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Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial
hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the
atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with
implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little
variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture
by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass
was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from
atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess
release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 106 kg of hydrocar-
bons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average envi-
ronmental release rate of (10.1 ± 2.0) × 106 kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties
with the official average leak rate of (10.2 ± 1.0) × 106 kg/d derived using physical and optical methods.

Gulf of Mexico | deepwater blowout | marine hydrocarbon partitioning | oil spill flow rate

K
nowledge of the composition,
distribution, and total mass of the
hydrocarbon mixture (gas plus
oil) emitted following loss of the

Deepwater Horizon (DWH) drilling unit is
essential to plan mitigation approaches
and to assess environmental impacts of the
resulting spill. Estimates of DWH hydro-
carbon flow rate were originally derived
using physical and optical methods applied
during the spill; values were subsequently
refined, and an official government esti-
mate of oil flow rate was published (1).
Analysis of airborne atmospheric chemical
data provided information on hydrocarbon
evaporation into the air and a lower limit
to the flow rate (2); however, a more de-
tailed description of environmental distri-
bution has not been available. Here, we
present combined atmospheric, surface,
and subsurface chemical data to constrain
physical transport pathways, and the re-
sulting composition and mass flow rate of
DWH hydrocarbon mixtures along each
pathway, following subsurface release
from the leaking well in early to mid-
June 2010.
Our analysis primarily focuses on the

period following installation of Top Hat
no. 4 on June 3 (3), which includes flights
by a chemically instrumented P-3 aircraft
(2, 4) and remotely operated vehicle
(ROV) sampling of leaking fluid at the

well (5), and ends roughly in late June at
the conclusion of the R/V Endeavor cruise
(Fig. S1). The suite of deployed subsur-
face, surface, and airborne measurements
offers spatial, temporal, and chemical de-
tail that is unique to this period and to
this spill. We use atmospheric, surface,
and subsurface measurements of
hydrocarbons, dissolved oxygen, and dis-
persant from throughout this period, as
well as considering additional chemical
data following closure of the well, to define
the initial compositions, distributions,
and mass flow rates of the hydrocarbon
mixtures evolving along different pathways
following release into the marine
environment.

Results
1. Composition Data Constrain Physical Trans-
port Pathways. DWH hydrocarbons were
released at a depth of ∼1,500 m in a high-
pressure jet, resulting in gas bubbles and
liquid oil droplets with an initial number
and volume distribution that is not yet
well quantified (1). Size and chemical
composition of the hydrocarbon bubbles
and droplets evolved extremely rapidly
following release from the well (6). A
complex interplay of physical processes
determined hydrocarbon-water plume
mixing dynamics (7, 8) and affected
the composition and 3D distribution of

the hydrocarbon mixtures within the
water column, at the surface in the re-
sulting oil slick, and in the overlying
atmosphere (2).
Prediction of mass fluxes along envi-

ronmental transport pathways following
a deepwater blowout requires accurate
understanding of time-dependent dynam-
ical behavior and evolving chemical com-
position along various transport pathways,
on time scales of seconds to weeks fol-
lowing release. Three observed features
of the DWH spill offer key insights into
marine transport pathways:

a) Short surfacing time constrains oil
droplet size. Visual observations from
response vessels suggested a ∼3-h lag
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time between deliberate intervention
at the well and the onset of change in
the fresh surface slick. This time corre-
sponds to a mean buoyant velocity of
0.14 m/s from a depth of 1,500 m and
is generally consistent with the 70-min
surfacing time observed during the
DeepSpill experiment following an in-
tentional release of gas and oil from a
depth of 844 m in the North Sea (9).
Further, narrow atmospheric plumes
observed under nearly orthogonal wind
directions on June 8 and June 10, 2010,
by the National Oceanic and Atmo-
spheric Administration (NOAA) P-3
aircraft (2) indicate that the surface
expression was limited to a small area
laterally offset 1.0 ± 0.5 km from the
well, a finding also consistent with
observations from the DeepSpill ex-
periment (9). Acoustic Doppler cur-
rent profiler data recorded at the well
site (www.ndbc.noaa.gov/download_
data.php?filename=42916b2010.txt.
gz&dir=data/historical/adcp2/) in-
dicate a net horizontal velocity (inte-
grating from depths of 1,200 m to the
surface) of ∼0.03 m/s on June 8 and 10,
2010. Combined with the lateral offset
at the surface, this would imply a mean
vertical transport time of no more than
∼10 h, corresponding to a mean buoy-
ant velocity of no less than ∼0.05 m/s.

