DOE Award No.: DE-FE0010175

Quarterly Research Performance Progress Report
(Period ending 6/30/2014)

PLANNING OF A MARINE METHANE HYDRATE PRESSURE CORING PROGRAM FOR THE WALKER RIDGE AND GREEN CANYON AREAS OF THE GULF OF MEXICO

Project Period (10/1/2012 – 12/31/2014 (based on granted extension))

Submitted by:
Gary D. Humphrey, P.E., Project PI

Signature

Fugro GeoConsulting, Inc
DUNS #: 118972301
6100 Hillcroft
Houston, TX 77081-1009
e-mail: GHumphrey@Fugro.com
Phone number: (713) 369-5600

Prepared for:
United States Department of Energy
National Energy Technology Laboratory

Submission Date: April 5, 2015

Office of Fossil Energy
DISCLAIMER

“This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Executive Summary

This research effort will focus on developing a site characterization program for naturally occurring gas hydrate deposits. It is based on experience gained from a number of previous expeditions that Fugro has conducted for industry and for various National Hydrate Programs. We will draw upon our experience from previous work and combine the objectives and site specific aspects of the planning into a comprehensive document that summarizes the best practices and best approaches. We have solicited organizations and academia outside of Fugro for participation in a Workshop to encourage open sharing of experiences and required R&D improvements to help guarantee success in the next field expedition.

Key issues identified for future research include:

- Develop a better understanding of the structure and properties of methane hydrate reservoirs
- Develop improved methodologies to select exploration targets (Topic 3 work)
- Develop improved ability to sample and test the hydrates in their natural state
- Develop improved technology and methodologies to extract and deliver the gas from hydrates to downstream facilities.
- To take the experience and knowledge gained from previous expeditions to help others be better prepared for future expeditions.

We have proposed the following approach; 1) Desktop Study to Prepare Detailed Plans and Recommendations for all Aspects of the Proposed Offshore Campaign (proposed advances in knowledge/technology), and 2) Prepare detailed plans of execution and make budgetary estimates for a future fieldwork program to collect the pressure cores including a recommended Scope of Work.

Accomplishments

- Continued to review related scientific/industry research efforts including attendance of the Hydrate-focused Gordon Research Conference in Galveston, Texas late March 2014.
- Continued updates to the PMP according to the new tasks identified (e.g. Workshop).
- Completed the development of a project execution plan (PEP) for the planning phase through the field work execution and reporting that will assist in identifying critical discussion points and critical cooperation items.
- PEP incorporates the lessons learned from our most recent hydrate expedition in the South China Sea for GMGS, as well as previous hydrate expeditions that Fugro have been involved with.
- Conducted additional planning sessions with Geotek (Peter Schultheiss) and J.A. Aumann & Associates, (Jim Aumann) and Tim Collett, (USGS) in person and by phone.
- Attended planning meetings with Geotek and other Fugro Data Acquisition Groups.
- Conducted a Workshop that incorporated key interested parties from Fugro, Jim Aumann & Associates, Geotek, Georgia Tech University and others that was held in Houston the first week of May (end of OTC week).
- Made plans for a peer review to follow the Workshop findings and make final recommendations.
- Selected preliminary list of Peer Review candidates.

Progress, Results, and Discussion Summary of technical progress

For this quarter, minimal progress was made over this reporting period including those things listed above in the Accomplishments Section. Our main accomplishment was to conduct the Workshop and start assimilating those notes and suggestion into a meaningful report that will be subject to peer review at a later date.

We have advanced the plan for testing of the improvements to the tool based on issues identified during the GMGS program as well as the tests on a similar tool developed directly for DOE that were conducted in Catoosa, OK at the drilling research center facility.
Review previous research projects

Research programs have been undertaken in numerous countries to investigate the occurrences and characteristics of natural methane hydrates. The ultimate objective in most cases is a long-term goal to exploit methane hydrate reservoirs as a source of alternative energy in the future. The complexities of finding and economically exploiting these reserves demand substantial investment in research efforts devoted to understanding the science and developing technologies that may ultimately prove successful in achieving the long-term objective.

