add 8' 2.125" stem and PT to 800
										psi W N2. RIH W 3.48" CEN 3" X
										1.875" stem 3.61" cen barbell and 1
										3/4" sample bailer (28"), Zero @
										bottom of cen, sit down @ 1931'
										SLM. Work tools by hand to 1932.5'
										SLM. Tap up to free tools. sit back
										down at 1931' SLM. Tap down on
										tools to 1932.5°. POOH, OOH no
	17.00	18.15	1 25				EL OW/T	DRUT	D	T to 200 poi W N2 PILL W 2 49"
	17.00	10.10	1.20				LOW		1 00	CEN 3" X 1 875" stom 3 61" con
										harbell and 1 3/4" sample bailer
										(28") Zero @ bottom of cen sit
										down @ 1931' SI M Work tools to
										1933' SLM. Tap up to free tools, sit
										back down at 1931' SLM. Tap down
										on tools to 1932'. POOH, OOH good
										metal marks. Bailer full.
	18:15	19:30	1.25			SURPR	FLOWT	PRDT	Ρ	PT to 800 psi W N2. RIH W 3.48"
										CEN 3" X 1.875" stem 3.61" cen
										barbell and 1 3/4" sample bailer
										(28"), Zero @ bottom of cen, sit
										down @ 1931' SLM. Work tools by
										hand to 1933' SLM. Tap up to free
										marka Bailer full
	19:30	20:45	1.25			SURPR	FLOWT	PRDT	Р	PT to 800 psi W N2 RIH W 5' x
										3/4" pump bailer. Sit down at 1931'
										SLM. Tap down and skip past lock.
										Sit down@ 1934' SLM tap down and
										work pump. POOH. OOH with
										pump blue fluid and 1 quart sand.
	20:45	22:00	1.25			SURPR	FLOWT	PRDT	Ρ	PT to 800 psi W N2. RIH W 3.48
										cent 3' x 1875" stem 3.61" cent and
										equalizing prong. Sit down @ 1931
										SLIM. Work to 1934 no pressure
										and KORE. See XPIO gauge # 2
										clime 200 nsi POOH OOH with
										good metal marks on prong
										centralizer.
	22:00	22:45	0.75			SURPR	FLOWT	PRDT	Ρ	Watch well, little change in tubing
										pressure ~800 psi. 965 psi on XPIO
										gauge # 3. Shut down SLB HPP and
										shut in IA returns line at 125 bbl
										glycol tank. Shut down surface
										giycol circulation. Open IA to open
										flow Stop up to 11 gam size lating
										hot alveol down the eater string
										taking returns up the la to the 125
										bbl tank. SLU rigged down for the
										night.
	22:45	00:00	1.25			SURPR	FLOWT	PRDT	Ρ	Continue to circulate the IA with
										heated glycol.
										Dage AF of 64
										Faye 43 01 04

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
03/22/2012	24 hr Su	mmary					1963 - 1972-197-1			
	Pulled	Weather	ford stan	ding valve	with polis	hed bore	@ 1957	RKB. Rer	mov	ed ball and both KOBE
	knocko	uts, rese	et at same	e. Set 3" F	RC jet pun	пр (S/N: I	PH-1108)	with space	er pi	pe and stinger assembly on
	3.812 [DB lock (OAL 200)")@194	12' RKB.	Pushed 4	13 bbls gl	ycol back t	o E>	kpro stack pack. Displaced 50
	bbls gly	ycol from	n inner an	nulus to 1	25 bbl gly	col tank.	Loaded I	A with pow	ver f	luid, commence jet pumping
2	activitie	es pumpi	ing to the	IA taking	productior	from the	e tubing th	hrough the	sep	arator to return tanks.
	00:00	06:45	6.75			SURPR	FLOWT	PRDT	Р	Continue to circulate the IA with
									-	heated glycol.
	06:45	08:45	2.00			SURPR	FLOWI	PRDT	Р	Slick line on location, perform prejob,
										rig up (0.125 wire), 2.625" TS =
										RS,8',QC,KJ,LSS,QC. (OAL 210")
	00.45	00.45	4.00				FLOWE	DODT	-	Cut 150' of wire.
	08:45	09:45	1.00			SURPR	FLOWI	PRDT	Р	PT to 800 psi W N2. RIH W 3.48"
										CEN 3" X 1.875" stem 3.61" cen
										barbell and 1 3/4" sample baller
										(28), sit down @ 1932 SLIVI. Work
										ROOH OOH good motol marks on
										hailer Bailer empty
	09.45	11.00	1 25			SURPRI	FLOWT	PRDT	Р	PT to 875 psi W N2 Open up
	00.40	11.00	1.20						Ľ	nressure dropped to 850 psi RIH W
										4 5" PRS sit down latch Weatherford
										SV @ 1931' SLM. Hit 10 O. Hicks &
										5 spang licks Pulled SV POOH W
										standing VLV.
	11:00	12:00	1.00			SURPR	FLOWT	PRDT	Ρ	PT to 860 psi W N2. RIH W 3" drive
										down bailer, sit down @ 2176' SLM /
										2201' RKB tap down once POOH
										OOH bailer ful of fluid. Expro
										wrapped sand trap in rino hide (
					3					reinforced visqueen).
	12:00	13:15	1.25			SURPR	FLOWT	PRDT	Ρ	PT to 865 psi W N2. RIH W 4.5" Z-6
										& 3.75 DB lock, Weatherford seal
										bore assembly, and standing valve W
										ball, seat, and both KOBE
										knockouts removed. Set lock in DB
										nipple @ 1913' SLM / 1957' RKB.
										POOH OOH W/ Z-6, tattle tail
e <u>.</u>	13-15	11.45	1.50		5	SUPPR	EL OW/T	PPDT	P	Indicates good set.
	13.15	14.40	1.50			SURPR		FRUI	Г	P I to oou psi W N2. RIH W 4.5" Z-6
										A 3.6 12 DB lock & 3 RC jet pump
										Stinger tip 1 73" ID Sit down on
										stinger @ 1913' SI M tap down work
										nast and set down at 1917' SI M set
										let pump good pull test shear off
										POOH OOH tattle talil indicates lock
										NOT set.
	14:45	15:45	1.00			SURPR	FLOWT	PRDT	Р	PT to 860 psi W N2. RIH W 4.5"
	103 - 17 <i>11</i> 725348.		1222.070201024					1999-1997 ABA-1970		PRS sit down @ 1917' SLM. Hit 5
										licks move jet pump up to 1910' SLM
										beat up on jet pump for 20 min. Pull
										jet pump free. POOH OOH. Jet
										pump looks good.
	15:45	16:15	0.50		3	SURPR	FLOWT	PRDT	Р	Redress lock, stinger looks good.
										Page 46 of 64

	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		16:15	17:45	1.50			SURPR	FLOWT	PRDT	Ρ	PT to 860 psi W N2. RIH W 4.5" Z-6 & 3.812 DB lock & 3" RC jet pump S/N: PH-1108 ratio 6C (OAL 200") Stinger tip 1.73" ID. Sit down on stinger @ 1913' SLM tap down work
											tools down and set down at 1919' SLM Beat down Z-6, good pull test, shear off, POOH OOH tattle tail indicates lock good set.
		17:45	19:15	1.50			SURPR	FLOWT	PRDT	Ρ	SL Rig down.
		19:15	20:00	0.75			SURPR	FLOWT	PRDT	Ρ	Pushed 33 bbls glycol to Expro stack pack tank to replentich Glycol used when loading the IA. 15 bbls glycol remain in the 125 bbl tank.
		20:00	23:24	3.40			SURPR	FLOWT	PRDT	Ρ	Line up N2 pump to displace the inner annulus with N@ taking glycol returns to the 125 bbls tank. Returned 39 bbls of glycol to the 125 bbl tank. Estimate 11 bbls of glycol left in the tubing.
		23:24	00:00	0.60			SURPR	FLOWT	PRDT	Ρ	Line up to pump N2 across the tree to Expro. Pressure test through sand trap to 1000 psi. Pressure test good.
	03/23/2012	Unable tubing v returns	to remo via heate to the 70	ve hydrat er string a 0 bbl san	te plug in p nd open p d jet tank.	oroduction ocket at 1 Bring wel	casing v 944'. Bu Il online u	ia dissoci II head N Inder jet p	iation. Bu 2 down tu oump proc	ll hea bing luctio	ad 250 gal140 F glycol down to open pocket at 1944' taking on.
		00:00	03:45	3.75			SURPR	FLOWT	PRDT	Ρ	Blow air through surface lines in direction of supply and back through suction to tanks. Attempt to flood suction lines to HPP. Troubleshoot blockage. Flood lines, prime pumps.
		03:45	05:45	2.00			SURPR	FLOWT	PRDT	Ρ	Fill inner annulus with power fluid via the heater string while bleeding at IA to the 70 bbl sand jet tank. Start 795589 gal at 16 gpm. Raise rate to 22 gpm for 45 minutes. Reduce rate to 10 gpm, catch fluid at sand jet tank. Shut down pump 797513 gal - total 1924 gal.
		05:45	08:15	2.50			SURPR	FLOWT	PRDT	Ρ	Line up HPP to IA, taking returns & production to Expro. Start HPP. Fluid to surface at 07:21. 28% N2, 70%CH4, 0%CO2,0.423 ppm SF6, 2.144 R114 @ 08:00. Slow HPP rate to 5 gpm for 5 min, increase rate to 10 gpm.
2		08:15	14:15	6.00			SURPRI	FLOWT	PRDT	Ρ	Increase rate to 14 gpm 08:35, slow rate to 12 gpm 0846, slow rate to 10 gpm 08:56, increase rate to 12 gpm 09:07, increase rate to 14 gpm 09:28. Hold rate.
											Dage 47 -6 64
											Fage 47 01 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	14:15	16:09	1.90			SURPR	FLOWT	PRDT	Ρ	Start cool down of N2 pump. Come down on the HPP. Blow down all surface lines and line up to pump
										heated glycol to the tubing via the heater string. Pump 250 gal of
										heated glycol down the heater string while trapping pressure on the tubing
	16.09	18.00	2.00			SURPRI	EL OW/T	PROT	P	and IA. 46 bbls of glycol in 125 bbl tank.
	10.05	10.05	2.00				LOWI	I KBT	Ĺ	taking returns through the open pocket at 1944' to the 70 bbl bleed
										tank via the inner annulus. Pumped 11277 SCF, small amount of N2
										returns observed at the returns tank. Shut down the pump.
	18:09	18:39	0.50			SURPR	FLOWT	PRDT	Ρ	Line up HHP to IA, taking returns & production to Expro. Start HPP at 13 gpm and 1500 psi. Open up the well to the separator
	18:39	19:45	1.10			SURPR	FLOWT	PRDT	Ρ	Draw down well head through separator.
	19:45	20:21	0.60			SURPR	FLOWT	PRDT	Ρ	Draw well head to 100 psi, gas rate increased to 236 MSCFD, XPIO2 decreased to 350 psi. Shut in choke
										to build bottom hole pressure.
	20:21	00:00	3.65			SURPR	FLOWT	PRDT	Ρ	Attempt to stabilize rate at 490 psi. 0-150 MSCFD and slugging water.
03/24/2012	Normal trendin	jet pum g to zero	p operatio	ons gas flo XPIO 2 4	ow trendin 75-510.	g down fr	rom 50 to	20 MSCFI	D. V	Vater and solids production
	00:00	03:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 200-300 psi. Flow rates: ~ 50 MSCFD gas. Water consumed 8.3 bbls. BS&W 0.05% to 0.0%. Managing flow by target pressure of 490 psi on XPIO gauge #2, average 460 psi. Jet pumping at 11-12 gpm and 1000-1100 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet.
	03:00	06:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 250-300 psi. Flow rates: ~ 40 MSCFD gas. Water produced 2.5 bbls. BS&W zero. Managing flow by target pressure of 490 psi on XPIO gauge #2, average 460 psi. Jet pumping at 11-12 gpm and 1000-1100 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet.
										Тот с ^с тот и
										Page 48 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	06:00	09:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 250-260 psi. Flow rates: declining from 35-25 MSCFD gas. Water consumed 1.7 bbl. BS&W
										Pressure of 490 psi on XPIO gauge #2, increasing 460-477 psi. Jet pumping at 11-12 gpm and 1000-1100 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet
	09:00	12:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 175-250 psi. Flow rates:
										35-25 MSCFD gas. Water consumed 2.5 bbls. BS&W zero. Managing flow by target pressure of 490 psi on XPIO gauge #2, increasing 450-525 psi. Jet pumping at 11-12 gpm and 1000-1100 psi at the IA. Trace solids after tank swap at the High Pressure Pump (HPP) inlet. Incident at 09:30 while swapping power fluid supply / return tanks the suction line to the HPP was frozen and jet pumping was temporarily down. Crews swapped back to the original configuration, diagnosed and rectified the issue.
	12:00	15:00	3.00			SURPRI	FLOWT	PRDT	Ρ	Well head 250 psi. Flow rates:~25 Well head 250 psi. Flow rates:~25 MSCFD gas. Water produced 3 bbls. BS&W zero. Managing flow by target pressure of 490 psi on XPIO gauge #2, 502-511 psi. Jet pumping at 11-12 gpm and 1000-1100 psi at the IA. trace solids at the HPP suction
	15:00	18:00	3.00			SURPRI	FLOWT	PRDT	Ρ	Well head 250-225 psi. Flow rates: 20-25 MSCFD gas. Water produced 0 bbls. BS&W zero. Managing flow by target pressure of 490 psi on XPIO gauge #2, 510-485 psi. Jet pumping at 11-12 gpm and 1000-1050 psi at the IA. trace solids at the HPP suction.
	18:00	21:00	3.00			SURPRI	FLOWT	PRDT	Ρ	Well head 225-200 psi. Flow rates: 27-20 MSCFD gas. Water produced 0. BS&W zero. Managing flow by target pressure of 490 psi on XPIO gauge #2, 485-475 psi. Jet pumping at 11-12 gpm and 1010-1000 psi at the IA. trace solids at the HPP suction.
	21:00	00:00	3.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 11 gpm and 1000 psi at the IA. Slowly working BHP down.
03/25/2012	Normal gpm. G MSCF.	jet pum as rates Water p	p operation increase productio	ons gas flo d then trer n 8.3 bbls	w trendin nded lowe as of 20:0	g down fr r ~14 -13 0. BHP (om 11 to MSCFD @ XPIO 2	7.5 MSCF Total gas 2 420 psi.	D. pro Soli	Jet pump rate increased to 13 duced from midnight to 20:00 9.3 ds production zero.