The 3- to 10-h lag time indicates that
droplets with approximately millime-
ter-scale diameters transported the
majority of the surfacing hydrocarbon
mass (10, 11) (Fig. S2 A and B). This
average diameter is consistent with
visual observations of droplet size dis-
tributions within the near-field plume
source regions, both before and after
shearing of the well riser pipe (5, 12),
and approaches the maximum stable
droplet diameter of ∼10 mm (13).

b) Small surfacing area implies a narrow
droplet mass distribution. Gaussian fits
to data in the narrow atmospheric
plume of hydrocarbons, with no detect-
able volatile hydrocarbon mass outside
of the narrow plume (Fig. 1B) ∼10 km
downwind of DWH (2), imply that
essentially all the buoyant mass sur-
faced within a ∼2-km2 area (Fig. 1 A
and B). This is a robust result, because
the airborne instruments were suffi-
ciently sensitive to have detected and
quantified a similar mass of oil surfac-
ing over an area of ∼2,000 km2 with
a plume signal-to-noise ratio of ∼60
for alkanes and ∼25 for aromatics
(Fig. S3). The airborne measurements
provide strong evidence that negligible
mass surfaced outside of the ∼2-km2

area immediately adjacent to the spill
site (Fig. 1 C and D).

c) Atmospheric hydrocarbon relationships
imply minimal variability in surfacing
times. Within the atmospheric plume,
the tight correlations and single molar
enhancement ratios, defined as Δ[XA]/
Δ[XB] between pairs of alkanes A and
B with different solubility and volatility,
and aromatic-alkane pairs of different
solubility (Fig. 1 C and D), provide fur-
ther direct evidence for a narrow dis-
tribution of surfacing times. Surfacing
times appreciably shorter or longer than
3–10 h would have resulted in lesser
or greater removal of partially soluble
hydrocarbons, and thus variable atmo-
spheric enhancement ratios for a given
hydrocarbon pair. The tight correlation
between each hydrocarbon pair (Fig. 1)
provides further evidence for a narrow
mass distribution of large droplets (11).

The available atmospheric observations
thus argue for a single pathway trans-
porting the majority of surfacing hydro-
carbon mass directly and promptly to the
surface. We conclude that the surface oil
slick was fed primarily by this single path-
way, with negligible mass transported to
the surface via smaller droplets surfacing
after longer transport times, and thus at
greater distances from the well (Fig. 1A).
The available subsurface observations

have been described in detail elsewhere (5,
14–22). These reports conclude that the

A

B C

D

Fig. 1. (A) Scale diagram of surfacing hydrocarbon plume dimensions; the atmospheric plume data are consistent with a surface source area of ∼1.6 km in
diameter. ppbv, parts per billion by volume. (B) Gaussian fits to hydrocarbon composition data and corresponding full width at half maximum (FWHM) from
crosswind P-3 aircraft transects of the evaporating plume 10 km downwind of DWH; data from a single transect are shown as an example. (C) Data above the
detection limit [>5 parts per trillion by volume (pptv)] from all DWH plume transects show no evidence for different populations of n-C4 through n-C8 alkanes
relative to n-C9 (different volatilities and solubilities). (D) Data >5 pptv from all transects show no evidence for different populations of C7 and C8 aromatics
relative to n-alkanes of the same carbon number (similar volatilities but different solubilities).
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majority of the subsurface mass was de-
tected generally between a depth of 1,000
and 1,300 m in concentrated deep hydro-
carbon plumes. This finding is consistent
with a physical mechanism that predicts
formation of horizontal intrusions, or
plumes, of dissolved species and small
undissolved droplets of liquid oil formed in
the turbulent DWH jet (8). Although
concentration enhancements outside of
these plume depths have been reported
(e.g., 17, 21), no significant DWH hydro-
carbon mass enhancement above or below
these discrete layers is evident in the sub-
surface chemical data to date (5, 14–22).
Numerical simulations of this mechanism
predict the observed depth of the deep
plumes (8) and further predict additional
discrete plumes at shallower depths
with negligible mass compared with the
deep plumes.
In the following sections, we interpret

the available chemical data in terms of
a simplified model in which leaked DWH
hydrocarbon mass was transported pri-
marily along two initial pathways, either
directly into the deep plume or directly to
the surface; after surfacing, further evap-
oration into the air occurred (Fig. 1A).