Much of the research effort has focused on offshore drilling campaigns whose goals included direct sampling and testing of methane hydrates. Several such campaigns have been undertaken in the United States, including the Ocean Drilling Program (ODP) Leg 164 (South Carolina, 1995), ODP Leg 204 (Oregon, 2002), the Integrated Ocean Drilling Program (IODP) Expedition 311 (Cascadia Margin, Canadian northwest, 2005), the Joint Industry Project (JIP) Leg I (Gulf of Mexico, 2005) and most recently the JIP Leg II campaign in the Gulf of Mexico that was completed in 2009.

The JIP Leg II campaign was specifically conceived to investigate the nature of hydrate occurrences in sand-dominated systems, (Petroleum Systems Approach) principally by means of Logging While Drilling (LWD) operations. The campaign confirmed the presence of gas hydrate reservoirs at two boreholes and two boreholes in Walker Ridge Block 313 (WR313) of the Gulf of Mexico. The locations for the four wells had been selected utilizing prospectivity analysis based primarily using a petroleum systems approach for gas hydrate using 3D exploration seismic data and derivative analyses that produced predicted gas hydrate saturation volumes. The success of the four wells was a significant achievement and legitimized the conceptual approach taken to prospecting for potential producible methane hydrate reservoirs in deep water that could be exploited with modifications to present-day technology.

One of the objectives of the JIP Leg II campaign was to prioritize the best sites for subsequent geotechnical pressure coring and conventional coring during a proposed JIP Leg III campaign which was tentatively planned to occur as early as 2010. To date the JIP Leg III campaign has not materialized, however the research merit for a campaign of this nature has not changed.

Additionally, numerous other offshore expeditions to characterize hydrate occurrences including: DGH India 2006, Shell Gumusut (Malaysia 2006), China (GMGS 2007), South Korea (KNOC 2007) and South Korea (KNOC 2010) will be used to influence our recommendations in this project. As of now, we have completed a second expedition to investigate hydrate reservoir potential in the South China Sea for GMGS (China 2013) involving LWD, in situ testing, coring and pressurized coring and analysis. Our intention is to use all the experience gained from our involvement in these programs and incorporate it into our comprehensive plan for the next pressure coring expedition in the Gulf of Mexico that will be based on data and information from the 2009 JIP, subsequent high-resolution seismic surveys and potentially some new sites (like Mad Dog) in Green Canyon Area.

An excellent summary of all these expeditions (in addition to the Arctic Expeditions) is provided in the report released at the DOE NETL COL Methane Hydrates Workshop in Washington D.C, early June 2013.

We continue to review the most recent marine hydrate expedition, GMGS China and to apply that experience and its teaching issues to this project.

Identify technical research concepts

The various research topics include:

- Development of safe drilling procedures for riserless drilling in known hydrate formations based on previous expeditions conducted by Fugro, ODP and IODP.
- Development of core quality measures for rotary pressure coring systems.
- Development of pressure core handling procedures and protocols to ensure best quality results.

Future work in next reporting period
We will finalize and report on the updated PMP.
We will conduct a Peer Review of Project Workshop and liaise with our key collaborators.
We will continue our work on the pressure core acquisition and quality issues based on the PMP and analysis of the recently completed work in the South China Sea for GMGS.
We will continue our work on the pressure core analysis handling, timing and quality issues.
We will continue to work on safe drilling practices for hydrate bearing sediments using open-hole techniques.
We will report the findings and recommendations from the Project Workshop.

Key References

Changes or Problems

We recognized the need to incorporate additional collaborators outside of those listed in our original proposal back in 2012. The primary reason for this was a realization that additional expertise and experience outside of Fugro would prove to benefit the effectiveness of the study. The shift in the timeline has been communicated to the NETL project manager.

