# **Oil & Natural Gas Technology**

DOE Award No.: DE-FE0013889

**Quarterly Research Performance Progress Report (Period ending 12/31/2013)** 

# THCM Coupled Model For Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

Project Period (10/1/2013 to 09/30/2015)

Submitted by:

Marcelo Sanchez Project PI

Texas A&M University DUNS #: 847205572 College Station, TX 979-862-6604 msanchez@civil.tamu J. Carlos Santamarina

til amarin

Georgia Institute of Technology Atlanta, Georgia 404-894-7605 edujcs@gatech.edu

Prepared for: United States Department of Energy National Energy Technology Laboratory Submission date: 01/31/2014





**Office of Fossil Energy** 

#### DISCLAIMER

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

#### ACCOMPLISHMENTS

The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research is to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. This tool will allow us to better analyze available data and to further enhance our understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

### ACCOMPLISHED

The main accomplishments for this first period address Tasks 1, 2 and 3 of the original research plan, and include:

- completion of project management plan (PMP) (Task 1)
- selection of the PhD Students that will form the project team during the first year.
- preliminary training
- early studies

#### Training

The two PhD students contemplated for the first year joined the project during the first month (October 2013). Besides their course work, they have been fully dedicated to advancing their understanding of hydrates behavior, hydrate dissociation, natural sediments, numerical and analytical methods in hydrates research. As for the TAMU Ph.D.student (Mr. Xuerui (Gary) Gai) his trained included the graduate course CVEN 673 "Transport Phenomena in Porous Media". This class covers the fundamentals of THCM behavior of sediments and rocks. It is also a good introduction to CODE-BRIGHT, the numerical tool to be used in this project. As for the GT Ph.D. student (Mr. Z Sun) he has continued with his formation on advance analytical methods and HBS behavior.

#### Early studies

The preliminary studies include (Task 2 and 3)

- Literature review (Task 2a ongoing), including.
  - Published constitutive models for hydrates bearing sediments (HBS)
  - Specific Energy and Thermal Transport values in coupled THCM process involving gas hydrate sediments (Table 1).
  - Phase boundaries for water-gas mixtures in the pressure-temperature space (Figure 1).
  - Analytical and numerical modeling of HBS
- Hydrate-bearing marine sediments (Task 2b ongoing), including
  - Upgrade of constitutive models for HBS.

- Hydrate-bearing sediments in the permafrost (Task 2c ongoing), including
  - Improving the current understanding and modeling of the effect of subzero temperatures and cryogenic suction on sediments behavior.
- Validation of implemented functions (Task 3a ongoing), including
  - Constitutive equations have been implemented in CODE\_BIRGTH and compared against analytical values (from Task 2). Table 2 presents the list of implemented constitutive equations and equilibrium restrictions.
- Synthetic numerical tests (Task 3b ongoing), including
  - The synthetic numerical tests have been defined and the corresponding simulations have been started. Figure 2 presents the suggested loading paths in the P-T plane.
- Code comparison analyses (Task 3c ongoing), including
  - We have started with the simulations aimed at comparing our code against other ones developed to model the behavior of HBS. We are using the benchmark exercises prepared in the context of "The National Methane Hydrates R&D Program: Methane Hydrate Reservoir Simulator Code Comparison Study" (<u>http://www.netl.doe.gov/technologies/oil-</u> gas/FutureSupply/MethaneHydrates/MH\_CodeCompare/MH\_CodeCompare.html
  - We are working on Benchmark Test # 1 (see Figures 3 to 5). More details are provided below.

#### **Plan - Next reporting period**

We will advance analytical and numerical fronts to enhance our code to solve coupled THCM problems involving with HBS, with renewed emphasis on simulating the natural processes under in-situ conditions and gas production.

