DOE Award No.: DE-FE0010175

Quarterly Research Performance Progress Report
(Period ending 9/30/2014)

PLANNING OF A MARINE METHANE HYDRATE PRESSURE
CORING PROGRAM FOR THE WALKER RIDGE AND GREEN
CANYON AREAS OF THE GULF OF MEXICO

Project Period (10/1/2012 – 12/31/2014 (based on granted extension))

Submitted by:
Gary D. Humphrey, P.E., Project PI

Signature

Fugro GeoConsulting, Inc
DUNS #: 118972301
6100 Hillcroft
Houston, TX 77081-1009
e-mail: GHumphrey@Fugro.com
Phone number: (713) 369-5600

Prepared for:
United States Department of Energy
National Energy Technology Laboratory

Submission Date: April 5, 2015

Office of Fossil Energy
DISCLAIMER

“This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Executive Summary

This research effort will focus on developing a site characterization program for naturally occurring gas hydrate deposits. It is based on experience gained from a number of previous expeditions that Fugro has conducted for industry and for various National Hydrate Programs. We will draw upon our experience from previous work and combine the objectives and site specific aspects of the planning into a comprehensive document that summarizes the best practices and best approaches. We have solicited organizations and academia outside of Fugro for participation in a Workshop to encourage open sharing of experiences and required R&D improvements to help guarantee success in the next field expedition.

Key issues identified for future research include:

- Develop a better understanding of the structure and properties of methane hydrate reservoirs
- Develop improved methodologies to select exploration targets (Topic 3 work)
- Develop improved ability to sample and test the hydrates in their natural state
- Develop improved technology and methodologies to extract and deliver the gas from hydrates to downstream facilities.
- To take the experience and knowledge gained from previous expeditions to help others be better prepared for future expeditions.

We have proposed the following approach; 1) Desktop Study to Prepare Detailed Plans and Recommendations for all Aspects of the Proposed Offshore Campaign (proposed advances in knowledge/technology), and 2) Prepare detailed plans of execution and make budgetary estimates for a future fieldwork program to collect the pressure cores including a recommended Scope of Work.

Accomplishments

- Continued to review related scientific/industry research efforts including attendance of the International Conference on Gas Hydrates (ICGH-8) in Beijing, China in July 2014.
- Continued updates to the PMP according to the new tasks identified (e.g. Workshop).
- Completed the development of a project execution plan (PEP) for the planning phase through the field work execution and reporting that will assist in identifying critical discussion points and critical cooperation items.
- PEP incorporates the lessons learned from our most recent hydrate expedition in the South China Sea for GMGS, as well as previous hydrate expeditions that Fugro have been involved with.
- Conducted additional planning sessions with Geotek (Peter Schultheiss) and J.A. Aumann & Associates, (Jim Aumann) and Tim Collett, (USGS) in person and by phone.
- Attended planning meetings with Geotek and other Fugro Data Acquisition Groups.
- Made plans for a peer review to follow the Workshop findings and make final recommendations.
- Updated preliminary list of Peer Review candidates.

Progress, Results, and Discussion Summary of technical progress

For this quarter, very minimal progress was made over this reporting period including those things listed above in the Accomplishments Section. Our main accomplishment was attendance at ICGH-8 and presentation of publications from the 2013 GMGS2 Campaign

We have advanced the plan for testing of the improvements to the tool based on issues identified during the GMGS program as well as the tests on a similar tool developed directly for DOE that were conducted in Catoosa, OK at the drilling research center facility. We have developed a testing plan in preparation of the Request for Quotation from GMGS for their third expedition to be held in 2015 in the South China Sea.
Review previous research projects

We continue to review the most recent marine hydrate expedition, GMGS China and to apply that experience and its teaching issues to this project.

Identify technical research concepts

The various research topics include:

- Development of safe drilling procedures for riserless drilling in known hydrate formations based on previous expeditions conducted by Fugro, ODP and IODP.
- Development of core quality measures for rotary pressure coring systems.
- Development of pressure core handling procedures and protocols to ensure best quality results.
- Development of prototype designs on a seabed template to allow control of the rate of penetration and weight on bit from the seafloor instead of the on the deck at the top drive level.

Future work in next reporting period

- We will finalize and report on the updated PMP.
- We plan to conduct a Peer Review of Project Workshop and liaise with our key collaborators.
- We will continue our work on the pressure core acquisition and quality issues based on the PMP and analysis of the recently completed work in the South China Sea for GMGS.
- We will continue our work on the pressure core analysis handling, timing and quality issues.
- We will continue to work on safe drilling practices for hydrate bearing sediments using open-hole techniques.
- We plan to report the findings and recommendations from the Project Workshop.