There are no significant changes or problems with the direction of the project as originally proposed. We do appreciate the granting of a "No-Cost Extension" for the project of nine (9) months which extended the completion date until end of December 2014. We believe that all the project objectives can be accomplished within this timeframe.

Participants and Other Collaborating Organizations

<table>
<thead>
<tr>
<th>Nearest month worked</th>
<th>Gary D. Humphrey, Principal Investigator / Project Director, Fugro Employee Houston, Texas</th>
<th>Jim Aumann Salt Lake City, Utah</th>
<th>Dr. Peter Schultheiss, Technical Advisor, Geotek, Ltd. Employee United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaboration outside USA</td>
<td>Discussion with offices in UK and The</td>
<td>Worked with Fugro entities in UK and</td>
<td>Discussion with offices in USA and The</td>
</tr>
</tbody>
</table>
Other Collaborating Organizations:

Oklahoma State University and Fugro GeoConsulting have agreed to share progress and results from their respective DOE research projects (DE-FE0009904 and Fugro project DE-FE0010160).

Fugro, Jim Aumann & Associates and Geotek all collaborated on the GMGS China Gas Hydrate field expedition for LWD, coring and pressure coring and in situ testing at several locations in the South China Sea. This work was completed on 08 September 2013.

Impact

The research findings from this project may potentially contribute to the US gas hydrate resource assessment but also international science and governmental organizations that are measuring gas hydrate exploration potential in Japan, Korea, China, India, Colombia, Brazil and New Zealand.

Additionally the findings from this project can also have the potential to aid imaging of sequestered C02 gas hydrate for greenhouse gas reduction if that technology advances.

Special Reporting Requirements

None identified this quarter and we appreciate the granting of the no-cost extension. We do, however, see slower progress than expected due to a number of unspecified reasons. We expect to have an interim reporting requirement based on the findings and recommendations post Workshop. However, these will be covered in the next quarterly report. Subsequent to that, we expect yet another interim reporting requirement that will come from the Peer Review findings and recommendations so they are incorporated into the final report deliverable.

Budgetary Information

A cumulative total of $91,838 has been spent of an allocation of $578,850. The federal share of the costs incurred to date is $73,470 and the cost sharing is $18,368. We do count several meeting, contacts, and other efforts as being consistent with advancing the research project but these are not reflected in the budget spend to date.

Exhibit I - Milestone Status

- Milestone 1, Task 1 was completed November 14, 2012.
- Milestone 2 has been completed prior to December 2013.
- Completion Milestone will be adjusted to 31 December 2014 based on the DOE approval of our no-cost extension, approved in Q1 2014.

We will continue to check the milestone status versus what has been updated in the PMP.

Exhibit 2 - Cost Plan (see next page)
<table>
<thead>
<tr>
<th>Baseline Reporting Quarter</th>
<th>Q4 2012</th>
<th>Q1 2013</th>
<th>Q2 2013</th>
<th>Q3 2013</th>
<th>Q4 2013</th>
<th>Q5 2013</th>
<th>Q6 2013</th>
<th>Q7 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Cost Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Share</td>
<td>315,270</td>
<td>135,270</td>
<td>135,270</td>
<td>271,540</td>
<td>315,270</td>
<td>347,370</td>
<td>318,080</td>
<td>346,590</td>
</tr>
<tr>
<td>Total Planned</td>
<td>504,705</td>
<td>424,695</td>
<td>424,695</td>
<td>850,390</td>
<td>504,705</td>
<td>1,213,605</td>
<td>577,330</td>
<td>662,937</td>
</tr>
<tr>
<td>Actual Incurred Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Share</td>
<td>245,681</td>
<td>241,681</td>
<td>231,681</td>
<td>647,123</td>
<td>600,680</td>
<td>1,228,600</td>
<td>780,000</td>
<td>1,008,480</td>
</tr>
<tr>
<td>Non-Federal Share</td>
<td>67,411</td>
<td>64,411</td>
<td>91,411</td>
<td>354,435</td>
<td>301,435</td>
<td>959,870</td>
<td>480,870</td>
<td>573,248</td>
</tr>
<tr>
<td>Total Incurred Costs</td>
<td>313,092</td>
<td>306,092</td>
<td>323,092</td>
<td>1,001,558</td>
<td>902,115</td>
<td>2,188,470</td>
<td>1,269,870</td>
<td>1,581,728</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Share</td>
<td>(133,314)</td>
<td>(133,314)</td>
<td>(133,314)</td>
<td>(225,360)</td>
<td>(139,360)</td>
<td>(135,075)</td>
<td>(130,060)</td>
<td>(449,775)</td>
</tr>
<tr>
<td>Total Variance</td>
<td>(261,848)</td>
<td>(261,848)</td>
<td>(261,848)</td>
<td>(798,446)</td>
<td>(798,446)</td>
<td>(798,446)</td>
<td>(798,446)</td>
<td>(798,446)</td>
</tr>
</tbody>
</table>
Exhibit 3 - Example Project Execution Plan Outline