Milestones for each budget period of the project are tabulated next. These milestones are selected to show progression towards project goals.

|                     | Milestone Title Planned Date                            | Actual Com-  | Comments    |  |  |
|---------------------|---------------------------------------------------------|--------------|-------------|--|--|
|                     | and                                                     | pletion Date |             |  |  |
|                     | Verification Method                                     | procion Date |             |  |  |
| Title               | Complete literature review                              |              |             |  |  |
| Related Task / Sub- | 20/2a                                                   |              | Progress-   |  |  |
| tasks               | March 2014                                              | March 2014   | ing as      |  |  |
| Planned Date        | Report                                                  |              | nlanned     |  |  |
| Verification method | Report                                                  |              | plained     |  |  |
| Title               | Complete undeted Constitutive Equations                 |              |             |  |  |
| Polotod Took / Sub  | Complete updated Constitutive Equations $2.0/2$ h & 2.0 |              | Drograss    |  |  |
| tooka               | $2.072.0 \approx 2.0$                                   | Juna 2014    | ing of      |  |  |
| Dlannad Data        | Depart (with proliminary validation data)               | Julie 2014   | nig as      |  |  |
| Varification mathed | Report (with preliminary validation data)               |              | planned     |  |  |
|                     | V-1: 1-to a second THOM a superior of the stand         |              |             |  |  |
|                     | vandate new THCM constitutive equa-                     |              | D           |  |  |
| Related Task / Sub- |                                                         | G ( 1        | Progress-   |  |  |
|                     | 3.0 / 3.a, 3.0 & 3.c                                    | September    | ing as      |  |  |
| Planned Date        | September 2014                                          | 2014         | planned     |  |  |
| Verification method | Report (with first comparisons between                  |              |             |  |  |
|                     | experimental and numerical results)                     |              |             |  |  |
| Title               | Complete close-form analytical solutions                | 5.1          |             |  |  |
| Related Task / Sub- | 4.0 / 4.a & 4.b                                         | February     | Activities  |  |  |
| tasks               | February 2015                                           | 2015         | not started |  |  |
| Planned Date        | Report (with analytical data)                           |              | yet         |  |  |
| Verification method |                                                         |              |             |  |  |
| Title               | Complete numerical analyses                             |              |             |  |  |
| Related Task / Sub- | 5.0 / 5.a, 5.b & 5.c                                    |              | Activities  |  |  |
| tasks               | July 2015                                               | July 2015    | not started |  |  |
| Planned Date        | Report (with analytical and numerical da-               |              | yet         |  |  |
| Verification method | ta)                                                     |              |             |  |  |
| Title               | Complete THCM-Hydrate code modifica-                    |              |             |  |  |
| Related Task / Sub- | tions                                                   |              | Activities  |  |  |
| tasks               | 6.0 / 6.a                                               | June 2015    | not started |  |  |
| Planned Date        | June 2015                                               |              | yet         |  |  |
| Verification method | Report (with numerical data)                            |              |             |  |  |
| Title               | Complete production optimization                        |              |             |  |  |
| Related Task / Sub- | 7.0 / 7.a, 7.b, 7.c, 7.d & 7.e                          |              | Activities  |  |  |
| tasks               | September 2015                                          | September    | not started |  |  |
| Planned Date        | Report (with numerical data)                            | 2015         | yet         |  |  |
| Verification method |                                                         |              |             |  |  |