Key References

Changes or Problems

We recognized the need to incorporate additional collaborators outside of those listed in our original proposal back in 2012. The primary reason for this was a realization that additional expertise and experience outside of Fugro would prove to benefit the effectiveness of the study. The shift in the timeline has been communicated to the NETL project manager.

There are significant changes with the schedule for completion of the project as originally proposed. We do appreciate the granting of a “No-Cost Extension” for the project of nine (9) months which extended the completion date until end of December 2014. We, however do not believe that all the project objectives can be accomplished within this timeframe. Various personal reasons primarily with the PI’s health and other personal reasons together with other professional distractions have left a gap in the required effort to complete the project within the existing extension period. We have a resolution to this problem that will be identified in the next quarterly report for end December 2014.

Participants and Other Collaborating Organizations

<table>
<thead>
<tr>
<th></th>
<th>Gary D. Humphrey, Principal Investigator / Project Director, Fugro Employee Houston, Texas</th>
<th>Jim Aumann Salt Lake City, Utah</th>
<th>Dr. Peter Schultheiss, Technical Advisor, Geotek, Ltd. Employee United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nearest month worked</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Collaboration outside USA</td>
<td>Discussion with offices in UK and The Netherlands</td>
<td>Worked with Fugro entities in UK and Holland to review performance on GMGS to establish baseline PEP</td>
<td>Discussion with offices in USA and The Netherlands</td>
</tr>
<tr>
<td>Travel outside USA</td>
<td>None this reporting period</td>
<td>None this reporting period</td>
<td>None this reporting period</td>
</tr>
</tbody>
</table>

Other Collaborating Organizations:

Oklahoma State University and Fugro GeoConsulting have agreed to share progress and results from their respective DOE research projects (DE-FE0009904 and Fugro project DE-FE0010160).

Fugro, Jim Aumann & Associates and Geotek all collaborated on the GMGS China Gas Hydrate field expedition for LWD, coring and pressure coring and in situ testing at several locations in the South China Sea. This work was completed on 08 September 2013.

Impact

The research findings from this project may potentially contribute to the US gas hydrate resource assessment but also international science and governmental organizations that are measuring gas hydrate exploration potential in Japan, Korea, China, India, Colombia, Brazil, Vietnam and New Zealand.

Additionally the findings from this project can also have the potential to aid imaging of sequestered C02 gas hydrate for greenhouse gas reduction if that technology advances.
Special Reporting Requirements

None identified this quarter and we appreciate the granting of the no-cost extension. We do, however, see slower progress than expected due to a number of unspecified reasons. We expect to have an interim reporting requirement based on the findings and recommendations post Workshop. However, these will be covered in subsequent quarterly reports. We plan to ask for another extension to complete the work outlined in this research program.

Budgetary Information

A cumulative total of $116,249 has been spent of an allocation of $578,850. The federal share of the costs incurred to date is $92,999 and the cost sharing is $23,250. We do count several meeting, contacts, and other efforts as being consistent with advancing the research project but these are not reflected in the budget spend to date.

Exhibit I - Milestone Status

- Milestone 1, Task 1 was completed November 14, 2012.
- Milestone 2 has been completed prior to December 2013.
- Completion Milestone was adjusted to 31 December 2014 based on the DOE approval of our no-cost extension, approved in Q1 2014. We will request an additional extension in 2015 due to lack of progress during the last half of 2014.
- We will continue to check the milestone status versus what has been updated in the PMP.

Exhibit 2 - Cost Plan (see next page)
<table>
<thead>
<tr>
<th>Baseline Reporting Quarter</th>
<th>06 2013</th>
<th>03 2014</th>
<th>02 2014</th>
<th>01 2014</th>
<th>04 2013</th>
<th>03 2014</th>
<th>02 2014</th>
<th>01 2014</th>
<th>04 2013</th>
<th>03 2014</th>
<th>02 2014</th>
<th>01 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q5</td>
<td>Q6</td>
<td>Q7</td>
<td>Q8</td>
<td>Q9</td>
<td>Q10</td>
<td>Q11</td>
<td>Q12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 3 – Actual Project Planning Workshop Participants