Prepared for: DOE and Gas Hydrates Consortium in Deep Water Gulf of Mexico

Client Reference No: TBD

<table>
<thead>
<tr>
<th>Rev</th>
<th>Description</th>
<th>Prepared</th>
<th>Checked</th>
<th>Approved</th>
<th>Date</th>
</tr>
</thead>
</table>

OPCO Address: TBD

1. INTRODUCTION

1.1 General Project Description

The project will be comprised of planning study to successfully and efficiently investigate the presence of Gas Hydrates at a currently unspecified number of locations in the Deep Water Gulf of Mexico. This will be accomplished by taking the past experience from a number of collaborators to establish the current state of practice and develop a plan to bring the technology and methods forward through research and development efforts. Below we have provided an outline for the operational (fieldwork) phase of the work that we plan to incorporate into our final report for this study. The details of the actual client/consortium that funds the project would be completed once authorized with a final scope of work.
1.2 Purpose of the PEP

The Project Execution Plan (PEP) is the operational document for the project and provides a statement of how and when objectives are to be achieved. It also details the management stages and control points for the project.

1.3 Use and Owner of the PEP

The owner of the PEP is the Project Manager who has the responsibility to ensure that project is executed in the manner described and that the PEP is kept up to date with changes to the project as they develop. The PEP is the ‘road map’ for the Project team. It enables the effective day-to-day management and control of the project.

<table>
<thead>
<tr>
<th>The Project Execution Plan</th>
<th>Provides guidance to involved personnel for management of the scope, performance and safety of the services.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identifies Client-Contractor/Consultant interfacing to suit the Quality Management Process Model of ISO 9001-2008, particularly:</td>
</tr>
<tr>
<td></td>
<td>Client Requirements > Input > Service Product Realisation > Output > Client Satisfaction;</td>
</tr>
<tr>
<td>The Fugro Project Manager</td>
<td>Acts as a bridging document between Contractor/Consultant and the Client’s Management System.</td>
</tr>
<tr>
<td></td>
<td>Is the owner of the Project Execution Plan.</td>
</tr>
<tr>
<td></td>
<td>Is Name with contact details Email namename@fugro.com; Tel; +1-713-369-5600</td>
</tr>
<tr>
<td>The user of the Project Execution Plan</td>
<td>Must perform a management of change procedure when deviation from the plan is required.</td>
</tr>
<tr>
<td></td>
<td>Must implement and execute any adjusted requirements.</td>
</tr>
<tr>
<td></td>
<td>Must inform the Project Manager about receipt of the document.</td>
</tr>
</tbody>
</table>

1.4 Updating the Project Execution Plan

This plan will be updated when appropriate during the project life cycle. Any updates to the PEP will be issued via the Project Manager to the project ftp site and to the holders of controlled copies. Minor updates may be transmitted by e-mail in the form of an additional appendix to the relevant volume or part.
1.5 Intended Audience

The intended audience of this document includes representatives of the **Client** and members of the Project Team from the Contractor/Consultant. Controlled copies of the document are held on the project ftp site (ftp:\???:…..) and with the following, a list of Project Team members, Clients and other stakeholders who shall hold a controlled copy of the PEP.