2. Composition Data Quantify Partitioning
into Dissolved, Evaporated, and Undissolved
Hydrocarbon Mixtures. Here, we compare
the measured hydrocarbon compositions
of atmospheric and subsurface DWH
plume samples with the composition
leaking from the Macondo well; observed
differences define the extent and nature
of alteration attributable to dissolution
and evaporation over time along different
transport pathways (2). The hydrocarbon
composition of subsurface samples can
further be altered on multiday time scales
by differential biodegradation during
transport from the well (14, 16, 17, 19,
21). To minimize this confounding effect,
the analysis here considers hydrocarbon
composition data from the closest and
most concentrated subsurface samples
[i.e., those taken within 5 km of the well
and characterized by very large concen-
tration enhancements (CH4 >45,000 nano-
molar (nM) of seawater or toluene >1,000
ng/μL of seawater)].
The DWH drilling unit was destroyed

because of uncontrolled high-pressure re-
lease of natural gas and liquid oil (3). The
hydrocarbon composition leaking into the
Gulf of Mexico may have differed from
the composition measured in the prespill
reservoir because of potentially abrupt
reservoir composition changes associated
with the blowout, phase separation, frac-
tionation, or gas washing (23) within the
flowing reservoir during the ensuing 83-
d spill. A previous report (2) calculated
the distribution of gas and oil compounds
between the atmosphere and the water

column, and a lower limit to the leaking
mass flow rate, by assuming the composi-
tion of leaking fluid was unchanged from
the prespill reservoir composition. This
assumption resulted in a large uncertainty
in the lower limit flow rate calculated from
airborne atmospheric hydrocarbon data
alone (2). This uncertainty is minimized,
and partitioning and mass flow estimates
are improved, by use of composition data
from a sample of leaking fluid taken dur-
ing the spill (5).
The hydrocarbon composition of a sam-

ple taken directly within the leaking lower
marine riser package (LMRP) (5) is
qualitatively similar (Fig. 2A) to that in-
ferred from prespill analysis of reservoir
fluid (2). Different values of the derived
gas-to-oil ratio (GOR) result primarily
from the different abundances of com-
pounds in the gas fraction (i.e., CH4
through isomers of C5; Fig. 2A and Fig.
S4A). Additional differences are noted but
have a proportionally smaller effect on the
conclusions presented here. Analytical
uncertainties of ±5%, with no additional
uncertainty attributable to unspecified
treatment of chromatographic unresolved
complex material (2) in the analysis of the
leaking fluid (figure S2 in ref. 5), signifi-
cantly improve the utility of atmospheric
data to determine hydrocarbon distri-
butions between the air and the water
column and to quantify hydrocarbon mass
flow rates, as described separately below.
Use of the leaking fluid composition (5)

leads to a calculated distribution of DWH
hydrocarbons between air and water sim-
ilar to that previously derived using the
inferred prespill composition (2). The
mass fraction of each compound X in air is

The numerator is the slope of a linear
regression to X and 2-methylheptane
measured in the atmosphere, and the de-
nominator is the mass abundance of X
relative to 2-methylheptane in the leaking
fluid (5). Here, we normalize to 2-meth-
ylheptane, but the results are insensitive
to the choice of undissolved and volatile
hydrocarbon for the denominator. The
present analysis uses atmospheric hydro-
carbon data obtained from ships and the
P-3 aircraft between mid-May and the end
of June 2010, sampling a much longer time
period than the 2 d previously reported
(2). The overall picture developed from
this larger atmospheric dataset and the
leaking fluid composition is qualitatively