| Species and            | Specific                                             | Transport                                                                                                |                                                                                           |  |  |  |
|------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Phases                 | Expression                                           | specific heat - latent heat                                                                              | thermal conduct.                                                                          |  |  |  |
| water - vapour         | $e_g^w = L_{evap} + c_{uv} \left(T - T_o\right)$     | $L_{evap} = 2257 \text{ J.g}^{-1}$<br>$c_{wv} = 2.1 \text{ J.g}^{-1}\text{K}^{-1}$                       | $0.01 \text{ W m}^{-1}\text{K}^{-1}$                                                      |  |  |  |
| water - liquid         | $e_{w} = c_{wl} \left( T - T_{o} \right)$            | $c_{wl} = 4.2 \text{ J.g}^{-1} \text{K}^{-1}$                                                            | $0.58 \text{ W m}^{-1}\text{K}^{-1}$                                                      |  |  |  |
| water – ice            | $e_{ice} = L_{fuse} + c_{mice} \left(T - T_o\right)$ | $L_{fuse} = 334 \text{ J.g}^{-1}$<br>$c_{wice} = 2.1 \text{ J.g}^{-1}\text{K}^{-1}$                      | $2.1 \text{ W m}^{-1}\text{K}^{-1}$                                                       |  |  |  |
| methane gas            | $e_m = c_m \left( T - T_o \right)$                   | $c_m = 1.9 \text{ J.g}^{-1} \text{K}^{-1}$ V=const<br>$c_m = 2.5 \text{ J.g}^{-1} \text{K}^{-1}$ P=const | $0.01 \text{ W m}^{-1}\text{K}^{-1}$                                                      |  |  |  |
| hydrate <sup>(1)</sup> | $e_b = L_{diss} + c_b \left( T - T_o \right)$        | $L_{diss}$ = 339 J.g <sup>-1</sup><br>$c_h$ = 2.1 J.g <sup>-1</sup> K <sup>-1</sup>                      | $0.5 \text{ W m}^{-1}\text{K}^{-1}$                                                       |  |  |  |
| mineral                | $e_s = c_s \left( T - T_o \right)$                   | $c_s = 0.7 \text{ J.g}^{-1}\text{K}^{-1}$ quartz<br>$c_s = 0.8 \text{ J.g}^{-1}\text{K}^{-1}$ calcite    | 8 W m <sup>-1</sup> K <sup>-1</sup> quartz<br>3 W m <sup>-1</sup> K <sup>-1</sup> calcite |  |  |  |

**Table 1:** Specific Energy and Thermal Transport – Selected Representative Values

CRC handbook and other general databases. (1) Waite, Source:

<u>http://woodshole.er.usgs.gov/operations/hi\_fi/index.html;</u> Handa 1986. the sign of the latent heat is adopted to capture endothermic-exothermic effects Note: during phase transformation.



**Figure 1:** Phase boundaries for water-gas mixtures in the pressure-temperature space. The phases in each quadrant depend on the availability of water and gas, and the PT trajectory.

**Table 2:** Constitutive equations and equilibrium restrictions implemented to model the behavior of HBS

| EQUATION                          | VARIABLE NAME                      | VARIABLE                            |  |  |  |  |  |  |
|-----------------------------------|------------------------------------|-------------------------------------|--|--|--|--|--|--|
| Constitutive Equations            |                                    |                                     |  |  |  |  |  |  |
| Fourier's law                     | conductive heat flux               | i <sub>c</sub>                      |  |  |  |  |  |  |
| Darcy's law                       | liquid and gas advective flux      | <b>q</b> i , <b>q</b> g             |  |  |  |  |  |  |
| Retention curve                   | liquid degree of saturation        | S, , S <sub>g</sub>                 |  |  |  |  |  |  |
| Fick's law                        | vapor and air non-advective fluxes | i <sub>g</sub> w , i <sub>l</sub> m |  |  |  |  |  |  |
| Mechanical model                  | stress tensor                      | σ                                   |  |  |  |  |  |  |
| Phase density                     | liquid density                     | ρ,                                  |  |  |  |  |  |  |
| Gases law                         | methane density                    | ρ <sub>g</sub>                      |  |  |  |  |  |  |
| Equilibrium Restrictions          |                                    |                                     |  |  |  |  |  |  |
| Hydrate<br>dissociation/formation | Hydrate Saturation                 | S <sub>h</sub>                      |  |  |  |  |  |  |
| Ice thaw formation                | Ice Saturation                     | S <sub>i</sub>                      |  |  |  |  |  |  |
| Henry's law                       | Methane dissolved mass fraction    | ωl <sup>α</sup>                     |  |  |  |  |  |  |
| Psychrometric law                 |                                    |                                     |  |  |  |  |  |  |



Figure 2: Some of the loading paths in the P-T plane suggested for the synthetic numerical tests.