Time Lo	gs									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	03:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 175-160 psi. Flow rates: ~ 11-8 MSCFD gas. BS&W 0.0%. Managing flow by target pressure of
										490 psi on XPIO gauge #2, average 500 psi. Jet pumping at 11-12 gpm
										and 1070 psi at the IA. Trace solids at the High Pressure Pump (HPP)
			0.55			0115-55	EL 0		_	inlet.
	03:00	06:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 160-150 psi. Flow rates: ~8 - 7.5 MSCFD gas. BS&W 0.0%. Managing flow by target pressure of 490 psi on XPIO gauge #2, average 500 psi. Jet pumping at 11-12 gpm and 1070 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet.
	06:00	09:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 150-250 psi. Flow rates: ~8 - 14 MSCFD gas. BS&W 0.0%. Managing flow by target pressure of 440 psi on XPIO gauge #2. Increased rate to drop bottom hole pressure 1300 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet.
	09:00	12:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 250-220 psi. Flow rates: ~ 15 MSCFD gas. BS&W 0.0%. XPIO gauge #2, average 435 psi. Jet pumping at 1300 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet.
	12:00	15:00	3.00			SURPR	FLOWT	PRDT	Ρ	Well head 220 psi. Flow rates: ~ 15 MSCFD gas. BS&W 0.0%. XPIO gauge #2, average 425 psi. Jet pumping at 1317. Trace solids at the High Pressure Pump (HPP) inlet.
	15:00	18:00	3.00			SURPR	FLOWT	PRDT	P	Well head 215 psi. Flow rates: ~ 13 MSCFD gas. BS&W 0.0%. XPIO gauge #2, average 425 psi. Jet pumping at 1315 psi at the IA. Trace solids at the High Pressure Pump (HPP) inlet.
	18:00	00:00	6.00			SURPR	FLOWT	PRDT	Ρ	Jet pumping at 1317 psi at the IA. Preassure at XPIO2 420 psi. 12
03/26/201	2			1						INISUE gas.
	Norma lowerin Solide	l jet pum ig of BHF productiv	p operati ^D via the	ons gas ra choke. Wa Temp at th	tes increa ater produ	sed from	~10 to 1 bbls as o	7 MSCFD of 21:00. I	on ii BHP	ncrease of jet pump rate and @ XPIO 2 equals 375 psi.
	00:00	07:30	7.50		peneral	SURPR	FLOWT	PRDT	Р	Well head 200 psi. Flow rates: ~
										11-10 MSCFD gas. BS&W 0.0%.
										XPIO gauge #2 = 430 psi. Jet pumping at 11-12 gpm and 1317 psi
										at the IA. Trace solids at the High
L		1	1	1	1	1	1	1	1	
										Page 50 of 64

Time Log	S									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	07:30	08:36	1.10			SURPR			Ρ	Increased jet pumping rate to 54%
										~13 gpm. Dropping well head with a
										target of no less then 34 F at the
										perforations. Well head ~ 200 psi.
										BS&W 0.0%. XPIO gauge #2 = 415
										psi. Trace solids at the High
										Pressure Pump (HPP) inlet.
	08:36	12:24	3.80			SURPR			Ρ	Well head ~200 psi. Flow rates:
										increasing from 1-18 MSCFD gas.
										BS&W 0.0%. XPIO gauge #2
										dropped gradually to 380 psi. Jet
										pumping at ~ 13 gpm and 1340 psi
										at the IA. Trace solids at the High
-	12.24	13.18	0.90						D	Pressure Pump (HPP) miet.
	12.24	15.10	0.50			JUNEIN			г	line freezing off in the Cas Mixing
										Skid at the regulator. Diagnosod and
										fixed problem. GC back on line
	13:18	20:18	7.00			SURPR			Р	Well head ~200 psi Flow rates: ~
1										17 MSCFD gas, BS&W 0.0%.
										XPIO gauge #2 ~ 376.5 psi. Jet
										pumping at 13 gpm and 1340 psi at
										the IA. Trace solids at the High
										Pressure Pump (HPP) inlet.
	20:18	00:00	3.70			SURPR	0		Ρ	Jet pumping at 1340 psi at the IA.
										Preassure at XPIO2 375-376 psi. 17
										MSCF gas.
03/27/2012										100
	Opene	d choke,	gas rate	went from	17 msct/d	to 19 m	sct/a. vvH	IP from 19.	3 to	190 psig.
	00:00	12:53	12.89			SURPR				Well head ~200 psi. Flow rates: ~
										17-16 MSCFD gas. BS&W 0.0%.
										XPIO gauge #2 375-374 psl. Jet
										pumping at 13 gpm and 1340-1336
										High Pressure Pump (HPP) inlet
	12:53	15:38	2.75			SURPR			-	I owered backpressure enough to
										bring WHP down from 201 to 192
										psig, choke from 16.5 to 16.75, rate
										didn't change much from 16 mscf/d,
										FBHP went from 376 to 366 psia.
	15:38	20:03	4.42			SURPR				Opened choke to 17.25 to drop WHP
										rate went from 17 mscf/d to 19
1										mscf/d , WHP from 193 to 190 psig
1										, FHBP at XPIO2 from 365 to 358
										psia.
1										Volume cumulatives
										Midnight: 517 mscf produced, 593
										BW
										18:38: 530 mscf produced, 610
										BW
										From midnight to 10:40 40
										17 bbls of water
	20.03	00.00	3 95			SURPR				GC data stopped being updated
	20.00	50.00	0.00			COR R				stopped the Diablo software and
										restarted first good sample
										completed at 21:01.
L	d		I		LI	2		. J	-	
									_	
										Page 51 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
03/28/2012	24 hr Su	mmary								
	Norma	l jet pum	p operatio	ons gas ra	tes increa	sed from	19MSCF	D to 21 M	SCF	D lowering of BHP via the
	choke.	Water p	roductior	n is 18 bbls	s as of 19:	UU. BHF	' @ XPIO	2 equals 3	342	psi. Solids production zero.
	Temp a	at the per	foration i	s∼34.4 F	at the coo	olest. Ga				
	00:00	04:19	4.32			SURPR	FLOWI	PRDT	Р	Spike in water production associated
										with stoppage in gas now lasted
										about 14 minutes. No obvious
										cause, gas rates rose and
										appeared permal, but the water
										volume rose by 4 bbls between tank
										strans
	04:19	07:25	3.10			SURPR	FLOWT	PRDT	Р	Opened choke from 17.25 to 17.75.
										BHP at XPIO2 dropped from 359 to
										352 psia, gas rate rose from 19
										mscf/d to 20 mscf/d, then over the
										next couple of hours fell back to 19.
										Coldest point on DTS trace-34.4°F.
12	07:25	10:28	3.05			SURPR	FLOWT	PRDT	Ρ	Opened choke from 17.75 to 18.25,
										BHP at XPIO2 dropped from 351 to
										344 psia, WHP dropped from 177 to
										167 psig, gas rate rose from 19
										mscf/d to 20.5 mscf/d. Coldest point
										on DTS trace-34.3°F
	10:28	00:00	13.54			SURPR	FLOWT	PRDT	Ρ	Opened choke from 18.25 to 18.75.
										BHP at XPIO2 dropped from 345 to
										342 psia, WHP dropped from 170 to
										163 psig, gas rate initially rose from
										22.5 to 23.5 mscf/d but then fell back
										to 21 mscf/d. Coldest point on DTS
00/00/0010					2	0	2			trace-34.4°F.
03/29/2012	Continu	ued jet p	umping o	peration a	nd monito	r data.				
20 C	00:00	02:28	2.47			SURPR	FLOWT	PRDT	Ρ	Opened choke from 18,75 to
										19.25, BHP at XPIO2 dropped from
										343 to 338 psia, WHP dropped from
										164 to 156 psig, gas rate went from
										22 mscf/d to 23.5 mscf/d for about
										25 minute and then declined back to
										22. Coldest point on DTS trace-
										34.2°F.
	02:28	03:29	1.02			SURPR	FLOWT	PRDT	Ρ	Swapped from one HPP to the other.
										Temporary dip in BHP pressures of
										about 35 psi, resulted in a gas surge
										about 45 minutes later before
										everything returned to normal.
	03:29	00:00	20.52			SURPR	FLOWT	PRDT	Р	Interval at top of perfs dropped below
										34°F, during gas surge to 25 mscf/d.
										Midnight to 20:00hrs = 18,000 scf
00/00/0010		ļ			1.					and 20 bbls wtr.
03/30/2012	Contiln	ue jet pu	impina or	peration ar	nd monitor	data.				
<u> </u>				u						
										Page 52 of 64
										Page 52 01 64