In order to capture the experience and knowledge from several hydrate expeditions previously conducted, we propose that a Workshop was conducted at the beginning of May 2014 to pull all of this experience together and establish a “Best Practices” outline or pathway to success. We have identified the following personnel that were included in the Workshop:

<table>
<thead>
<tr>
<th>Professional’s Name</th>
<th>Affiliation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian Ferri</td>
<td>Fugro</td>
<td>35 years+ drilling experience</td>
</tr>
<tr>
<td>Steve Brittain</td>
<td>Fugro</td>
<td>30 years+ experience with tool development and implementation on DW projects</td>
</tr>
<tr>
<td>Jeff Scott</td>
<td>Fugro</td>
<td>10 years+ drilling and vessel design experience</td>
</tr>
<tr>
<td>Jens Breinbjerg</td>
<td>Fugro</td>
<td>10 years+ project management experience on hydrate and DW projects</td>
</tr>
<tr>
<td>Michael Benting</td>
<td>Fugro</td>
<td>10 years+ project management and hydrate experience on DW projects</td>
</tr>
<tr>
<td>Pedro Regino</td>
<td>Fugro</td>
<td>15+ years of project management and 10+ years of hydrate experience on DW projects</td>
</tr>
<tr>
<td>Frank Gozeling</td>
<td>Fugro Holland</td>
<td>Senior Project manager with 30 years+ experience in offshore geotechnical operations and 10 years+ on hydrate project experience</td>
</tr>
<tr>
<td>Floris Tuynder</td>
<td>Fugro Holland</td>
<td>Equipment Designer and special consultant for Pressure Coring Systems since 2002.</td>
</tr>
<tr>
<td>Dan McConnell</td>
<td>Fugro</td>
<td>Geoscientist with 25 years+ experience also involved in JIP II and responsible for prospecting efforts to find massive sand deposits with hydrates indicated based on LWD work.</td>
</tr>
<tr>
<td>Luke Hamilton</td>
<td>Fugro UK</td>
<td>Drilling Manager for Fugro Seacore and offshore driller on two previous hydrate expeditions. 10+ years of offshore drilling experience.</td>
</tr>
</tbody>
</table>

Potential Peer Review Candidates for our Workshop:

<table>
<thead>
<tr>
<th>Professional’s Name</th>
<th>Affiliation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Collett</td>
<td>USGS</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Ray Boswell</td>
<td>US DOE / NETL</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Richard Baker</td>
<td>US DOE / NETL</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Michael Riedel</td>
<td>Canadian Geologic Survey</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Brian Anderson</td>
<td>Univ. West Virginia</td>
<td>Expert Modeler for hydrates</td>
</tr>
<tr>
<td>Brad Clements</td>
<td>IODP</td>
<td>possibly Michael Storms</td>
</tr>
<tr>
<td>Koji Yamamoto</td>
<td>JOGMEC</td>
<td>Koji Yamamoto or others</td>
</tr>
<tr>
<td>Beong-jae Ryu</td>
<td>KIGAM</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Scott Dallimore</td>
<td>Geologic Survey of Canada</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Pushpendra Kumar</td>
<td>ONGC/DGH</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Craig Shipp</td>
<td>Shell</td>
<td>Industry expert on hydrates</td>
</tr>
</tbody>
</table>
Exhibit 4 – Milestones Table

<table>
<thead>
<tr>
<th>Milestone Title / Description</th>
<th>Planned Completion Date</th>
<th>Actual / Anticipated Completion Date</th>
<th>Verification Method</th>
<th>Comments (progress toward achieving milestone, explanation of deviation from Plan, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kickoff Meeting</td>
<td>11/5/12</td>
<td>11/5/12</td>
<td>Fugro participation in kickoff meeting and provision of Kickoff meeting presentation to DOE</td>
<td>Complete. Kickoff meeting held via web-ex on 11/5/12</td>
</tr>
<tr>
<td>Complete Coring Program</td>
<td>1/25/13</td>
<td>6/20/14</td>
<td>Provision of a mid-project report (task 3.4) to DOE documenting the coring program evaluation process and the resulting recommendation for full concept development.</td>
<td>We anticipate that upon completion of the Project Workshop this Milestone 2 will be completed including the vetting process</td>
</tr>
<tr>
<td>Concept Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Preliminary Coring Plan Definition</td>
<td>5/24/13</td>
<td>8/28/14</td>
<td>Provision of a preliminary version of the final report (task 5.1), to DOE, fully documenting the efforts and results of project efforts to define operational and scientific plans for a future hydrate-focused marine coring program.</td>
<td>Allowed time after the Peer Review vetting of the Workshop results in Milestone 2 to complete this Milestone</td>
</tr>
<tr>
<td>Recommendations and Reporting</td>
<td>6/7/13</td>
<td>12/23/14</td>
<td>The Recipient shall, document and present to DOE, the full results of project efforts and shall make recommendation to DOE regarding most prudent options for a methane hydrate-focused pressure coring program.</td>
<td>Final reviewed and vetted report to be issued.</td>
</tr>
</tbody>
</table>