#### **Benchmark Test 1**

We have started with the validation of our code using the benchmarks prepared in the context of "The National Methane Hydrates R&D Program: Methane Hydrate Reservoir Simulator Code Comparison Study" (<u>http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/MH\_CodeCompare/MH\_CodeCompare.html</u>

Benchmark Test # 1 is related to the analysis of "Non-isothermal Multifluid Transition to Equilibrium". We are copying below the description of Benchmark Test # 1.

Processes of interest to the simulation of CH4 production from gas hydrates in porous media include multifluid flow and heat transport along with complex phase transitions, including hydrate dissociation and formation. Before executing problems with the additional complexities involved with the gas hydrate phase, a base case problem has been designed to examine the numerical simulation of multifluid flow and heat transport processes with a single phase transition from aqueous saturated to unsaturated conditions for a water-CH4 system outside the stability region for gas hydrate formation. The problem involves a horizontal one-dimensional closed domain (no flow boundary conditions), initialized with gradients in aqueous pressure, gas pressure, and temperature that yield aqueous saturated conditions on half of the domain and aqueous unsaturated conditions on the other half of the domain. The simulation then proceeds to an equilibrium condition in pressure and temperature. The results of numerical simulations of CH4 hydrate formations in geologic media largely depend on the computation of thermodynamic and transport properties. Therefore, a portion of this problem involves reporting property data for selected temperatures and pressures. After execution and comparison of simulator results for this base case problem, a companion problem will be defined that includes a methane hydrate phase and associated phase transitions as the problem evolves to an equilibrium state.

#### • Base Case Problem Description

Gradients in aqueous pressure, gas pressure, and temperature are imposed across a 20-m onedimensional horizontal domain, discretized using uniformly spaced 1-m grid cells. A horizontal domain is used to eliminate gravitational body forces from the problem, as an additional simplification. The pressure and temperature gradients are specified to yield aqueous saturation conditions in the first 10 grid cells and aqueous unsaturated conditions in the remaining 10 grid cells. The simulation then proceeds to equilibrium conditions in pressure, phase saturations, and temperature. Variable time stepping should be used to capture the flow and transport processes at early and late times during simulation. Figure 3 shows the problems schematic.

The list of processes simulated in this problem include:

1. Aqueous-gas multifluid flow subject to relative permeability, capillary effects, and phase transition from aqueous saturated to unsaturated

2. Heat transport across multifluid porous media with phase advection and component diffusion

3. Change in CH4 solubility in water with pressure and temperature

- 4. Change in thermodynamic and transport properties with pressure and temperature
- Simulation Results Comparison

Lawrence Berkeley National Laboratory, with support from NETL, developed the first publicly available model designed exclusively to simulate gas hydrate reservoir behavior and production potential (TOUGH+/HYDRATE). TOUGH+/HYDRATE is the most recent implementation of the TOUGH-Fx/HYDRATE code. In addition, NETL has released a freeware, open-source, earlier version of the code under the name HydrateResSim. MH-21 Hydrate Reservoir Simulator (MH-21 HYDRES), developed by the National Institute of Advanced Industrial Science and Technology, Japan Oil Engineering Co., Ltd. and the University of Tokyo has been specifically designed to assess production from gas hydrate deposits. The Pacific Northwest National Laboratory and the Petroleum Engineering Department at the University of Alaska, Fairbanks have modified the multi-phase simulator (STOMP) to allow for the inclusion of gas hydrates (STOMP-HYD). Also, those investigating Alaska North Slope gas hydrate resource potential as part of a BP Exploration Alaska, Inc. (BPXA) research project in collaboration with the US DOE have extended work begun at the University of Calgary and the University of Alaska-Fairbanks to apply a commercially available simulator (CMG STARS) to model production from characterized gas hydratebearing reservoirs.



**Figure 3 Problems Schematic** 

The results using THCM-hydrate code (our program) are compared against the outputs from the other seven codes (i.e. HydrateResSim,MH-21,stars-Mehran,STARS,STOMP-HYD,TOUGH-FX,Univ-Houston). The main comparisons are presented below in Figure 4 to 6 for the following time of analyses: day 1, day 10, day 100, day 1000, and day 10000. The comparisons are very satisfactory. Just some slight differences in terms of gas pressure are observed at the earliest stages of the analyses.