Time Logs	;									
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	00:00	24.00			SURPR	FLOWT	PRDT	P	No events of note, choke remained at 19.25 all day. BHP stayed between 319 and 325 psia all day. BHT measured at XPIO2 dropped from 35°F to 34.89°F which it has read for the last 6 hours. Most of the day 6 to 10 feet of the DTS string read less than 34°F with occasional periods above 34°F interspersed throughout. Generally rising gas rate from 22 mscf/d to 24.5 mscf/d.
						SURPR				Total Midnight to 8 pm. 20.6 mscf 20.8 bbls of water
03/31/2012					1			1		
	00:00	00:00	24.00			SURPR	FLOWT	PRDT	Ρ	No events of note, choke remained at 19.25 all day. BHP stayed between 317 and 322 psia all day. BHT measured at XPIO2 remained at 34.9°F all day. For the second day, 6 to 10 feet of the DTS string read less than 34°F with occasional periods above 34°F interspersed throughout. Generally steady gas rate between 24 mscf/d and 25 mscf/d with three short spikes above 26 mscf/d.
						SURPR				Total Midnight to 8 pm.
04/01/2012	Normal	jet pum	p operatio	ons. WHP	remained	between	153 and	165 psig,	and	BHP stayed between 316 and
	00:00	00:00	24.00			SURPR	FLOWT	PRDT	Ρ	No events of note, choke remained at 19.25 all day. WHP remained between 153 and 165 psig, and BHP stayed between 316 and 322 psia all day. BHT measured at XPIO2 rose about 0.03°F during the day, remaining around 34.9°F. For the third day, 6 to 10 feet of the DTS string read less than 34°F with the periods above 34°F increasing in number throughout the day. Generally steady gas rate between 24 mscf/d and 25.5 mscf/d.
						SURPR				Total Midnight to 8 pm.
04/02/2012								L		20.6 mscf 23 bbls of water
	Споке	remaine	u at 19.25	an day.G	enerally s	ileady ga	S rate del	ween 23.8	o ms	uru and 25.4 msci/d.
										Page 53 of 64

		_						-		-
Date	From	To	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	00:00	00:00	24.00			SURPR				The number of variations in GC total
										measured percentage (e.g. CH4
										swinging between 94 and 101%)
										continued to rise today, but
										calibrations continued to match the
										calibration gas. Higher inlet pressure
										may be the cause. This causes
										some error in the computed
										"corrected" gas rate presented in
										InterACT (about 2-3%). Gas mass
										flow rates continued to be very
										smooth. Choke remained at 19.25
										all day. WHP remained between 151
										and 164 psig, and BHP stayed
										between 316 and 321 psia all day.
										BHT measured at XPIO2 rose about
										0.02°F during the day, remaining
										around 34.9°F. For the fourth day, 6
										to 10 feet of the DTS string read less
										than 34°F in the evening with this
										interval being slightly above 34 most
										of the time from midnight to 10 am.
										Generally steady gas rate between
										23.8 mscf/d and 25.4 mscf/d.
						SURPR				Total Midnight to 8 pm.
										20.3 mscf 24 bbls of water
										10 am with no obvious cause. WHP remained between 151 and 165 psig, and BHP stayed between 316 and 320 psia all day. BHT measured at XPIO2 rose about 0.02°F during the day ending at 34.94°F. For the fourth day, 6 to 10 feet of the DTS tring need the top of cand
										string near the top of the perfs read
										less than 34°F, now down to about
										alight everall increases in terms
						SURPRI			-	Total Midnight to 8 pm
						CONTR				20.1 msef 22 bble of water
/04/2012				I	II	6				
	Openeo temp. c	d choke to 3	from 19.2 33°.	5 to 19.75	beans, R	aise pow	er fluid f	rom 55-56%	% of	f pump drive max. in effort to get
	00:00	08:33	8.55			SURPR	FLOWT	PRDT	Ρ	Opened choke from 19.25 to 19.75
			0.0012							beans, BHP at P2 dropped from 318
										to 315 psia, temperature dropped 0.02°F/
	08:33	14:21	5.81			SURPR	FLOWT	PRDT	Ρ	Raise power fluid pump drive rate from 54 to 55%, BHP at XPIO2
										dropped about 7 psi, but rate was
										very unstable
2										

Time Loas										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	20:00	20:00	5.65			SURPR	FLOWT	PRDT	P	Raise power fluid from 55-56% of pump drive max. BHP dropped from 316 psia before the first power fluid rate increase at 14:20 to 300 psia. Temperature dropped from 34.94 to 34.80 in the first two hours. Power fluid flow rate rose from 450 BPD to about 465 BPD, but the rate variation went from +/- 5 BPD to +/- 60 BPD. Power fluid pressure rose from 1301 to 1452 psig. Temperature still declining after
										increase in jet pump rate and choke opening. Has dropped from about 34.2 to 33.75°F (measured by DTS at coldest point in perfs) since this morning at 8 am. Gas rate rose about 3 mscfd. Total Midnight to 8 pm. 20.2 Mscf 26 bbls of water
04/05/2012	Contin	od lowe	ring bott	m holo cr	occure to	bring DU	T down			dropped 0.2°E and coldest point
	in perfs	now be	low 34.5°	F accordir	ng to DTS.		r down.		102	dropped 0.2 P and coldest point
	Gas rat	e rose fr	om 26 m	scf/d to 29	mscf/d.	SURPR	FL OWT	PRDT	P	Reject lot nume drive rate from 56 to
	00.00	04.00	4.00			oortint	TLOWI	I ND I		57%. BHP at XPIO2 dropped 9 psi. Power fluid rate went from 465 to 472 BPD.
	04:30	16:47	12.29			SURPR	FLOWT	PRDT	Ρ	Raised Jet pump drive rate from 57 to 58%. BHP at XPIO2 dropped 8 psi. Power fluid rate rose from 472 to 479 BPD.
	16:47	23:59	7.21			SURPR			Ρ	Continued lowering bottom hole pressure to bring BHT down. BHT at XPIO2 dropped 0.2°F and coldest point in perfs now below 34.5°F according to DTS. Gas rate rose from 26 mscf/d to 29 mscf/d.
2						SURPR	5 5			Totals Midnight to 8 pm.
04/06/2012	Continu 30 msc	uing to lo fd.	wer the b	ottomhole	pressure	to bring	BHP dow	n. Gas ra	te ha	as risen from 29 mscfd to nearly
	00:00	06:06	6.10			SURPR	FLOWT	PRDT	P	Continuing to lower the bottomhole pressure to bring BHP down. Gas rate has risen from 29 mscfd to nearly 30 mscfd. Raised Jet pump drive rate from 58 to 59%. BHP at XPIO2 dropped 4 psi. Power fluid rate rose from 478 to 486 BPD.
										Page 55 of 64