Insert a table of names and contact details of who need to have a controlled copy
1.7 Document Structure

Volume 1: PROJECT EXECUTION PLAN (PEP) INTRODUCTION
Volume 2: DETAILED PEP

PART A: OPERATIONAL PLAN
PART B: QUALITY PLAN
PART C: HSE PLAN
PART D: CLIENT / CONTRACTOR HSE INTERFACE DOCUMENT
PART E: EMERGENCY RESPONSE PLAN

A summary of these documents is shown below and is presented at the front of all of the PEP sections to allow for quick and easy understanding of the documents structure and purpose. A detailed summary of the contents of each of the PEP sections is included as Appendix A.

Volume 1: PROJECT EXECUTION PLAN

The level 1 Project Execution Plan (PEP) document gives an introduction to the user of the purpose of the PEP and explains the structure of the document including where to find certain types of information.

The complete PEP is the bridging (Interface) document that provides overall project governance to and control of Part A to Part D, detailed below.

Volume 2, PART A: OPERATIONAL PLAN

The Operational Plan communicates project specific details to the project team for execution of the project according to the Clients and Contractor/Consultant’s contractually agreed objectives. This includes the scope of work for each Work Package, references to the appropriate documents applicable to the execution of the project including management systems, method statements and standard operating procedures, organisation
diagrams, communication protocol and provides details of the equipment (assets) technical specification
references, site specific information is detailed to a level of detail that is expected to be appropriate for the
purpose of efficient operational planning and execution.

Volume 2, PART B : QUALITY PLAN

The Quality Plan references and explains how Contractor/Consultant’s quality management systems shall be
applied maintain quality control of the project and will be used as a basis for monitoring and assessing
compliance with the project specific and Contractor/Consultant’s quality requirements for the type of project
and equipment described in Volume 2, Part A – Operational Plan.

Volume 2, PART C : HSE PLAN

The Health, Safety and Environment Plan provides a clear statement of the methods and procedures Fugro
will use to conduct the services in a safe and responsible manner. It details the responsibilities, reporting
systems and procedures to be used by Contractor/Consultant’s throughout the project.

Volume 2, PART D : CLIENT / CONTRACTOR HSE INTERFACE DOCUMENT

The Client Interface Document is an interface management plan (bridging document) that identifies the
particular requirements, amplifications and amendments against Contractor/Consultant’s HSE Plan that are
required to conform to the Client’s HSE management procedures.

Volume 2, PART E : EMERGENCY RESPONSE PLAN

The Emergency Response Plan provides project specific information, guidance and procedures for dealing
with emergency events. It details response procedures and sequences; together with details of the person(s)
responsible for coordinating efforts on behalf of Contractor/Consultant should they occur.

2. PROJECT MANAGEMENT APPROACH

2.1 Project Governance

Responsible Company’s standard approach to managing projects is to separate the project into logically defined Work Packages, each managed by their own Work Package Manager who reports to the Project Manager. The Project Manager and the Work Package Managers plan and execute the project and services using the following hierarchy of documentation. This hierarchy will be referenced throughout Volume 2, Parts A through E as well as within this document.

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Client / Contract Requirements, Policies and Procedures</th>
</tr>
</thead>
</table>

12
Wherever possible, existing policies, procedures and guidance will be followed. These are typically Volume 2 and 3 documents with Level 3 documents prepared for specific technical, operational or HSE activities by the operating company most suited and experienced to produce them. Level 3 documents are developed with due recognition of the mandatory requirements of Volume 2 policy and procedure. Level 4 documents are those created specifically for this project.

2.2 Project Management Procedure

The following documents will be used by the Project Manager at appropriate times during the project.