similar to that reported by Ryerson et al.
(2), and is shown graphically in Fig. 2B.
The air–water distribution of individual
hydrocarbon species reported below is
highly constrained by the chemical data;
uncertainties of ±10% in the calculated
distributions are determined by propaga-
tion of gas chromatography-flame ioniza-
tion detection (GC-FID) calibration
uncertainties of ±5% (5, 24). The general
similarity of the atmospheric composi-
tion, illustrated by data taken over the
period of a month, suggests little change
in the average composition of the surfac-
ing DWH hydrocarbon mixture during
this period.
i) Hydrocarbon mixture remaining subsurface.
DWH hydrocarbon transport into the
subsurface resulted from two separate
processes operating simultaneously during
the spill (8). The first process involved
dissolution of hydrocarbons from large,
millimeter-scale diameter buoyant drop-
lets during ascent to the surface. Contin-
ued buoyant ascent physically transported
the resulting droplets out of the trapped
intrusion (8), leaving behind dissolved
hydrocarbons in the subsurface. The dis-
solved hydrocarbon composition is de-
termined from observed differences
between atmospheric DWH plume com-
position measured from surface ships and
aircraft (2) and the leaking composition
measured directly in the well (5). Dis-
solved mass fractions are given by (1 −
fraction of X in air) for compounds more
soluble than 2-methylheptane, and they
are set to zero for less soluble species (Fig.
2B, Upper, filled red squares). Multiplying
these mass fractions by leaking fluid
mass abundances gives the dissolved mix-

ture composition, which accounted for
∼25% of the mass of the leaking mixture.
Methane (CH4), ethane (C2H6), propane
(C3H8), and isomers of butane (C4H10)
accounted for 89% of the dissolved
hydrocarbon mass.
The second process transporting

hydrocarbons into the persistent sub-
surface plumes involved physical trapping
of small droplets of leaking hydrocarbon
fluid (8). Trapped small droplets are ex-
pected to remain suspended following loss
of dissolved hydrocarbons into the sur-
rounding seawater (8). We focus on the
deep plume data because subsurface
samples (5, 14, 16–22) show little evidence
for substantial hydrocarbon mass initially

Fraction of X in air ¼

�
Xplume −Xbkgd

2-methylheptaneplume − 2-methylheptanebkgd

�
�

X
2-methylheptane

�
fluid
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deposited at depths above 1,000 m or be-
low 1,300 m. The relative contribution
from (a) dissolved hydrocarbon mass and
(b) suspended droplet mass in the deep
plume is estimated by comparing sub-
surface plume chemical composition data
with the composition of the unmodified
leaking fluid and with its dissolved
fraction below.
The deep plume composition is identical

to that of the leaking fluid for the highly
soluble species but begins to differ for
less soluble species. Published subsurface
data on alkanes larger than propane, and

on aromatics larger than toluene (14–17),
were examined for samples within 5 km
of the well and for which measured
methane was >45,000 nM of seawater or
measured toluene was >1,000 ng/μL of
seawater. These concentrated near-field
plume measurements (Fig. 3 A–C, blue
squares) are normalized to the most solu-
ble measured compound and compared
with the compositions of dissolved (red
circles) and leaking (gray bars) mixtures
defined above. In each published dataset,
the observed pattern of subsurface hydro-
carbons relative to measured methane

reported by Joye et al. (17) (Fig. 3A),
benzene reported by Camilli et al. (14)
(Fig. 3B), or toluene reported by Hazen
et al. (16) (Fig. 3C), respectively, approx-
imates the composition of just the dis-
solved fraction of the leaking mixture. The
deep persistent subsurface plumes were
primarily composed of dissolved species
and were relatively depleted in the more
sparingly soluble species. This finding,
based on subsurface chemical measure-
ments, is qualitatively consistent with
a standard oil drop size parameterization
(11) in which droplet number decreases
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Fig. 2. (A) Prespill Macondo reservoir hydrocarbon mass fraction (mass of compound per mass of reservoir fluid) (2) plotted vs. leaking fluid hydrocarbon mass
fraction measured during the spill in mid-June (5). Each data point represents an individual hydrocarbon compound; several are labeled for illustration. Data for
methane (CH4) through n-undecane (C11H24) are shown, comprising 38%of the totalmass of the leaking fluid. The dashed line (blue) has a slope of unity; the slope of
a linear-least-squaresfit (red) is, within estimated errors, not significantly different fromunity. Gas-to-oil ratio (GOR) data are given in units of standard cubic feet per
stock tank barrel (scf/stb). (B) (Lower) Atmospheric hydrocarbon mass enhancement ratios to measured 2-methylheptane (open symbols) from research vessels and
aircraft reflect the undissolvedand volatile componentsof the leakingfluid (graybars). (Upper) Fractions in air (open symbols) are theatmospheric enhancement ratios
normalized to the expected ratio to 2-methylheptane in the leaking fluid. The dissolved fraction (filled squares) is calculated from the data from June 10, 2010.
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exponentially with increasing diameter,
suggesting proportionally little mass can

be transported in the form of suspended
droplets of liquid oil (Fig. S2B).