ate From to Dur S. Depth E. Beth PRace Cohanged from pump number 1 to pump 2, stayed at 59%. PFP dropped from 1675 to 1560.pig but the PFR only dropped from 486 to 483 BWPD. BMP at P2 rose from 285 to 287 psia. 107/2012 Continuing to lower the bottomhole pressure to bring BHP down. Continue jet pumping operation and monitor data. Total production midnight to 8 pm 27 BW 25 mscf 107/2012 Continuing to lower the bottomhole pressure to bring BHP down. Continue jet pumping operation and monitor data. P Raised jet pump drive rate from 59 to 60%. Power fluid rate rose from 433 to 431 BWPD. BHP started 1286 psia and Power fluid pressure at 1890 psig. 00.54 0.201 1.13 SURPR P Raised power fluid pressure at 1890 psig. 00.54 0.201 1.13 SURPR P P During electrical generator swap, measured power fluid pressure of 1978 psig 00.34 23.56 14.41 SURPR P During electrical generator swap, measured power fluid pressure of 1978 psig 09.34 23.56 14.41 SURPR P During electrical generator swap, measured power fluid pressure of 1978 psig 09.34 23.56 14.41 SURPR P P During electrical generator swap, measured by the D1	Time Logs	-	_	_			-			_	
Uo.00 UO.00 17.50 SURPR PLOWI PRU1 P Changed from pump Jumsper 4 59%. PFP dropped from 1675 to 1650psig but the PFR only dropped from 486 to 483 BWPD. BHP at P2 rose from 285 to 287 psia. 107/2012 Continuing to lower the bottomhole pressure to bring BHP down. Continue jet pumping operation and monitor data. Total production midnight to 8 pm 27 BW 25 msd ⁻¹ 00:00 00.54 0.91 SURPR P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1500 prigi 00:54 0.91 SURPR P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1500 prigi 00:54 02:01 1.13 SURPR P Raised perver fluid pressure at 1500 prigi 02:01 09:34 7.55 SURPR P Raised power fluid pressure of 1370 paig 09:34 23:58 14.41 SURPR P Porduced from midnight to 8 pm 2:0 mastri dropped by about 100 pc, j. but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Produced from midnight to 8 pm 2:0 mort 10 b gm 2:0 mort 10 b 17%, Power fluid ater see from 475 to 503 BWPD and pressure rose from 178 to 1886 paig 00:00 00:00 24.00 SURPR<	Date	From	To	Dur	S. Depth	E. Depth	Phase	Code	Subcode	T	Comment
including including <t< td=""><td></td><td>06:06</td><td>00:00</td><td>17.90</td><td></td><td></td><td>SURPR</td><td>FLOWI</td><td>PRDT</td><td>Р</td><td>Changed from pump number 1 to</td></t<>		06:06	00:00	17.90			SURPR	FLOWI	PRDT	Р	Changed from pump number 1 to
Image: state in the product of the preduct of the preduct of the product of the product of the product											pump 2, stayed at 59%. PFP
Image: specific constraints SURPR Image: specific constraints Image: specific constraints <thimage: constraints<="" specific="" th=""> Image: specific const</thimage:>											dropped from 1675 to 1650psig but
Image: state of the s											the PFR only dropped from 486 to
Image: constraint of the second sec											483 BWPD. BHP at P2 rose from
Image: continuing to lower the bottomhole pressure to bring BHP down. Continue jet pumping operation and monitor data. Total production midnight to 8 pm 27 BW 25 med 00:00 00:54 0.91 SURPR FLOWT PRDT P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1690 psig 00:54 0.91 SURPR FLOWT PRDT P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1690 psig 00:54 02:01 1.13 SURPR P Raised power fluid pressure at 1690 psig 00:54 02:01 1.13 SURPR P Raised power fluid pressure at 1690 psig 00:54 02:01 1.13 SURPR P Raised power fluid pressure at 1690 psig 00:54 02:01 9:34 7.55 SURPR P During electrical generator swap. measured power fluid pressure of 1978 psig 09:34 23:58 14.41 SURPR P Raised power fluid pressure from 4716 to 1868 psig 09:34 23:58 14.41 SURPR P Raised power fluid pressure from 796 to 1868 psig 09:34 09:34 23:58 14.41 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>285 to 287 psia.</td></t<>											285 to 287 psia.
U0772012 data 27 BW 25 mscf Continuing to lower the bottomhole pressure to bring BHP down. Contilnue jet pumping operation and monitor data. 00.00 00.54 0.91 SURPR FLOWT PRDT P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1960 poig 00.05 02.01 1.13 SURPR P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1960 poig 00.54 02.01 1.13 SURPR P Raised power fluid pressure at 1960 poig 02.01 09.34 7.55 SURPR P During electrical generator swap. measured power fluid pressure of 1978 psig. 02.01 09.34 7.55 SURPR P Raised power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09.34 23.58 14.41 SURPR P Raised power fluid pump drive rate from 470 to 50 BWPD and pressure rose from 1796 to 1868 psig 08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. P Produed from midright to 8 pm 25.5 mscf 29 BW Gas chromatograph software performance in selecting Nitrogen separately from Mehane improved today, so volumetric estinantes were better than previous days.	0			¢			SURPR				Total production midnight to 8 pm
10772012 Continuing to lower the bottomhole pressure to bring BHP down. Contilinue jet pumpling operation and monitor data. 00.00 00.54 0.91 SURPR FLOWT PRDT P Raised jet pump drive rate from 59 to 60%. Fower fluid rate rose from 483 to 491 BWPD. BHP texted at 286 pais and Power fluid pressure at 1990 pais 00.54 02.01 1.13 SURPR P Raised power fluid pressure at 1990 pais 00.54 02.01 1.13 SURPR P Raised power fluid pressure at 1990 pais 02.01 09.34 7.55 SURPR P During electrical generator swap, measured power fluid pressure of 1978 pais 09.34 23.58 14.41 SURPR P Raised power fluid pressure at 10minutes. 09.34 23.58 14.41 SURPR P Raised power fluid pressure at 10minutes. 09.34 23.58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 477 to 50.3 BWPD and pressure rose from 477 to 50.3 BWPD and pressure from 61 to 62%. Power fluid rate rose from 477 to 50.3 BWPD and pressure rose from 477 to 50.3 BWPD and pressure from 61 to 62%. Power fluid rate rose from 477 to 50.3 BWPD and pressure fluid pump drive rate from 61 to 62%. Power fluid rate rose from 478 to 50.5 BWPD and pressure from 477 to 50.3 BWPD and pressure from 476 to 1686 pais and the colesting							-11-7-443P08-00-F120				27 BW 25 mscf
Joint Description Description <thdescription< th=""> <thdescription< th=""> <thde< td=""><td>4/07/2012</td><td>Continu</td><td>uing to lo</td><td>wor the k</td><td>ottombolc</td><td>prossure</td><td>to bring</td><td></td><td>n Contiln</td><td></td><td>t numping operation and monitor</td></thde<></thdescription<></thdescription<>	4/07/2012	Continu	uing to lo	wor the k	ottombolc	prossure	to bring		n Contiln		t numping operation and monitor
00:00 00:54 0.91 SURPR FLOWT PRDT P Raised jet pump drive rate from 59 to 60%. Power fluid pressure at 1600 psig 00:54 02:01 1.13 SURPR P Raised power fluid pressure at 1600 psig 00:54 02:01 1.13 SURPR P Raised power fluid pressure at 1800 psig 02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pressure from 497 to 503 BWPD pad pressure ress from 1796 to 1898 psig 00:00 00:00 24:00 SURPR P Produced from mindright to 8 pm 25 pm sci 29 BW Gas chromately 30 betraits were better than previous about today, so volimetric estimates were better than previous about today, so volimetric estimates were better than previous about today, 4:5°F. </td <td></td> <td>data.</td> <td></td> <td>wei the t</td> <td>ouonnoie</td> <td>pressure</td> <td>to bring</td> <td></td> <td>n. conum</td> <td>ue je</td> <td>the pumping operation and monitor</td>		data.		wei the t	ouonnoie	pressure	to bring		n. conum	ue je	the pumping operation and monitor
00:54 02:01 1.13 SURPR P Relised power fluid pressure at 1660 psig 00:54 02:01 1.13 SURPR P Relised power fluid pressure at 1660 psig 02:01 09:34 7.55 SURPR P Relised power fluid pressure of 1978 psig 02:01 09:34 7.55 SURPR P Description of 10 for symmetriate rose from 420 psig 09:34 23:58 14.41 SURPR P Relised power fluid pressure of 1978 psig 09:34 23:58 14.41 SURPR P Relised power fluid pump drive rate from 61 to 62%. Power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 706 to 1868 psig 09:34 23:58 14.41 SURPR P Relised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 706 to 61% psig 09:34 23:58 14.41 SURPR P Relised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 706 to 61% psig 09:34 23:58 14.41 SURPR P Relised power fluid pump drive rate rose from 706 to 1868 psig 00:00 00:00 00:00 SURPR <t< td=""><td></td><td>00:00</td><td>00:54</td><td>0.91</td><td></td><td></td><td>SURPR</td><td>FLOWT</td><td>PRDT</td><td>Ρ</td><td>Raised jet pump drive rate from 59 to</td></t<>		00:00	00:54	0.91			SURPR	FLOWT	PRDT	Ρ	Raised jet pump drive rate from 59 to
Image: Superstand and Superstand Superstrestand Superstand Superstand Superstand Superstand											60%. Power fluid rate rose from 483
Image: space of the system of the s											to 491 BWPD. BHP started at 286
00:54 02:01 1.13 SURPR P Raised power fluid pump drive rate from 60 to 61%. Power fluid rate rose to 497 BWPD. BHP leveled off at 281 psia at a power fluid pressure of 1978 psig. 02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure of 1978 psig. 09:34 23:58 14.41 SURPR P During electrical generator swap, measured power fluid pressure of 1978 psig. 09:34 23:58 14.41 SURPR P Raised power fluid pressure fluid pressure of 1978 psig. 09:34 23:58 14.41 SURPR P Raised power fluid pressure rose from 1796 to 1868 psig. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 470 to 503 BWPD and pressure rose from 1796 to 1868 psig. 00:30 Continue jet pumping operation and monitor data. Remained at approximately 504 barels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barels of power fluid all day. The bottomhole pressure remained near 277 psia a											psia and Power fluid pressure at
00:54 02:01 1.13 SURPR P Raised power fluid pump drive rate from 60 to 61%. Power fluid rate rose from 60 to 61%. Power fluid pressure of 1978 prig 02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 497 to 52%. Power fluid rose rose from 1796 to 1868 psig 09:2012 SURPR P P roduced from midright to 8 pri 25.9 mscf 29 BW Gas chromatograph software performance in selecting Nitrogen separately from Methane improved today, so volumetric estimates were better than previous days. /08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the											1690 psig
02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure of 1978 psig 09:34 23:58 14.41 SURPR P During electrical generator swap, measured power fluid pressure of the power fl		00:54	02:01	1.13			SURPR			Р	Raised power fluid nump drive rate
Image: Control of the Power fluid pressure or the text to pressure or the Power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 <											from 60 to 61% Power fluid rate rose
02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure of 1978 psig. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 97 to 503 BWPD and pressure from 97 to 503 BWPD and pressure rase from 47 to 503 BWPD and pressure from 97 to 508 BWPD and pressure from 97 to 5										1	to 407 BW/PD_BHP loveled off at
02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P P roduced from midnight to 8 pm 25.9 msc/. 29 BW 09:34 23:58 14.41 SURPR P P roduced from midnight to 8 pm 25.9 msc/. 29 BW 09:34 23:58 14.41 SURPR P P roduced from midnight to 8 pm 25.9 msc/. 29 BW 09:34 23:58 14.41 SURPR P P coduced from midnight to 8 pm 25.9 msc/. 29 BW 08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 p											291 poin at a power fluid pressure of
02:01 09:34 7.55 SURPR P During electrical generator swap, measured power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 497 to 503 BWPD and pressure rose from 1766 to 1868 psig 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 497 to 503 BWPD and pressure rose from 1766 to 1868 psig 09:34 a a SURPR P Produced from midnight to 8 pm 25.9 mscf 29 BW Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 00:00 24.00 SURPR P Remained											1079 point
02.01 03.34 7.35 SURPR P During electrical generator swap, measured power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 41 to 62%, Power fluid rate rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 41 to 62%, Power fluid rate rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Produced from midnight to 8 pm 26.9 SURPR P Produced from midnight to 8 pm 25.9 msd ⁻ 29 BW Gas chromatograph software performance in selecting Nitrogen separately from Methane improved today, so volumetric estimates were better than previous days. /08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT		02:04	00/24	7 55			CUDDD			0	liato beld
09:34 23:58 14.41 SURPR P Raised power fluid pressure dropped by about 100 psi, but returned to normal over the next 10 minutes. 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%, Power fluid rate rose from 497 to 503 BWPD and pressure rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Produced from midnight to 8 pm 25.9 msdr 29 BW 08:2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 54.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. <td< td=""><td></td><td>02:01</td><td>09:34</td><td>1.55</td><td></td><td></td><td>SURPR</td><td></td><td></td><td>Р</td><td>During electrical generator swap,</td></td<>		02:01	09:34	1.55			SURPR			Р	During electrical generator swap,
09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 47 to 503 BWPD and pressure rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 45 to 503 BWPD and pressure rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Produced from infinight to 8 pm 25.9 msc1 = 28 BW 09:34 23:58 14.41 SURPR P Produced from infinight to 8 pm 25.9 msc1 = 28 BW 09:34 25.9 msc1 = 28 BW Gas chromatograph software performance in selecting Nitrogen separately from Methane improved today, so volumetric estimates were better than previous days. /08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 34.5°F. 00:09 00:00											measured power fluid pressure
09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 47 to 503 BWPD and pressure rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 47 to 503 BWPD and pressure rose from 47 to 503 BWPD and pressure rose from 47 to 503 BWPD and pressure rose from 1796 to 1868 psig 09:34 23:58 14.41 SURPR P Produced from midnight to 8 pm 22:59 msc 1 29 BW Gas chromatograph software performance in selecting Nitrogen separately from Methane improved today, so volumetric estimates were better than previous days. //08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at appro											dropped by about 100 psi, but
09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 497 to 503 BWPD and pressure rose from 497 to 503 BWPD and pressure rose from 1796 to 1868 psig Image: Image											returned to normal over the next 10
09:34 23:58 14.41 SURPR P Raised power fluid pump drive rate from 61 to 62%. Power fluid rate rose from 470 to 503 BWPD and pressure rose from 1796 to 1868 psig Image: transmission of the second sec											minutes.
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 34.5°F. SURPR P Produced from 1796 to 1868 psig //08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. //09/2012 O0:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. //09/2012 O0:00 00:00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. Objective, go for lowest possible pressure 00:00 06:30 6.50 SURPR FLOWT PRDT P Objectiv		09:34	23:58	14.41			SURPR			Ρ	Raised power fluid pump drive rate
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 msc//d and dropped back to 40 msc//d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. P Objective, go for lowest possible pressure 00:00 06:30 6.50 SUR											from 61 to 62%. Power fluid rate rose
Image: Superior of the superior											from 497 to 503 BWPD and pressure
108/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PRDT P Remained at approximately 34.5°F. 00:00 00:00 00:00 24.00 SURPR FLOWT PRDT P Midnight to 8 pm production volumes. 26605 scf 27 BW /009/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to											rose from 1796 to 1868 psig
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 504. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR Midnight to 8 pm production volumes. 26605 scf 27 BW //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. O O O O O O O O Openctive, go for lowest possible pressu							SURPR	2		P	Produced from midnight to 9 pm
23.9 Bitch 23.9 Bitch 23.9 Bitch 23.9 BW Gas chromatograph software performance in selecting Nitrogen separately from Methane improved today, so volumetric estimates were better than previous days. 20.00 Interview 20.00 Interview V08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure											25.0 most 20 DW
Image: Supervised of the second se											
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Distributed all day. The bottomhole pressure remained at approximately 34.5°F. 00:00 00:00 00:00 SURPR FLOWT PRDT P Distributed all day.											Gas chromatograph software
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 504. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR Midnight to 8 pm production volumes. 26605 scf 27 BW //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. P Objective, go for lowest possible pressure											performance in selecting Nitrogen
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 504 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 SURPR SURPR Midnight to 8 pm production volumes. 26605 scf 27 EW //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. P Objective, go for lowest possible pressure 00:00 06:30 6.50 SURPR											separately from Methane improved
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 SURPR FLOWT PRDT P Remained at approximately 34.5°F. 00/09/2012 SURPR SURPR Midnight to 8 pm production volumes. 26605 scf 27 BW 27 BW //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. P Objective, go for lowest possible pressure 00:00 06:30 6.50 SURPR FLOWT<											today, so volumetric estimates were
//08/2012 Continue jet pumping operation and monitor data. Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR PLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 0/09/2012 SURPR SURPR Midnight to 8 pm production volumes. 26605 scf 27 BW //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. P Objective, go for lowest possible pressure 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure											better than previous days.
Containing performing operation and monitor data. Reinfained at approximately 304 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. Up/09/2012 SURPR SURPR Midnight to 8 pm production volumes. 26605 sof 27 BW V/09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure	4/08/2012	Continu	io iot pu	mning on	oration an	d monitor	data Pr	mainod	at approvir	nato	ly 504 barrols of power fluid all
remained at approximately 34.5°F. 00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. Image: second sec		day. T	he botto	mhole pre	essure ren	nained nea	ar 277 ps	ia and the	e coolest i	nterv	al measured by the DTS
00:00 00:00 24.00 SURPR FLOWT PRDT P Remained at approximately 504 barrels of power fluid all day. The bottomhole pressure remained near 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. Image: SURPR SURPR SURPR Midnight to 8 pm production volumes. 26605 sof 27 BW V/09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. Objective, go for lowest possible pressure 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure		remain	ed at ap	oroximate	ly 34.5°F.						ne na nazim wazaki u wazaki na internet ka mana 🐱 u nina za za za na nina ka na ni
//09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure		00:00	00:00	24.00			SURPR	FLOWT	PRDT	Ρ	Remained at approximately 504
//09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure		10000000000000000000000000000000000000							and the second	100	barrels of power fluid all day. The
Joint Mode prostate Finance (Finance) Determined prostate Finance (Finance) 277 psia and the coolest interval measured by the DTS remained at approximately 34.5°F. Midnight to 8 pm production volumes. 26605 scf 27 BW /09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure											bottomhole pressure remained near
//09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure											277 psia and the coolect interval
Image:											monoured by the DTC remained -t
//09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure											aneasured by the DTS remained at
//09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure										\vdash	approximately 34.5°F.
//09/2012 Volumes. 26605 scf 27 BW Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure							SURPR				Midnight to 8 pm production
//09/2012 26605 scf 27 BW //09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure											volumes.
#09/2012 Opened choke to wide open, lowered back pressure on separator to 25 psig. Gas flow peaked at 140 mscf/d and dropped back to 40 mscf/d. DTS records temperature at 2446 to be below 33°F. XPIO ROC 2 temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR FLOWT P Objective, go for lowest possible pressure				2							26605 scf 27 BW
and dropped back to 40 mscf/d. DTS records temperature at 244 to 25 psig. Gas now peaked at 140 mscf/d temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure	4/09/2012	Onence	d choke	to wide o	nen lowo	ed back n	ressure	n senar	tor to 25 r	neia	Gas flow peaked at 140 mscf/d
temperature reading has dropped from 34.5 to 34.2°F. 00:00 06:30 6.50 SURPR PRDT P Objective, go for lowest possible pressure		and dro	opped ba	ick to 40	mscf/d. D	S records	s tempera	ature at 2	446 to be	belo	w 33°F. XPIO ROC 2
00:00 06:30 6.50 SURPR FLOWT PRDT P Objective, go for lowest possible pressure		temper	ature rea	ading has	dropped	from 34.5	to 34.2°F				
pressure		00:00	06:30	6.50			SURPR	FLOWT	PRDT	Ρ	Objective, go for lowest possible
											pressure