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Contract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Call-off Order</td>
</tr>
<tr>
<td></td>
<td>Client’s specific requirements and documents.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2</th>
<th>Project Management Handbook (v4.0)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Level 3</th>
<th>Opco Integrated Management System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e.g. Technical proposal No. ??</td>
</tr>
<tr>
<td></td>
<td>e.g. Commercial proposal No. ??</td>
</tr>
</tbody>
</table>

| Level 4 | Relevant OpCo Management Systems and Policies |

2.3 Project Life Cycle Management

Responsible contracting party is responsible for the delivery of the project from initiation, through implementation, to close out and subsequent handover. The Project Manager will oversee the planning, execution and delivery of the services and will act as the sole primary point of contact with the Client (unless agreed specifically for particular technical items, in which case the PM will remain cc’d on all correspondence).

The Project Manager will follow the process and procedures of a Project Management Handbook. This will be the Project Manager’s primary reference tool and has been developed such that it dovetails with the management processes derived from PRINCE2 and APM (Association for Project Management) methodologies. Its basis is the effective management of the Fugro Project Life Cycle, see Figure 2.1. The Life
Cycle defines the sequence of Phases through which the project will pass from conception to completion and whilst providing a logical structure, it also provides flexibility for the Project Manager to tailor processes and procedures to align with the Client’s requirements and systems.

2.4 Risk Strategy and Risk Management

From the inception of the project it is vitally important that a sound and effective risk management philosophy and process is followed to ensure successful project completion. Appropriate project risk management enhances visibility into the project activities, strengthens decision making and facilitates the achievement of the project objectives. Risk management is already an integral part of the management of the project in the Pre-project Phase and will continue to occupy a central position throughout the project lifecycle. As the project progresses, the nature of the risks and the context and environment in which they will have to be managed, will change, and therefore the risk management process will be reviewed and adapted on a regular basis.
APPENDIX A – PEP DETAILED CONTENTS LIST VOLUME 2

<table>
<thead>
<tr>
<th>PART A</th>
<th>PART B</th>
<th>PART C</th>
<th>PART D</th>
<th>PART E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Plan</td>
<td>Quality Assurance Plan</td>
<td>HSE Plan</td>
<td>Interface QHSSE</td>
<td>Emergency Response Plan</td>
</tr>
<tr>
<td>Appendix E – Level 4 Reference Documents - Fugro Project Specific</td>
<td></td>
<td></td>
<td>12. Safety Equipment</td>
<td></td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>Appendix F – Roles and Responsibilities</td>
<td>13. HSE Monitoring, Audit and Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendix G – Client Project specific instructions</td>
<td>Appendix A – HSE Commitments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendix H – Management of change form (MOC), Variation Order Template, Client Concession Template, Acceptance / Completion Certificate Template etc</td>
<td>Appendix B – TRA Register</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendix I – Staff Competency Records</td>
<td>Appendix C – Training Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix D – Project Hazid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exhibit 4 – Actual Project Planning Workshop Participants

In order to capture the experience and knowledge from several hydrate expeditions previously conducted, we propose that a Workshop was conducted at the beginning of May 2014 to pull all of this experience together and establish a “Best Practices” outline or pathway to success. We have identified the following personnel that were included in the Workshop:

<table>
<thead>
<tr>
<th>Professional’s Name</th>
<th>Affiliation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian Ferri</td>
<td>Fugro</td>
<td>35 years+ drilling experience</td>
</tr>
<tr>
<td>Steve Brittain</td>
<td>Fugro</td>
<td>30 years+ experience with tool development and implementation on DW projects</td>
</tr>
<tr>
<td>Jeff Scott</td>
<td>Fugro</td>
<td>10 years+ drilling and vessel design experience</td>
</tr>
<tr>
<td>Jens Breinbjerg</td>
<td>Fugro</td>
<td>10 years+ project management experience on hydrate and DW projects</td>
</tr>
<tr>
<td>Michael Benting</td>
<td>Fugro</td>
<td>10 years+ project management and hydrate experience on DW projects</td>
</tr>
<tr>
<td>Pedro Regino</td>
<td>Fugro</td>
<td>15+ years of project management and 10+ years of hydrate experience on DW projects</td>
</tr>
<tr>
<td>Frank Gozeling</td>
<td>Fugro Holland</td>
<td>Senior Project manager with 30 years+ experience in offshore geotechnical operations and 10 years+ on hydrate project experience</td>
</tr>
<tr>
<td>Floris Tuynder</td>
<td>Fugro Holland</td>
<td>Equipment Designer and special consultant for Pressure Coring Systems since 2002.</td>
</tr>
<tr>
<td>Dan McConnell</td>
<td>Fugro</td>
<td>Geoscientist with 25 years+ experience also involved in JIP II and responsible for prospecting efforts to find massive sand deposits with hydrates indicated based on LWD work.</td>
</tr>
<tr>
<td>Luke Hamilton</td>
<td>Fugro UK</td>
<td>Drilling Manager for Fugro Seacore and offshore driller on two previous hydrate expeditions. 10+ years of offshore drilling experience.</td>
</tr>
</tbody>
</table>

Potential Peer Review Candidates for our Workshop:

<table>
<thead>
<tr>
<th>Professional’s Name</th>
<th>Affiliation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Collett</td>
<td>USGS</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Ray Boswell</td>
<td>US DOE / NETL</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Richard Baker</td>
<td>US DOE / NETL</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Michael Riedel</td>
<td>Canadian Geologic Survey</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Brian Anderson</td>
<td>Univ. West Virginia</td>
<td>Expert Modeler for hydrates</td>
</tr>
<tr>
<td>Brad Clements</td>
<td>IODP</td>
<td>possibly Michael Storms</td>
</tr>
<tr>
<td>Koji Yamamoto</td>
<td>JOGMEC</td>
<td>Koji Yamamoto or others</td>
</tr>
<tr>
<td>Beong-jae Ryu</td>
<td>KIGAM</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Scott Dallimore</td>
<td>Geologic Survey of Canada</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Pushpendra Kumar</td>
<td>ONGC/DGH</td>
<td>World-wide expert on hydrates</td>
</tr>
<tr>
<td>Craig Shipp</td>
<td>Shell</td>
<td>Industry expert on hydrates</td>
</tr>
</tbody>
</table>
Exhibit 5 – Milestones Table

<table>
<thead>
<tr>
<th>Milestone Title / Description</th>
<th>Planned Completion Date</th>
<th>Actual / Anticipated Completion Date</th>
<th>Verification Method</th>
<th>Comments (progress toward achieving milestone, explanation of deviation from Plan, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kickoff Meeting</td>
<td>11/5/12</td>
<td>11/5/12</td>
<td>Fugro participation in kickoff meeting and provision of kickoff meeting presentation to DOE</td>
<td>Complete. Kickoff meeting held via web-ex on 11/5/12</td>
</tr>
<tr>
<td>Complete Coring Program Concept Evaluation</td>
<td>1/25/13</td>
<td>6/20/14</td>
<td>Provision of a mid-project report (task 3.4) to DOE documenting the coring program evaluation process and the resulting recommendation for full concept development.</td>
<td>We anticipate that upon completion of the Project Workshop this Milestone 2 will be completed including the vetting process</td>
</tr>
<tr>
<td>Complete Preliminary Coring Plan Definition</td>
<td>5/24/13</td>
<td>8/28/14</td>
<td>Provision of a preliminary version of the final report (task 5.1), to DOE, fully documenting the efforts and results of project efforts to define operational and scientific plans for a future hydrate-focused marine coring program.</td>
<td>Allowed time after the Peer Review vetting of the Workshop results in Milestone 2 to complete this Milestone</td>
</tr>
<tr>
<td>Recommendations and Reporting</td>
<td>6/7/13</td>
<td>12/23/14</td>
<td>The Recipient shall, document and present to DOE, the full results of project efforts and shall make recommendation to DOE regarding most prudent options for a methane hydrate-focused pressure coring program.</td>
<td>Final reviewed and vetted report to be issued.</td>
</tr>
</tbody>
</table>

Task 5.1 - The Recipient shall prepare a preliminary version of the project final report fully documenting the efforts and results of project activity and deliver to DOE for review and consideration.