However, the actual drop size distribu-
tions of the DWH leaks are not known,
and may not be well described by this
standard parameterization. Because
transport in the subsurface is highly de-
pendent on the actual drop size distribu-
tion (8), the mass initially suspended in the
deep plumes as small droplets of oil re-
mains one of the largest uncertainties in
the DWH hydrocarbon budget to date.
Initially, suspended droplets are predicted
(8), were positively identified by ROV
cameras (14), and are qualitatively con-
firmed by published subsurface enhance-
ments of sparingly soluble polycyclic
aromatic hydrocarbons (15, 16). These
latter composition measurements, all
taken very close to (within 1 km radius of)
the leaking well, are not sufficient to
quantify hydrocarbon mass transported in
the form of suspended droplets. No direct
measurements have been presented to
quantify this suspended mass to date.
To begin to address this uncertainty, we

use chemical data to define the fractional
contribution of sparingly soluble com-
pounds relative to dissolved compounds
for samples taken in the deep persistent
plume. An approximate estimate is affor-
ded by further analysis of published data
(16) on C10 to C32 n-alkanes from samples
taken within the concentrated deep plume
at varying distances from the well (Fig.
3D). These data show a large systematic
depletion (by ∼85%) of heavier n-alkanes
relative to the highly soluble aromatic
compound toluene (C7H8), further dem-
onstrating that proportionally little mass
was transported into the deep plume in the
form of suspended small droplets. Mini-
mal biodegradation in these samples is
indicated by (n-C17/pristane) and (n-C18/
phytane) ratios (Fig. 3D) similar to those
in the leaking fluid. Sparingly soluble n-
alkane mass abundances of ∼15% (range
of 5–25%; Fig. 3D) in the deep plume
relative to the leaking fluid suggests that
31% (range of 13–43%) of the subsurface
plume mass can be accounted for by
transport of hydrocarbons in the form of
initially suspended droplets. We note this
conclusion is qualitatively consistent with
DWH simulations showing that only
small droplets were trapped (8), as well as
with extrapolations from standard dis-
persed oil droplet size parameterizations
(Fig. S2B) suggesting that small droplets
do not transport the bulk of the mass (11).
However, a different drop size distribution
could also be consistent with these ob-
servations. More accurate size information
through the full range of potential drop
size diameters is needed to constrain these
extrapolations further.
ii) Volatile mixture evaporating to the atmosphere.
Undissolved volatile and semivolatile
hydrocarbons evaporate on characteristic
time scales of hours to days after reaching
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Fig. 3. (A) Subsurface near-field plume data (blue) from Joye et al. (table 2 in ref. 17), normalized to
measured methane, compared with the composition of leaking gas and oil (gray) and the composition in-
ferred for the mixture dissolved from the promptly surfacing mass (red). The seven most concentrated
samples (CH4 > 45,000 nM) sampled within 5 km of the well were averaged; the isobutane and n-butane
data were transposed, and isomer-specific pentane data were apportioned according to their relative
abundance in the leaking fluid. (B) As in A using subsurface plume data from Camilli et al. (14) normalized to
measured benzene. (C) As in A using subsurface benzene, toluene, ethylbenzene, and total xylenes (BTEX)
plume data >5 μg/L seawater from five separate samples (colored lines and markers) reported in Hazen et al.
(16) normalized to measured toluene. (D) As in A using subsurface n-alkane plume data >2.5 μg/L seawater
from Hazen et al. (16) normalized to measured toluene. The average and range of (0.15 ± 0.10) used to scale
the dissolved oxygen (DO) observations are shown by the dashed line and shading, respectively.
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the surface (2, 4, 25). The undissolved and
volatile hydrocarbon mixture evaporating
within 2–3 h of surfacing (2) was de-
termined directly with uncertainties of ±
10% (24) using shipborne and airborne
measurements of CH4 through n-C11. The
evaporated fraction of unmeasured semi-
volatile hydrocarbons greater than n-C11 is
calculated (Fig. S5A) using the volatility
distribution of the oil mixture determined
from the chemical composition and the net
evaporation measured in the laboratory (4).
The sum of volatile and semivolatile masses
(Fig. 2B) shows that 14% of the surfacing
mixture was both sufficiently insoluble to
reach the surface and sufficiently volatile to
evaporate from the slick within 1–2 d of
surfacing. Because not all the leaked mass
reached the surface, a smaller percentage
actually evaporated; this amount is
quantified below.
Summing the amounts dissolved and