1	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
		06:30	08:40	2.18			SURPR	FLOWT	PRDT	Ρ	EXPRO collected triplicate water
											samples from upstream of choke,
											water leg of separator and power fluid
											charge pump of GMS. Atmospheric
											air samples collected at each
	s					2	-	8			location.
		08:40	09:59	1.33			SURPR	FLOWT	PRDT	Ρ	Delivered sand and ISOTUBE
											samples to Kuparuk shipping and
											receiving for distribution.
		09:59	12:50	2.86			SURPR	FLOWT	PRDT	Ρ	Opened choke to wide open, lowered
											back pressure on separator to 25
											psig. Gas flow peaked at 140 mscf/d
	-										and dropped back to 40 mscf/d.
		12:50	16:08	3.30			SURPR	FLOWT	PRDT	Ρ	DTS records temperature at 2446 to
											be below 33°F. XPIO ROC 2
											temperature reading has dropped
										_	from 34.5 to 34.2°F.
		16:08	19:58	3.84			SURPR	FLOWT	PRDT	Р	temperature decrease has levelled off
											at about 34.1°F on XPIO ROC 2.
											BHP has dropped from 277 psia prior
											to choke opening (at 1250 hrs) to
											237 psia. Wellhead pressure has
											dropped from 184 psig to 27 psig.
											Gas rate has risen from 32 to 39
		10.50	00.50	4.00				FLOWE	DDDT		mscf/d.
		19:58	23:58	4.00			SURPR	FLOWI	PRDT	Р	Midnight to 8 pm production
											volumes.
	04/10/2012										29.5 mscr 35 BW
	04/10/2012	Produc	od stopp	lilv at 40		nitiatod ro	moval of	inculatio	n on surfac	o li	ass and stick build scaffold
		hooche	eu sieau	ny at 40	or ria dowr	and dem	ob of we	Il test en	inment	Se III	ies and slick build scanold
		00:00	01:00	1.00	I	i and den	SURPR	FLOWT	PRDT	Р	Raising outlet gas pressure enough
				0.000							to take ISOTUBE sample caused
											well flow rate to read zero, then spike
											as pressure dropped. This is not a
											formation/tubing change.
		01:00	07:45	6.75			SURPR	FLOWT	PRDT	Ρ	Produced at 40 MSCFD with the well
											head pressure at ~31 psi while iet
											pumping at ~1875 psi.
		07:45	08:30	0.75			SURPR	FLOWT	PRDT	Ρ	Raising outlet gas pressure enough
		1010000000	2010/2020/001	10000000					NA-112711973241	~	to take ISOTUBE sample caused
											well flow rate to read zero, then spike
											as pressure dropped. This is not a
											formation/tubing change.
		08:30	13:30	5.00			SURPR	FLOWT	PRDT	Ρ	Produced at 40 MSCFD with the well
											head pressure at ~31 psi while iet
											pumping at ~1875 psi.
		13:30	19:12	5.70			SURPR	FLOWT	PRDT	Ρ	Started removing blue board
		anne citil the fi	121-21-1914	1.00000000000							insulation from surface lines.
											Continued to produce at 40 MSCFD
											with the well head pressure at ~31
											psi while jet pumping at ~1875 psi.
22											
											Page 57 of 64

1	Time Loas									_	
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	Date	From 19:12	19:42	<u>Dur</u> 0.50	<u>S. Depth</u>	<u>E. Depth</u>	Phase SURPR	Code FLOWT	Subcode PRDT	P	Comment Changed from using EXPRO heater as the surface storage volume for glycol circulation to the 125 bbl open top in order to heat glycol in open top in preparation for shutdown. Temperature in circulation pumps dropped to 6F, then rose back to 65°F in the first half hour. Scaffold crew on location. Walk down stick
											built hooches, tuel tank stairs, and well house. Discuss planned work and initiate removal of tank farm hooch, Expro Atigun house hooch and CO2 tank railing.
		19:42	00:00	4.30			SURPRI	FLOWT	PRDT	Ρ	Truck off 290 bbls of returns to 1R-18 for disposal. Continued to produce at 40 MSCFD with the well head pressure at ~31 psi while jet pumping at ~1875 psi. BS&W has been zero for the past 24 hrs. Midnight to 8 pm production volumes. 33 mscf and 29 BW
	04/11/2012	Freeze	protect	A tubing	chemical	injection	line and	heater st	ring from i	et ni	Imp to surface. Blow down
		surface	lines an	id equipm	ent. Disc	ose of ret	turns and	initiate ri	a down pr	oceo	dure.
		00:00	04:00	4.00			SURPR	FLOWT	PRDT	P	Swap from pumping produced water "power fluid" down the IA to 60/40 Tritherm glycol to freeze protect well. Displace IA to glycol taking returns up the tubing through the Expro stack pack separator. Drawing glycol from Expro serarator bath, 125 glycol tank, and SL B line heater.
		04:00	06:00	2.00			SURPR	FLOWT	PRDT	Ρ	Glycol at the jet pump. Increase choke setting to hold 700 psi back pressure in effort to stall jet pump and bull head glycol into tubing / perforations. No indication on DTS temperature trace that any glycol went below the jet pump. Attempt to pump glycol down the chemical injection line. Pressure up to 2200 psi instantly. Bleed line to 70 bbl sand jet tank. Pump 80 gal glycol down the heater string.
											Page 58 of 64

	Time Logs										
	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	5	06:00	07:30	1.50			SURPR	FLOWT	PRDT	Ρ	Reduce choke setting to circulate
											glycol up the tubing while keeping
											the jet pump stalled and well killed.
											Bleed off chemical injection line to 70
											bbl sand iet tank while pumping
											glycol into the IA at 1100 psi.
											Returns from CI line at 30 gallons
											away are clear and appear to be
											water sample caught 07:45. Returns
											from the CI line at 40 gallons away
											down the IA appear to be 60/40
											glycol. Sample pulled at 07:47, 18
											bbls glycol left in the 125 bbl tank.
		07:30	08:18	0.80			SURPR	FLOWT	PRDT	Ρ	Lost HPP # 2, switch to #1 resume
				200000							displacing well to glycol at 10 gpm
											and 1143 psi on the IA taking returns
											to the Expro separator. Start to cool
											down N2 pump.
		08:18	08:54	0.60			SURPR	FLOWT	PRDT	Ρ	Lost prime on pump while drawing
											down SLB line heater bath. Out of
											surface glycol. Shut in well. Line up
											to start blowing down surface lines
											with N2.
	i a	08:54	11:00	2.10			SURPR	FLOWT	PRDT	Ρ	Blow down Expro lines, separator,
											and hoses to tanks. Blow down
											surface HPP lines. Down on N2. All
											valves on well head shut and flagged.
											Begin RD
		11:00	20:00	9.00			DEMOB	PLUG	DMOB	Ρ	Start to rig down all Expro / SLB
											treating lines. Remove spill
											containment under all treating lines.
											Disconnect Gas chromatograph
											lines. Haul off all remaining returned
											surface fluid for disposal at 1R-18.
											Stage portable heaters on pad for
											release. Scaffolding crew removed
											large tank farm hooch. Palletize
											SLB treating iron for storage in
											connex. Rig down all SLB treating
		00.00	00.00	4.00			DEMOD	DUUO	DUOD		lines from well head.
		20:00	00:00	4.00			DEMOR	PLUG	DWOR	Р	Continue to rig down all test
	1/12/2012										Jequipment.
	54/12/2012	Rigged	down a	nd invent	oried all SI	B treating	lines ar	nd stored	in connex	Ric	nged down and staged all Expro
		treating	lines fo	r shipmer	nt. Turned	off well s	ite power	and rem	oved all no	ower	leads. Staged and released non
		mobile	equipme	ent, heate	rs / light p	lants/ com	pressors				
		00:00	06:00	6.00			DEMOB	PLUG	DMOB	Ρ	Cut all long hoses to ~25' lengths
											and stack on pallets. Stage all SLB
											iron and hoses in front of storage
											connex. Rig down propane tank and
											prep for transport to Brooks Range.
		06:00	09:00	3.00			DEMOB	PLUG	DMOB	Ρ	load SLB connex with treating lines.
											Truck propane tank to Brooks
J											Range.
											Dens PD (D)
											Page 59 of 64