Exhibit 5 – Gantt Chart – Schedule

See attachment on following page.
1. INTRODUCTION ..
 1.1 Purpose ..
 1.2 Scope ..
 1.3 Data Used ..
 1.4 Project Participants ..
 1.5 Report Format ...
2. GEOLOGIC SETTING AND SEAFLOOR CONDITIONS ..
 2.1 Regional Geologic Setting ...
 2.2 Seafloor Conditions in the Study Areas ...
 2.2.1 Levels of Site Assessment Achievable using the Current Dataset
 2.2.2 LWD program from 2009 JIP ...
3. HAZARDS CONCERNS FOR THE CORING AND PRESSURE CORING OPERATIONS ..
 3.1 Seismic Hazard ..
 3.1.1 Seismic Hazard Evaluation in the JIP LWD sites ..
 3.1.2 Consideration of Seismic Hazard Effects for Coring Sites ..
 3.2 Hazards for Drilling Rigs ...
4. POSSIBLE HAZARDS POSED BY HYDRATES ..
 4.1 Hydrate Dissociation Fundamentals ...
 4.2 Hydrate Habitat and Dissociation Processes ..
 4.3 Sediment Volume Change Caused by Dissociation ...
 4.4 Sediment Control of Dissociation Phenomena ...
 4.5 Sediment Strength Change During and After Dissociation and Slope Instability
5. CONVENTIONAL OIL AND GAS SITE SURVEYS IN DEEP WATER
 5.1 Site Survey Guidelines Reviewed ..
 5.2 Summary of Survey Extents and Line Spacing ...
 5.3 Summary of Recommended Survey Equipment Types ..
6. POTENTIAL HIGH RESOLUTION GEOPHYSICAL SURVEYS
 6.1 Survey Areas ..
 6.2 Potential AUV High Resolution Geophysical Survey ...
 6.3 Potential 2-DUHR Survey ..
7. GEOTECHNICAL AND GEOMECHANICAL SITE SURVEYS
 7.1 Introduction ...
 7.2 Geotechnical Site Investigation ..
 7.2.1 Seabed Wheel-Drive Piezocone Penetration Tests (PCPTs) ..
 7.2.2 Seabed Remote Vane Shear Tests (VSTs) ..
 7.2.3 Seabed Box Core (BC) Sampling ...
 7.2.4 Large Diameter Piston Coring ..
 7.2.5 Exploratory Soil Borings ...
 7.3 Geotechnical Laboratory Testing ..
 7.3.1 Conventional Laboratory Testing ..
 7.3.2 Advanced Laboratory Testing ..
8. PRESSURE CORING AND PRESSURE CORE ANALYSIS ..
 8.1 Introduction ...
 8.2 Non-destructive measurements
 8.3 Imaging techniques
 8.4 De-gassing experiments
8.5 Triaxial Testing
8.6 Storage chambers for additional on-shore/post-cruise testing and experiments

9. METHOD STATEMENT FOR CORE ANALYSIS (NON-PRESSURIZED AND PRESSURIZED CORES)

10. POST CRUISE ACTIVITIES

11. SCHEDULE, TIMING AND COST ESTIMATES

12. PERMITTING ISSUES/PROCEDURES

12. RECOMMENDATIONS AND CONCLUSIONS ...

13. REFERENCES ...

ILLUSTRATIONS FOLLOWING TEXT

TABLES

Table 3.1: Hazard Impact Table for Dynamically Positioned Rigs ..
Table 6.1: Geophysical Survey Areas ...
Table 7.1: Sampling Intervals for the Exploratory Soil Borings ...

FIGURES WITHIN TEXT

Figure 1. Location Map(s). ...
Figure 2. A typical phase diagram for methane gas hydrate ...
Figure 3. Schematic diagram of the typical geotechnical site investigation package

ILLUSTRATIONS FOLLOWING TEXT

Detailed Location