evaporated shows that these processes to-
gether reduced the mass of hydrocarbons
in the surface slick by [1 − (0.75·0.86)] =
0.36, or approximately one-third, relative
to the slick mass that would have occurred
in the absence of these processes. Further
evaporation of less volatile compounds
likely removed little additional mass from
the slick after the second day (26). The
evaporating mixture chemical composi-
tion is shown graphically in Fig. 4A;
n-heptane, n-octane, n-nonane, and

methylcyclohexane were the four most
abundant hydrocarbons by mass in the
evaporating mixture.
The atmospheric composition data

taken aboard surface vessels and the re-
search aircraft, together with the sub-
surface composition data, demonstrate
relatively little variation in evaporating
hydrocarbon composition from late May
through the end of June, 2010 (Fig. 2B).
The F/V Eugenie cruise data were taken
before shearing the broken riser pipe on
June 2 and installation of the LMRP cap
on June 3. The atmospheric data taken
subsequently showed no significant change
following this event (Fig. 2B), suggesting
little change in the composition of the
surfacing hydrocarbon mixture as a result
of this intervention. The absence of at-
mospheric CH4 enhancements associated
with any DWH hydrocarbons in these data
(Fig. 2B) confirms earlier reports of
complete CH4 dissolution in the sub-
surface (2, 18, 19, 21, 22, 27) and
demonstrates that no emissions of CH4 to
the atmosphere were detected through at
least the first 2 mo of the spill. These at-
mospheric measurements further demon-
strate that leaked benzene (C6H6) was
nearly completely removed in the water
column,minimizing its impact at the surface.
iii) Hydrocarbon mixture remaining in the surface
oil slick.Leaked and surfacing hydrocarbons
that neither dissolved nor evaporated

within the first 1–2 d of surfacing de-
termined the initial composition of the
persistent surface oil slick. Slick chemical
composition ∼2 d after surfacing is shown
graphically in Fig. 4B; n-C17, n-C16, n-C18,
and n-C15 were the four most abundant
hydrocarbons by mass in the initial surface
slick. Slick composition inferred from the
airborne and shipborne atmospheric data
is qualitatively confirmed by GC-FID
analysis of oil samples taken from R/V
Endeavor directly in the surface slick 1.5
km horizontally from the well on June 20,
2010 (Fig. S5B, Lower).

3. Composition Data Constrain Mass Flow
Along Different Transport Pathways. The
combined datasets are used to estimate the
mass flow rates of leaked hydrocarbons
along each of the identified transport path-
ways (Fig. 4D) in early June, 2010, that can
be accounted for by the available chemical
composition measurements. These are
compared with the consensus government
estimate of total mass flow from the well,
calculated from the official volume flow
rate estimate (1) in barrels of liquid oil
(Fig. S1, black circles). Total hydrocarbon
mass flow rate, including the gas fraction,
is calculated by multiplying the govern-
ment estimate of leaked oil volume flow by
132.2 kg per stock tank barrel of liquid oil
and by a mass ratio of [(gas + oil)/oil] =
1.31 ± 0.08 measured at 1 atmosphere and
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Fig. 4. Evaporated hydrocarbon composition after 2 d (A; blue bars), surface oil slick composition after 2 d (B; black bars), and dissolved hydrocarbon
composition (C; red bars). The leaking hydrocarbon composition from CH4 through n-C39 (black line) is shown in each panel for comparison. (D) Schematic (not
to scale) of hydrocarbon mass flows in the marine environment; values are calculated for June 10, 2010, in millions of kilograms per day.
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15.6 °C from the Woods Hole Oceano-
graphic Institution (WHOI) sample of
leaking fluid (5) (Fig. S1, red circles).
i) DWH hydrocarbon mass recovered to the surface
ship. Discoverer Enterprise was the only
surface ship recovering hydrocarbons in
early June, 2010, via the installed LMRP
cap (Top Hat no. 4); liquid oil was col-
lected after separation from recovered gas,
which was combusted continuously in
a flare. Airborne data in the atmospheric
CO2 plume downwind of the flare on June
10 verify, within error limits, gas and oil
recovery rates reported for Discoverer
Enterprise (2). We use the reported value
of 15,402 barrels of liquid oil recovered on
June 10, 2010 (13) and a GOR of 1,600
standard cubic feet per stock tank barrel
consistent with the leaking fluid composi-
tion (5), and estimate a ±10% uncertainty
to derive a mass flow of (2.7 ± 0.3) × 106