Date From To Dur S. Bepth E. Death Phase Code Subode T Comment 09:00 12:00 3.00 DEMOB PLUG DMOB P Drain and remove SSV pannels. return to CPF1. Staged and non mobile equipment for removal all revelation and stage for back hoal. 12:00 15:00 3.00 DEMOB PLUG DMOB P Rig down Exarc treating from and stage for back hoal. 15:00 18:00 3.00 DEMOB PLUG DMOB P Rig down Exarc treating from and stage for back hoal. 15:00 18:00 3.00 DEMOB PLUG DMOB P Rig down all test electrical lines. 18:00 0:0:0 6.00 DEMOB PLUG DMOB P Ended wall down all test equipment. 4/132012 Removed all Expro treating lines and ancillary equipment from location. Notified AGCC of pending P&A. Crane on hold unit tomorow due to rig 27 broken down in rad. 00:00 06:00 6.00 DEMOB PLUG DMOB P Drilling tool house crew removed the scaffolding in front of the Expro Aligun hou	Time Logs										
99:00 12:00 3.00 DEMOB PLUG DMOB P Drain and remove SSV pamelis. return to CPF1. Staged all non mobile equipment for removal. Hand supports. Shut off well site power unt. Cut all power leads to well site equipment. 12:00 15:00 3.00 DEMOB PLUG DMOB P Rig down Expro treating fron and stage for loading to back haul. Trucked off 4 heaters, 2 air compressors, one light plant. 15:00 18:00 3.00 DEMOB PLUG DMOB P Rig down Expro treating fron and stage for loading to back haul. Trucked off 4 heaters, 2 air compressors, one light plant. 41:32012 18:00 6.00 DEMOB PLUG DMOB P Continue to rig down all test equipment. 41:32012 Removed all Expro treating lines and ancillary equipment from location. Notified AOGCC of panding P&A. Crane on hold unit comorow due to rig 27 broken down in road. P Dilling tool house errew removed the scaffolding in font of the Expro Aligun house and picked up all exposed revehment plus pixed. 00:00 6.00 DEMOB PLUG DMOB P Rigmoning and trailers allowed past however BP scaring unwilling to provide escoring 200 crane trively unwilling to provide escoring 200 crane trively provide escoring 200 crane trively from dead horse to location. Rebook crane for tomorow, Loa	Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
12:00 15:00 3.00 DEMOB PLUG DMOB P Rig down Export testing into and stage for loading to back hau. 15:00 18:00 3.00 DEMOB PLUG DMOB P Rig down Export testing into and stage for loading to back hau. 15:00 18:00 3.00 DEMOB PLUG DMOB P Banded up umber, insulation blue board, and returned to DTH. DTH removed Aligun house scaffolding. 18:00 00:00 6.00 DEMOB PLUG DMOB P Continue to rig down all test equipment. 4/13/2012 Removed all Export treating lines and ancillary equipment from location. Notified AOGCC of pending P&A. Crare on hold unit tomorrow due to rig 27 broken down in road. P Drilling tool house crew removed the scaffolding in front of the Export was bridge blocking all dead horse traffic. 00:00 6.00 DEMOB PLUG DMOB P Removed all restore stallowed past house and picked up all exposed revertently thus physiood. 12:00 18:00 6.00 DEMOB PLUG DMOB P Removed all realies allowed past house and picked up all exposed revertently unwilling to treating equipment on tralliers. <tr< td=""><td></td><td>09:00</td><td>12:00</td><td>3.00</td><td></td><td></td><td>DEMOB</td><td>PLUG</td><td>DMOB</td><td>Ρ</td><td>Drain and remove SSV pannels. return to CPF1. Staged all non mobile equipment for removal. Hand -y-berm removed all revetment supports. Shut off well site power unit. Cut all power leads to well site equipment.</td></tr<>		09:00	12:00	3.00			DEMOB	PLUG	DMOB	Ρ	Drain and remove SSV pannels. return to CPF1. Staged all non mobile equipment for removal. Hand -y-berm removed all revetment supports. Shut off well site power unit. Cut all power leads to well site equipment.
15:00 18:00 3:00 DEMOB PLUG DMOB P Banded up lumber, insulation blue board, and returned to DTH. DTH ir removed Aligun house scalfolding. 18:00 00:00 6:00 DEMOB PLUG DMOB P Continue to rig down all test equipment. 4/13/2012 Removed all Expro treating lines and ancillary equipment from location. Notified AOGCC of pending P&A. Crane on hold until tomorrow due to rig 27 broken down in road. P Drilling tool house crew removed the scaffolding in front of the Expro Aligun house and picked up all exprosed revelment plus plywood. Rig 27 stuck at the kuparuk river west bridge locking all dead horse trait by bood or down and to be sold from Aligun house. 06:00 12:00 6:00 DEMOB PLUG DMOB P Removed Cormant WMD and chobek exit from Aligun house. 12:00 18:00 6:00 DEMOB PLUG DMOB P Rig moving and trailers allowed past however BP scarrby unvilling to provide escort for 200 crane travel from dead horse traing equipment on trailers. Notified AOGCC state inspectors of trail allow call expro 18:00 00:00 6:00 DEMOB PLUG DMOB P Rig moving released heaters from pad. 4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold tor slickline an		12:00	15:00	3.00			DEMOB	PLUG	DMOB	Ρ	Rig down Expro treating Iron and stage for loading to back haul. Trucked off 4 heaters, 2 air compressors, one light plant. Spooled up well site electrical lines.
18:00 00:00 6.00 DEMOB PLUG DMOB P Continue to rig down all test lequipment. 4/13/2012 Removed all Expro treating lines and ancillary equipment from location. Notified AOGCC of pending P&A. Crane on hold until tomorrow due to rig 27 broken down in rocation. Notified AOGCC of pending P&A. Drilling tool house crew removed the scaffolding in front of the Expro Atigun house and picked up all exposed reventment plus plywood. Rig 27 stuck at the kupanuk river west bridge blocking all dead horse traffic. 06:00 12:00 6.00 DEMOB PLUG DMOB P Removed Cormorant WMD and choke skid rom Atigun house. 12:00 18:00 6.00 DEMOB PLUG DMOB P Rig moving and trailers allowed past from dead horse to location. Rebook crane for tomorrow. Load all expro treating equipment on trailers. 18:00 00:00 6.00 DEMOB PLUG DMOB P Lynden spotted 4 trailers on site for tomorrow picks. CH2 slowly removing released heaters from pad. 4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold for slickline and coiled tubing intervention. DEMOB PLUG DMOB P Lynden spotted 4 trailers on site for tomorrow picks. CH2 slowly removing released heaters from pad. 08:00 08:00 0.00 DEMOB P		15:00	18:00	3.00			DEMOB	PLUG	DMOB	Ρ	Banded up lumber, insulation blue board, and returned to DTH. DTH removed Atigun house scaffolding.
4/13/2012 Removed all Expro treating lines and ancillary equipment from location. Notified AOGCC of pending P&A. Crane on hold until tomorrow due to rig 27 broken down in road. Drilling tool house crew removed the scaffolding in front of the Expro Aligun house and picked up all exposed revelement plus plywood. Rig 27 stuck at the kuparuk river west bridge blocking all dead horse traffic. 06:00 12:00 6.00 DEMOB PLUG DMOB P Removed Cormorant WMD and choke skid from Aligun house. 12:00 18:00 6.00 DEMOB PLUG DMOB P Rig moving and trailers allowed past however BP security unwilling to provide escurity convolting to provide escurity convolting blocking all dead horse travel from dead horse to location. Rebook crane for tomorrow. Load all expro 18:00 0:00 6.00 DEMOB PLUG DMOB P Rig moving and trailers allowed past however BP security unwilling to provide escurity convolting to 200 crane travel from dead horse to location. Rebook crane for tomorrow. Load all expro 18:00 0:00 6.00 DEMOB PLUG DMOB P Rig moving and trailers allowed past however BP security unwilling to provide escale to cloation. Rebook crane for tomorrow licks. CH2 slowly removing released heaters from pad. 4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold for sitckline and coiled tubing intervention. Dimos P		18:00	00:00	6.00			DEMOB	PLUG	DMOB	Ρ	Continue to rig down all test equipment.
00:00 06:00 6:00 In our pain pain pain pain pain pain pain pain	4/13/2012	Remov Crane o	ed all Ex	pro treat	ing lines a	nd ancillar o rig 27 br	y equipm	nent from	location.	Noti	fied AOGCC of pending P&A.
06:00 12:00 6.00 DEMOB PLUG DMOB P Removed Cormorant WMD and choke skid from Atigun house. 12:00 18:00 6.00 DEMOB PLUG DMOB P Rig moving and trailers allowed past however BP security unwilling to provide escort for 200 crane travel from dead horse to location. Rebook crane for tomorrow. Load all expro treating equipment on trailers. Notified AOGCC State inspectors of pending P&A activities (John Crisp) 18:00 00:00 6.00 DEMOB PLUG DMOB P Lynden spotted 4 trailers on site for tomorrow icks. CH2 slowly removing released heaters from pad. 4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold for slickline and coiled tubing intervention. DEMOB PLUG DMOB P sliept 06:00 08:00 6.00 DEMOB PLUG DMOB P sliept 00:00 06:00 6.00 DEMOB PLUG DMOB P sliept 00:00 08:00 2.00 DEMOB PLUG DMOB P sliept 06:00 08:00 2.00 DEMOB PLUG DMOB P regot to discuss lift plan. wait on crine and		00:00	06:00	6.00			DEMOB	PLUG	DMOB	Ρ	Drilling tool house crew removed the scaffolding in front of the Expro Atigun house and picked up all exposed revetment plus plywood. Rig 27 stuck at the kuparuk river west bridge blocking all dead horse traffic.
12:00 18:00 6.00 DEMOB PLUG DMOB P Rig moving and trailers allowed past however BP security unwilling to provide escort for 200 crane travel from deat horse to location. Rebook crane for tomorrow. Load all expro treating equipment on trailers. Notified AOGCC State inspectors of pending P&A activities (John Crisp) 18:00 00:00 6.00 DEMOB PLUG DMOB P Lynden spotted 4 trailers on site for tomorrow picks. CH2 slowly removing released heaters from pad. 4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold for slickline and colled tubing intervention. DEMOB PLUG DMOB P sleep! 00:00 06:00 2.00 DEMOB PLUG DMOB P sleep! 06:00 08:00 2.00 DEMOB PLUG DMOB P sleep! 08:00 08:01 2.00 DEMOB PLUG DMOB P sleep! 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer on location. Hold pre job and start spotting for fist pick. 08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fib		06:00	12:00	6.00			DEMOB	PLUG	DMOB	Ρ	Removed Cormorant WMD and choke skid from Atigun house.
18:00 00:00 6.00 DEMOB PLUG DMOB P Lynden spotted 4 trailers on site for tomorrow picks. CH2 slowly removing released heaters from pad. 4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold for slickline and coiled tubing intervention. DEMOB PLUG DMOB P sleep! 00:00 06:00 6.00 DEMOB PLUG DMOB P sleep! 06:00 08:00 2.00 DEMOB PLUG DMOB P sleep! 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer 08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.		12:00	18:00	6.00			DEMOB	PLUG	DMOB	Ρ	Rig moving and trailers allowed past however BP security unwilling to provide escort for 200 crane travel from dead horse to location. Rebook crane for tomorrow. Load all expro treating equipment on trailers. Notified AOGCC State inspectors of pending P&A activities (John Crisp)
4/14/2012 Removed all major well test equipment from pad less well site generators. Built temporary well head scaffold for slickline and coiled tubing intervention. 00:00 06:00 6.00 DEMOB PLUG DMOB P sleep! 06:00 08:00 2.00 DEMOB PLUG DMOB P Pre job to discuss lift plan. wait on crine and twin steer 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer on location. Hold pre job and start spotting for fist pick. 08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.		18:00	00:00	6.00			DEMOB	PLUG	DMOB	Ρ	Lynden spotted 4 trailers on site for tomorrow picks. CH2 slowly removing released heaters from pad.
00:00 06:00 6:00 DEMOR PLUG DMOB P sleep! 06:00 08:00 2.00 DEMOB PLUG DMOB P Pre job to discuss lift plan. wait on crine and twin steer 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer on location. Hold pre job and start spotting for fist pick. 08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.	4/14/2012	Remov for slick	ed all ma	ajor well t	est equipn	nent from	pad less	well site	generators	s. B	uilt temporary well head scaffold
06:00 08:00 2.00 DEMOB PLUG DMOB P Pre job to discuss lift plan. wait on crine and twin steer 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer 08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer on location. Hold pre job and start spotting for fist pick. 08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.		00:00	06:00	6.00			DEMOB	PLUG	DMOB	Ρ	sleep!
08:00 08:45 0.75 DEMOB PLUG DMOB P Crane and twin steer on location. Hold pre job and start spotting for fist pick. 08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.		06:00	08:00	2.00			DEMOB	PLUG	DMOB	Ρ	Pre job to discuss lift plan. wait on crine and twin steer
08:45 09:45 1.00 DEMOB PLUG DMOB P Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.		08:00	08:45	0.75			DEMOB	PLUG	DMOB	Ρ	Crane and twin steer on location. Hold pre job and start spotting for fist pick.
		08:45	09:45	1.00			DEMOB	PLUG	DMOB	Ρ	Rig up to well house. Cut DTS fiber optic lines 08:56. Remove well house. HES packed up DTS computers and hauled off.
					1	<u> </u>					