Figure 4. Temperature comparisons





Figure 5. Gas pressure comparisons





Figure 6. Water saturation comparisons

#### PRODUCTS

#### **Publications – Presentations:**

An abstract has been submitted to the Gordon Research Conference on Natural Gas Hydrate Systems (Galveston, Texas, March, 2014) Title: "Numerical THCM Modeling of HBS using a truly coupled approach"

**Website:** Publications (for academic purposes only) and key presentations are included in <a href="http://pmrl.ce.gatech.edu/">http://pmrl.ce.gatech.edu/</a> <a href="http://pmrl.ce.gatech.edu/">http://pmrl.ce.gatech.edu/</a> <a href="http://pmrl.ce.gatech.edu/">http://pmrl.ce.gatech.edu/</a>

Technologies or techniques: None at this point.

Inventions, patent applications, and/or licenses: None at this point.

Other products: None at this point.

#### PARTICIPANTS

Research Team: The current team is shown next.



#### IMPACT

• While it is still too early to assess impact, we can already highlight the computational platform extensively validated in a wide range of coupled thermo-hydro-chemo-mechanical coupled problems (Code-Bright).

#### **CHANGES/PROBLEMS:**

None so far.

#### **SPECIAL REPORTING REQUIREMENTS:**

Nothing to report

## **BUDGETARY INFORMATION:** Cost plan report

|                                              | Budget Period 1  |              |                  |            |                  |            |                  |            |                  | Budget Period 2 |                  |            |                  |            |                  |            |  |
|----------------------------------------------|------------------|--------------|------------------|------------|------------------|------------|------------------|------------|------------------|-----------------|------------------|------------|------------------|------------|------------------|------------|--|
|                                              | Q1               |              | Q2               |            | Q3               |            | Q4               |            | Q1               |                 | Q2               |            | Q3               |            | Q4               |            |  |
|                                              | Enter date range |              | Enter date range |            | Enter date range |            | Enter date range |            | Enter date range |                 | Enter date range |            | Enter date range |            | Enter date range |            |  |
| Baseline Reporting Quarter 10/1/13- 01/31/14 |                  |              |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
|                                              |                  | Cumulative   |                  | Cumulative |                  | Cumulative |                  | Cumulative |                  | Cumulative      |                  | Cumulative |                  | Cumulative |                  | Cumulative |  |
|                                              | Q1               | Total        | Q2               | Total      | Q3               | Total      | Q4               | Total      | Q1               | Total           | Q2               | Total      | Q3               | Total      | Q4               | Total      |  |
| Baseline Cost Plan                           | \$ 40,400.00     | \$ 40,400.00 |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Federal Share                                | \$ 40,400.00     | \$ 40,400.00 |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Non-Federal Share                            | \$ 14,964.00     | \$ 14,964.00 |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Total Planned                                | \$ 55,364.00     | \$ 55,364.00 |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Actual Incurred Costs                        | \$ 5,301.83      | \$ 5,301.83  |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Federal Share                                | \$ 3,335.02      | \$ 3,335.02  |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Non-Federal Share                            | \$ 5,182.96      | \$ 5,182.96  |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Total Incurred costs                         | \$ 8,517.98      | \$ 8,517.98  |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Varience                                     | \$ 46,846.02     | 46846.02     |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Federal Share                                | \$ 1,966.81      | \$ 1,966.81  |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Non-Federal Share                            | \$ 9,781.04      | \$ 9,781.04  |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |
| Total Varience                               | \$ 11,747.85     | \$ 11,747.85 |                  |            |                  |            |                  |            |                  |                 |                  |            |                  |            |                  |            |  |

# National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

13131 Dairy Ashford Road, Suite 225 Sugar Land, TX 77478

1450 Queen Avenue SW Albany, OR 97321-2198

Arctic Energy Office 420 L Street, Suite 305 Anchorage, AK 99501

Visit the NETL website at: www.netl.doe.gov

Customer Service Line: 1-800-553-7681