kg/d of hydrocarbons recovered via the
cap on June 10, with the gas fraction flared
and the liquid fraction collected in a
tanker. Flared gas and recovered oil
amounts are shown schematically in Fig. 4D.
ii) Hydrocarbon evaporation to the atmosphere.
The airborne data on June 10, 2010, show
a steady-state atmospheric hydrocarbon
mass flux of (0.46 ± 0.23) × 106 kg/d (Fig.
4D), which is the sum of the directly
measured hydrocarbon mass evaporating
within ∼2–3 h of surfacing (2) plus the
lesser volatile hydrocarbon mass evapo-
rating within 1–2 d of surfacing as inferred
from atmospheric aerosol data (4). The
uncertainty of ±50% is primarily attribut-
able to uncertainties in the integration of
atmospheric plume hydrocarbon data.
These values are indicated in Fig. 4D.
iii) Hydrocarbon flow into the surface oil slick.
An estimate of mass flow into the surface
slick is obtained by summing the dissolved
and evaporated masses, and subtracting
this sum from the initially buoyant plume
mass [according to the method of Ryerson
et al. (2), from the slope of the linear fit
(red line) in Fig. S4B] of (2.0 ± 1.0) × 106

kg/d. This estimate suggests that (1.0 ±
0.5) × 106 kg/d of leaked hydrocarbons was
producing the surface slick in early June.
Analysis of airborne remote sensing data

from the airborne visible/infrared imaging
spectrometer (AVIRIS) instrument
overflights suggested a lower limit to the
average daily flow into the surface slick of
(0.68–1.30) × 106 kg/d (129,000–246,000
barrels of detectable liquid oil remaining
on the surface 25 d after the spill began)
(28). This value is consistent with the es-
timate from P-3 in situ measurements, al-
though different amounts of hydrocarbons
were being recovered to the surface on
these two dates. The flow rate into the
slick derived from in situ measurements on
June 10, 2010, indicated in Fig. 4B sug-
gests a relatively small fraction, roughly
13% of the total mass escaping the cap

and leaking into the subsurface, formed
the persistent, visible surface slick. This
likely contributed to a low bias in early oil
leak rate estimates that relied on visual
observations of the surface slick (29).
iv) Hydrocarbon flow into the subsurface plume.
Subsurface hydrocarbon mass is estimated
using measurements of dissolved oxygen
(DO) deficits in the deep hydrocarbon
plumes. Kessler et al. (18, 19) integrated
the detected far-field plume DO deficits
to estimate a total of (3.5 ± 0.5) × 1010

mol of oxygen was consumed during bac-
terial respiration of DWH hydrocarbons,
using data generated on research cruises
in August through October, 2010, after
flow from the well had ceased. They de-
rived a similar value using the observed
near-field relationship between DO and
the surfactant di-(2-ethylhexyl) sodium
sulfosuccinate (DOSS) in the deep plumes
(18–20). This deficit in DO was sufficient
to respire all emitted DWH methane in
the official estimate (1), plus substantial
additional mass of nonmethane hydro-
carbons (19). A hydrocarbon mass flux
into the persistent deep plume of (3.6 ±
0.8) × 106 kg/d averaged over the 83-d spill
is calculated by scaling the integrated DO
anomaly by the mass of the dissolved
compounds (Fig. 2B), by the estimated
mass of suspended droplets, and by O2
respiration stoichiometry appropriate to
each hydrocarbon in this mixture
(Table S1).
This calculation assumes complete bio-

degradation to CO2 of dissolved hydro-
carbons, of which methane (18, 19),
ethane (21), propane (21), and isomers of
butane (17) account for 89% of the mass