From To Dur S. Depth E. Depth Phase Code Subcode T Comment 09:45 10.45 1.00 Image: Code DEMOB PLUG DMOB P Moved Atigun house with twin steer. Spotted same on trailer and trucked to peak yard for storage until the haul read weight restrictions are lifted. Lay down sand trap with crane. Loaded trap and trucked off. DTH removing 500 bbl tiger tanks and returning to Tanko yard. 10:45 11:15 0.50 DEMOB PLUG DMOB P Rick and set on trailer for back haul to SLB deadhorse. 11:15 12:15 1.00 DEMOB PLUG DMOB P Rick and set on trailer for back haul. to SLB deadhorse. 11:15 12:15 1.00 DEMOB PLUG DMOB P Rick Andu. Collie fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gail ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Rick Schlumberger Gas mixing skid and storage connexes on trailers for transport to back haul. 13:15 14:15 1.00 DEMOB PLUG DMOB P Rick Sch andu.	Time Logs										
09:45 10:45 1.00 DEMOB PLUG DMOB P Moved Atigun house with twin steer. Departure strictions are lifted. 10:45 11:15 0.50 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on training to Tanko yard. 10:45 11:15 0.50 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on training to Tanko yard. 11:16 12:15 1.00 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on training to Tanko yard. 11:16 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. Colville fuel tanker and pump truck not location to drain and haul off excessfuel from well site tanks. Credit received for 4964 gal ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB interestand. Sud won reasport to bac	Date From	n	То	Dur	S. Depth	E. Depth P	hase	Code	Subcode	Т	Comment
Image: Spotted same on trailer and trucked to peak yard for storage until the haul road weight restrictions are lifted. Lay down sam trap with crane. Loaded trap and trucked off. DTH removing 500 bbl tiger tanks and returning to Tranko yard. 10:45 11:15 0.50 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on trailer for back haul to SLB deadhorse. 11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul to SLB deadhorse. 11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. Colville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit treeview for 4964 gal ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schumberger Gas mixing skid and spot on trailers for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick SLB deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB deadhorse. 18:00 0:00 6.00 DEMOB PLUG DMOB P Pick SLB deadhorse. 14:15 15:00 0:00 6.00	09:4	15	10:45	1.00		DI	EMOB	PLUG	DMOB	Ρ	Moved Atigun house with twin steer.
Image: Second											Spotted same on trailer and trucked
Image: Second State Sta											to peak yard for storage until the haul
Image: Section of the sectin of the section of the section of the section of the											road weight restrictions are lifted.
Loaded trap and trucked off. DTH removing 50 bit liger tanks and returning to Tankko yard. 10:45 11:15 0.50 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on trailer for back haul to SLB 11:15 12:15 1.00 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on trailer for back haul. SLB 11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. Colville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gal ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick SLB line heater and spot on trainsport to backhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trainsport to backhorse. 18:00 0:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves.											Lay down sand trap with crane.
10:45 11:15 0.50 DEMOB PLUG DMOB P Rtg CQ2 tank. Pick and set on trailer for back haul to SLB deadhorse. 11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. COlville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gal 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schumberger Gas mixing skid and spot on trailers for demob. 11:15 14:15 1.00 DEMOB PLUG DMOB P Pick Schumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 11:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 B1 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 B1 15:00 0.75 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 B1:00 0.00 6.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 B1:00 0.75 DE											Loaded trap and trucked off. DTH
Image: Second											removing 500 bbl tiger tanks and
10:45 11:15 0.50 DEMOB PLUG DMOB P Rig CO2 tank. Pick and set on trailer for back haul to SLB deadhorse. 11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. COlville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gai ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down fare stack. Haul two 400 BLuprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for transport to Deadhorse. 18:00 0:00 6.00 DEMOB PLUG DMOB P Dif removed well platform and SSV wing Valves. 18:00 0:00 6.00 DEMOB PLUG <											returning to Tanko vard
11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. COlville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gai ULSD. 11:15 13:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. COlville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gai ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexs on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 0.00 6.00 DEMOB PLUG DMOB P DTH right crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob P&A schedule. <t< td=""><td>10:4</td><td>15</td><td>11:15</td><td>0.50</td><td></td><td>D</td><td>EMOB</td><td>PLUG</td><td>DMOB</td><td>Р</td><td>Rig CO2 tank Pick and set on</td></t<>	10:4	15	11:15	0.50		D	EMOB	PLUG	DMOB	Р	Rig CO2 tank Pick and set on
11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. Colville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gai ULSD. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BEL urgights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform. Load SLB work connex and storage connex son trailer for back haul. SLB crews left location. 12:00 18:00 0:00:00 <td></td> <td>~</td> <td></td> <td>0.00</td> <td></td> <td>-</td> <td></td> <td></td> <td>5</td> <td>÷ .</td> <td>trailer for back baul to SLB</td>		~		0.00		-			5	÷ .	trailer for back baul to SLB
11:15 12:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. COlville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gal 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick N2 tanks and spot on trailers for back haul. COlville fuel tanker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gal 12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Dick SLB line heater and spot on trailers for transport to Deadhorse. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrie											deadbarro
11.10 12.10 1.00 DEMOS 1.00 1.00 DEMOS 1.00 Deck Naul. COlville tranker and pump truck on location to drain and haul off excess fuel from well site tanks. Credit received for 4964 gal ULSD. 12:15 13:15 1.00 DEMOS PLUG DMOS P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expression on truck for back haul. SLB crews left location. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on truck transport to Deadhorse. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 20:12 Attempted to fish jet pump. Beat up for a tota	11.1	5	12.15	1.00			EMOR	PLUG	DMOB	P	Dick N2 tanks and anot on trailors for
12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform. Staffold crew on location 20:47 to demo fuel tanks stairs and build well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the moring to try to retrieve jet pump assy. DEMOB PLUG DMOB <t< td=""><td></td><td>5</td><td>12.15</td><td>1.00</td><td></td><td></td><td></td><td>1 200</td><td>DIVIOD</td><td></td><td>head head COhille fuel tenker and</td></t<>		5	12.15	1.00				1 200	DIVIOD		head head COhille fuel tenker and
12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes.											back haul. COlvine fuel tarker and
12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Exprostairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for transport to Deadhorse. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Retu											
12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV with events. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Return in the morning to try to retrieve jet pump assy. DEMOB PLUG DMOB P no night operations											naul off excess fuel from well site
12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPA1 comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 6:00 DEMOB PLUG DMOB P no night operations											tanks. Credit received for 4964 gal
12:15 13:15 1.00 DEMOB PLUG DMOB P Pick Schlumberger Gas mixing skid and spot on truck for back haul. Pick Expro stairs and lay down for demob. 13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. DEMOB PLUG DMOB P no night operations		_								_	ULSD.
13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down fare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. DEMOB PLUG DMOB P no night operations	12:1	5	13:15	1.00		D	EMOB	PLUG	DWOR	Р	Pick Schlumberger Gas mixing skid
Image: Pick Exprosibility and the state of the state											and spot on truck for back haul.
Image: series of the series											Pick Expro stairs and lay down for
13:15 14:15 1.00 DEMOB PLUG DMOB P Lay down flare stack. Haul two 400 BBL uprights tanks to wash bay for cleaning. Load SLB work connex and storage connexes on trailers for transport to Deadhorse. 14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. DEMOB PLUG DMOB P no night operations						3					demob.
Image: Section of the section of th	13:1	5	14:15	1.00		DI	EMOB	PLUG	DMOB	Ρ	Lay down flare stack. Haul two 400
14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob P&A schedule. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 DEMOB PLUG DMOB P no night operations											BBL uprights tanks to wash bay for
14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailers for transport to Deadhorse. 15:00 18:00 3.00 DEMOB PLUG DMOB P Discrete transport to Deadhorse. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. DEMOB PLUG DMOB P no night operations											cleaning. Load SLB work connex
14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. /2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 DEMOB PLUG DMOB P no night operations											and storage connexes on trailers for
14:15 15:00 0.75 DEMOB PLUG DMOB P Pick SLB line heater and spot on trailer for back haul. SLB crews left location. 15:00 18:00 3.00 DEMOB PLUG DMOB P Dirth removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 06:00 DEMOB PLUG DMOB P no night operations											transport to Deadhorse
15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob 2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 DEMOB PLUG DMOB P no night operations	14:1	5	15:00	0.75		D	ЕМОВ	PLUG	DMOB	Р	Pick SI B line heater and spot on
15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob 2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 0 DEMOB PLUG DMOB P no night operations											trailer for back baul. SI B crews left
15:00 18:00 3.00 DEMOB PLUG DMOB P DTH removed well platform and SSV wing valves. 18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob 2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 06:00 DEMOB PLUG DMOB P no night operations											
18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob 2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 0EMOB PLUG DMOB P no night operations	15:0	0	18.00	3.00			EMOB	PLUG	DMOB	Р	DTH removed well platform and SSV
18:00 00:00 6.00 DEMOB PLUG DMOB P DTH night crew cleaning up plywood and herculite from site. Hauling off all remaining equipment. Scaffold crew on location 20:47 to demo fuel tank stairs and build well platform. Updated BP planners with demob 012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 6.00 DEMOB PLUG DMOB P no night operations	10.0	~	10.00	0.00			LIVIOD	1 200	DINOB	÷	wing valves
10.00 00.00 0.00	18.0	0	00.00	6.00			EMOB	PLUG	DMOB	P	DTH pight grow cleaning up played
Image: State of the control of the	10.0	~	00.00	0.00		5	LIVIOD	1 200	DINIOD	÷ .	and bargulite from site. Houling off
Image: Standard S											all remaining againment. Coeffeld
2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations											an remaining equipment. Scanolo
Item stairs and build weil platform. Updated BP planners with demob P&A schedule. 2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations 00:00 6.00 DEMOB P											track stains and build well platform
2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations											tank stars and build well platform.
2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations 00:00 06:00 00											Updated BP planners with demod
2012 Attempted to fish jet pump. Beat up for a total of two hrs and 30 minutes. Removed AZTAC and CPAI comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations 00:00 06:00 00	0040			0							P&A schedule.
comms from camp. Staged well site generators for back haul. Return in the morning to try to retrieve jet pump assy. 00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations	Atten	npt	ed to fis	h iet purr	np. Beatu	p for a total	of two I	nrs and 3	30 minutes.	Re	emoved AZTAC and CPAI
pump assy. DEMOB PLUG DMOB P no night operations	comr	ms	from ca	mp. Stag	ged well sit	te generator	s for ba	ack haul.	Return in	the	morning to try to retrieve jet
00:00 06:00 6.00 DEMOB PLUG DMOB P no night operations	pump	p as	ssy.								
	00:0	00	06:00	6.00		D	EMOB	PLUG	DMOB	Ρ	no night operations
						a					
											Page 61 of 64