Task 5.2 - The Recipient shall convene a meeting with DOE to review and present the results of the project as documented within the preliminary version of the project final report.

Task 5.3 - Based on outcome of Task 5.2, The Recipient shall, if necessary, revise the content of the project Final Report.

Exhibit 6 – Gantt Chart – Schedule

See attachment on following page.
1. INTRODUCTION
1.1 Purpose
1.2 Scope
1.3 Data Used
1.4 Project Participants
1.5 Report Format
2. GEOLOGIC SETTING AND SEAFLOOR CONDITIONS
2.1 Regional Geologic Setting
2.2 Seafloor Conditions in the Study Areas
2.2.1 Levels of Site Assessment Achievable using the Current Dataset
2.2.2 LWD program from 2009 JIP
3. HAZARDS CONCERNS FOR THE CORING AND PRESSURE CORING OPERATIONS
3.1 Seismic Hazard
3.1.1 Seismic Hazard Evaluation in the JIP LWD sites
3.1.2 Consideration of Seismic Hazard Effects for Coring Sites
3.2 Hazards for Drilling Rigs
4. POSSIBLE HAZARDS POSED BY HYDRATES
4.1 Hydrate Dissociation Fundamentals
4.2 Hydrate Habitat and Dissociation Processes
4.3 Sediment Volume Change Caused by Dissociation
4.4 Sediment Control of Dissociation Phenomena
4.5 Sediment Strength Change During and After Dissociation and Slope Instability
5. CONVENTIONAL OIL AND GAS SITE SURVEYS IN DEEP WATER
5.1 Site Survey Guidelines Reviewed
5.2 Summary of Survey Extents and Line Spacing
5.3 Summary of Recommended Survey Equipment Types
6. POTENTIAL HIGH RESOLUTION GEOPHYSICAL SURVEYS
6.1 Survey Areas
6.2 Potential AUV High Resolution Geophysical Survey
6.3 Potential 2-DUHR Survey
7. GEOTECHNICAL AND GEOMECHANICAL SITE SURVEYS
7.1 Introduction
7.2 Geotechnical Site Investigation
7.2.1 Seabed Wheel-Drive Piezocone Penetration Tests (PCPTs)
7.2.2 Seabed Remote Vane Shear Tests (VSTs)
7.2.3 Seabed Box Core (BC) Sampling
7.2.4 Large Diameter Piston Coring
7.2.5 Exploratory Soil Borings
7.3 Geotechnical Laboratory Testing
7.3.1 Conventional Laboratory Testing
7.3.2 Advanced Laboratory Testing
8. PRESSURE CORING AND PRESSURE CORE ANALYSIS
8.1 Introduction
8.2 Non-destructive measurements
8.3 Imaging techniques
8.4 De-gassing experiments
8.5 Triaxial Testing
8.6 Storage chambers for additional on-shore/post-cruise testing and experiments

9. METHOD STATEMENT FOR CORE ANALYSIS (NON-PRESSURIZED AND PRESSURIZED CORES)

10. POST CRUISE ACTIVITIES

11. SCHEDULE, TIMING AND COST ESTIMATES

12. PERMITTING ISSUES/PROCEDURES

12. RECOMMENDATIONS AND CONCLUSIONS

13. REFERENCES

ILLUSTRATIONS FOLLOWING TEXT

TABLES

Table 3.1: Hazard Impact Table for Dynamically Positioned Rigs
Table 6.1: Geophysical Survey Areas
Table 7.1: Sampling Intervals for the Exploratory Soil Borings

FIGURES WITHIN TEXT

Figure 1. Location Map(s)
Figure 2. A typical phase diagram for methane gas hydrate
Figure 3. Schematic diagram of the typical geotechnical site investigation package

ILLUSTRATIONS FOLLOWING TEXT

Detailed Location