(Table S1). It further assumes that by the
August through September cruise dates,
all hydrocarbon mass was biodegraded
(Table S1). The biodegraded fraction of
hydrocarbons has not been directly mea-
sured, and it is likely to have been negli-
gible for the heaviest hydrocarbons; thus,
the calculation represents a lower limit
to hydrocarbon mass flow into the deep
plume. We note that deriving hydrocarbon
mass from the observed DO anomaly is
sensitive to the assumed composition and
extent of biodegradation of the subsurface
plume. Error limits encompassing these
sensitivities are estimated by assuming
a range of 5–25% for the heavy n-alkane
fractions (Fig. 3D, shaded region), leading
to a range of 13–43% calculated for the
plume mass initially transported in the
form of suspended oil droplets. Under
these assumptions, the calculated mass
flow of (3.6 ± 0.8) × 106 kg/d into the
subsurface plumes was the primary flow
path for leaked DWH hydrocarbons, as
shown in Fig. 4D, and was composed pri-
marily of dissolved species.
v) Composition data constrain hydrocarbon release
into the environment. A total DO-removing
potential in the deep plume of (0.041 ±
0.008) mol of O2 per gram of hydrocarbon
is calculated (Table S1) from the deep
plume chemical composition above. Di-
viding this into the total integrated DO
anomaly of (3.5 ± 0.5) × 1010 mol of O2
removed over the 83 d of the spill results
in an average daily environmental hydro-
carbon release into the water column of
(10.1 ± 2.0) × 106 kg/d (Fig. 5 and Table
S1). This hydrocarbon mass flow rate
based on the available chemical data
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agrees, within the uncertainties, with the
official estimate of environmental release
by subtracting recovered amounts from
the official average flow rate of (10.2 ±
1.0) × 106 kg/d of gas and oil based on
physical and optical data (1).

Discussion
Although the totals agree quantitatively,
we note that the sum of chemically
detected mass flows along individual
transport pathways (Fig. 4D) is lower than
the average environmental release rate
inferred from the DO anomaly. Although
the simplified model shown in Fig. 1 is
generally consistent with the available
subsurface and atmospheric chemical
data, it does not rule out additional mass
transported outside of the deep plumes
but not yet detected in the chemical data.
A specific gravity <1 is expected for the
mixture remaining after removal of soluble
species; thus, dissolution alone is not ex-
pected to cause suspended droplets to
descend out of the deep plume. A poten-
tial transport pathway could instead in-
volve gradual ascent, on time scales of
hours to days, after the initial trapping of
small hydrocarbon droplets into the deep
plume (8), which would distribute the
corresponding hydrocarbon mass into
a larger volume of the subsurface as
a function of rise velocity, and thus droplet
size. Absent measured data throughout
the full range of permitted drop sizes,

a model study is needed to determine what
fraction of the total leaked mass could be
represented by the size range of initially
trapped droplets that subsequently exited
the plume on relevant time scales.
Analysis of the chemical data provides

an independent estimate of total hydro-
carbon mass flow rate against which other
estimates based on physical (1, 12) or op-
tical (13, 30) methods can be compared
(Fig. 5). Beyond the flow rate, the chem-
ical data provide critical information on
initial environmental distribution of the
different mixtures resulting from transport
of hydrocarbons emitted from the leaking
well (e.g., Fig. 4). The information pro-
vided by a cooperative subsurface, surface,
and airborne chemical sampling program
should therefore be an integral part of
a systematic response to future deepwater
blowouts. Strategic cooperation during
a response would significantly improve the
ability to quantify leaking mass and envi-
ronmental impacts of future spills, and
would further provide a means to track
and quantify the effects of deliberate in-
tervention measures, subsurface disper-
sant application, and well and sea-floor
integrity after cessation of flow. With suf-
ficient advance preparation, joint airborne
and subsurface chemical sampling could
provide a national rapid-response capa-
bility to assess deepwater well leak rates
promptly, especially those in remote and
Arctic regions (2).

Materials and Methods
Leaking fluid was collected into isobaric gas-tight
samplers by ROV from directly within the LMRP
(5). Subsequent analyses of the gas and oil compo-
sition were conducted in parallel using GC-FID
performed by Geomark Research Ltd., Alpha
Analytical Laboratory, and the WHOI, with sim-
ilar results (5).

Atmospheric hydrocarbon samples were ac-
quired by sampling air into evacuated stainless-
steel canisters carried aboard three surface vessels,
F/V Eugenie, R/V Pelican, and R/V Thomas Jeffer-
son; similar canisters were used on June 8 and 10
during two DWH survey flights of a chemically
instrumented NOAA P-3 research aircraft (2). All
atmospheric samples taken aboard the vessels and
aircraft flights were subsequently analyzed by GC-
FID or GC-MS at the University of California at
Irvine (24).
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