Time Logs										
Date	From	То	Dur	S. Depth	E. Depth	Phase	Code	Subcode	Т	Comment
	06:00	12:00	6.00			DEMOB	PLUG	DMOB	Ρ	SLick line unit arrived on location 07:00. Found departing crews had
										removed bleed fittings from sand jet
										tank. called out wells goup to instal
										wire 8' x 2 625" Stem K L I SS RIH
										w/QC, 2'x 1.875"STEM, 2.85"
										GAUGE RING, TAG @ 1919' SLM,
										POOH, set down in station# 1,
										bobble past, POOH. Added 5' x
										PRS.(brass pin), to 1920' SLM, beat
										up for 50 min, sheer off POOH.; tool
										sheared. AZTAC and CPAI
										communications crews removing all
	12:00	18:00	6.00			DEMOB	PLUG	DMOB	Р	Cut 200' wire, had to rebuild PRS to
										repin and clean. RIH w/ QC, 4 1/2
										PRS TO 1920' SLM, latch, beat up
										for 50 min. Shear off, POOH cut 100'
										POOH SIBD, cut wire. Picked up
										catcher RIH. Slips catching
										repeatedly setting down 800'. POOH
										RD for night. Return with rebuilt PRS
										slips. DTH assisting Peak Precision
										power to remove louvers from well
										site generators and stage same for
	18:00	00:00	6.00		1	DEMOB	PLUG	DMOB	Ρ	ASRC Drilling Tool House Loader
										operating on pad suffered a hydraulic
										hose failure. Security called. PIR
04/16/2012										maned. Of Al Wens Ool 1 Houned.
	Pulled	dummy	/alve @ 1	928' RKB	, pulled je	t pump, S	S/N: PH-1	108 ration	6C	(OAL 200") from 1942' RKB,
	00:00	06:00	6.00	assembly	and gatter	DEMOB	PLUG	FISH	Ρ	no night operations
	06:00	12:00	6.00			DEMOB	PLUG	FISH	Ρ	SL crew traveled to location,
										inspected equipment, performed
										pre-job safety meeting. RU SLU, 125 wire TS=8' x 2 625" stem K I
										LSS. RIH w/ 4 1/2"GS (3/16" Brass)
										4 1/2 bait sub as catcher sub (
										12"OAL) set on 3.812 DB-6 lock @
										1918' SLM / 1942' RKB. RIH w/ 4
										locate @ 1908' SLM, latch @ 1910'
										SLM / 1928' RKB, pulled, POOH,
										OOH w/ 1"DV on BK latch. RIH w/ 4
										RKB, POOH, OOH bait sub
										empty
										Page 62 of 64

Time Log	js								
Date	From	То	Dur	S. Depth	E. Depth Phase	Code	Subcode	Т	Comment
	12:00	18:00	6.00		DEMO	PLUG	FISH	P	RIH w/ 4 1/2 PRS to 1919' SLM, latch, beat up 1900#s for 1 hour, hit down 3 times, sheared, POOH, OOH w/ sheared PRS, cut 200' wire. RIH
									w/ 4 1/2 PRS to 3.812 DB lock & 3" RC jet pump(s/N: PH-1108 ratio 6C (OAL 200"), latch @ 1919' SLM, beat
									up tor 1 hour, came free, pulled POOH slow, OOH, carbolite in lowest stinger. Brass marks around top of DB-6 lock mandrel. RIH w/ 4 1/2 PRS latch to 1934' SLM, / 1956' RKB, pulled 3.75" DB-6 lock mandrel w/ weatherford seal bore assembly and gutted CAT SV. RDMO.
	18:00	00:00	6.00		DEMOE	B PLUG	FISH	Ρ	DTH load up last remaining Delta Leasing heater and hauled to Kuparuk. Cleaned up oil from loader spill on 4-15-12, loaded into transport tank and trucked to Kuparuk for disposal. Dropped off envirovac for camp demob. Break down deluge system.
04/17/2012	2								
	00:00	00:00	24.00	acquisitio	DEMOE	PLUG	OTHR	Ρ	Disconnected the XPIO data
									continues to rig down for move.
05/01/2012	2 Perform	n Full-Bo	ore Ceme	nt Job					
	15:30	16:00	0.50		DEMO	PLUG	CMNT	Ρ	MIRU Cement Pump unit and cement tankers
	00:30	00:45	0.25		DEMO	PLUG	CMNT	Ρ	Pre-Job Safety Meeting
	00:45	01:15	0.50		DEMO	PLUG	CMNT	Ρ	Pressure Test hardline.
	01:15	01:30	0.25		DEMOE	PLUG	CMNT	Ρ	Line up well to pump down tubing and take returns up the IA. Pump approx. 7 bbls of Freshwater down the tubing to establish flow. Commence batching cement to job specs.
	01:30	02:15	0.75		DEMOE	B PLUG	CMNT	P	Pump 81 bbls of cement down the tubing and take returns up the IA until at surface.
	02:15	02:30	0.25		DEMOE	PLUG	CMNT	Ρ	Close IA and line tree up to take returns up the flat pack until cement is at surface.
	02:30	02:45	0.25		DEMO	PLUG	CMNT	Ρ	Close valve to flat pack and line up tree to take cement up the chemical injection line to surface.
	02:45	03:15	0.50		DEMO	PLUG	CMNT	Ρ	Shut in well and flush surface lines with 35 bbls of fresh water.
	03:15	04:15	1.00		DEMO	PLUG	CMNT	Ρ	RDMO. Secure Location.
05/03/2012	2 Begin F minimu	Plug & Al m of 5' b	bandon F below tun	rocedures dra level.	s. Excavate aroun	d cellar bo	ox and rem	ove;	l begin excavation to get a
									Page 63 of 64

Jale	Ercen	To	Dur	S Deet	E Death	Dhess	Code	Subsed	т	Commont
	From	07:00	Dur 1.00	S. Depth	E. Depth	DEMOB		SETY	P	Comment Pre-Tower Meeting: P.ISM
	00.00	01.00	1.00			DEMOD	1 200		*	The Tower Meeting, Toem.
	01:00	04:00	3.00			DEMOB	PLUG	МОВ	Ρ	Transport equipment to location and
										stage.
	04:00	05:00	1.00			DEMOB	PLUG	OTHR	Ρ	Obtain Hot Work and Unit Work
					-		-			Permits.
	05:00	07:00	2.00			DEMOB	PLUG	OTHR	Ρ	Begin to excavate around the cellar
										box to facilitate cutting and removal.
	07:00	11:00	4.00			DEMOB	PLUG	OTHR	Ρ	After cellar box is removed, begin
										excavating around the wellhead to a
										depth of 5" below tundar level. Cut in
										a walking ramp to ease egress.
	11:00	12:00	1.00			DEMOB	PLUG	SISW	Р	Set barricades and secure location
					5	2				for the night.
/04/2012					a 6					
	Continu	ue with F	Plug & Ab	andon Pro	cedures.	Cut off ar	nd remov	e wellhead	, Ha	ve AOGCC Inspector sign off,
	weld or	1 cap an	d backfill	with spolis	S.	DEMOD	DUUO		-	
	06:00	07:00	1.00			DEMOR	PLUG	SFIY	Р	Pre-Tour Meeting and PJSM.
	01:00	02:30	1.50			DEMOB	PLUG	OTHR	Х	Travel to location and clean up road
	Proceeding and	CONTRACTOR CONTRACTOR	00000000				000000000000000000000000000000000000000		2.5414	entrance due to blowing snow. Free
										stuck vehicle in roadway.
	02:30	03:00	0.50			DEMOB	PLUG	OTHR	Ρ	Obtain How Work and Unit Work
										Permits.
	03:00	03:30	0.50			DEMOB	PLUG	SFTY	Ρ	Hold PJSM with welder and
		1013 A0131	81 838					3		excavator operator.
	03:30	07:00	3.50			DEMOB	PLUG	RTWH	Ρ	Begin window cutting procedures.
								Proc.28/08/02.2004/2		Drill and cut windows in casings and
										tubing. Varify no gas or fluids and
										good cement to surface.
	07:00	07:30	0.50			DEMOB	PLUG	RTWH	Ρ	Cut conductor until free and set off to
										the side.
	07:30	08:00	0.50			DEMOB	PLUG	OTHR	Ρ	Verify good cement and obtain
										pictures with AOGCC linspector,
										John Crisp. Receive confirmation and
										weld cap to 16" conductor.
	08:00	08:30	0.50			DEMOB	PLUG	RURD	Р	Release and rig down GBR Welder
										and close out Hot Work Permit.
	08:30	10:30	2.00			DEMOB	PLUG	OTHR	Р	Backfill hole with existing spoils and
										observed that more fill was needed.
	10:30	15:00	4.50			DEMOB	PLUG	OTHR	Х	Haul 3 loads (25 yds. each) of gravel
										and 2 loads (25 yds each) of
										overburden to location. Backfill to 4'
										above ice level to allow for settling.
										above ice level to allow for settling. Total of 150 yards of extra backfill
		10.00				0.000	DULIA	0.155	1	above ice level to allow for settling. Total of 150 yards of extra backfill hauled and used on location.
	15:00	16:00	1.00			DEMOB	PLUG	RURD	P	above ice level to allow for settling. Total of 150 yards of extra backfill hauled and used on location. Release equipment and secure

National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

One West Third Street, Suite 1400 Tulsa, OK 74103-3519

1450 Queen Avenue SW Albany, OR 97321-2198

2175 University Ave. South Suite 201 Fairbanks, AK 99709

Visit the NETL website at <u>www.netl.doe.gov</u>

Customer Service: 1-800-553-7681

