Oil & Natural Gas Technology

DOE Award No.: DE-FE0009927

Quarterly Research Performance Progress Report (January - March 2014)

Verification of capillary pressure functions and relative permeability equations for gas production

Submitted by: Jaewon Jang

Jaewan Jang

Wayne State University DUNS #: 001962224 5050 Anthony Wayne Dr. Detroit, MI 48202

e-mail: jaewon.jang@wayne.edu Phone number: (313) 577-3854

Prepared for: United States Department of Energy National Energy Technology Laboratory

April 30, 2014

Office of Fossil Energy

SUMMARY

Γask 1.0	Project Management and Planning <u>Done</u>
Γask 2.0	Pore Network Generation <u>Done</u>
Γask 3.0	Algorithm for conductivity and hydrate dissociation <u>Done</u>
Γask 4.0	Characteristic Curve and Relative Permeability In progress
Subtask 4.1	Effect of network size/boundary condition <u>Done</u>
Subtask 4.2	Effect of hydrate habit In progress

Project timeline

		Yea	ar 1			Ye	ar 2		Year 3	
	Qtr1	Qtr2	Qtr3	Qtr4	Qtr1	Qtr2	Qtr3	Qtr4	Qtr1	Qtr2
Task 1.0 Project Management and Planning										
Task 2.0 Pore Network Generation										
Subtask 2.1: Information of grain size distribution										
Subtask 2.2: Sediment packing by DEM simulation										
Subtask 2.3: Extraction of pore network				İ						
Milestone A			•							
Task 3.0 Algorithm for conductivity and hydrate dissociation										
Decision Point 1										
Milestone B					•					
Task 4.0 Characteristic Curve and Relative Permeability										
Subtask 4.1: Effect of network size/boundary condition										
Subtask 4.2: Effect of hydrate habit										
Subtask 4.3: Effect of hydrate saturation										
Subtask 4.4: Effect of gas viscosity										
Subtask 4.5: Effect of grain size distribution										
Subtask 4.6: Suggestion of fitting parameters										
Decision Point 2										
Milestone C	ĺ									

Evaluation of the effect of pore-network model size

During the quarter from January 2014 to March 2014, the effect of pore-network model size on relative permeability data is studied by running simulations using several pore-network with different sizes.

Four different sizes of the pore-network models are generated: 1mm×1mm×1mm, 2mm×2mm, 3mm×3mm, and 4mm×4mm.

The below table and figures show the detailed information of four pore-network models and the distribution of pore radius of each pore-network model.

Table 1. Information of generated pore-network model

Two I in the mount of Southwest Poly move in the well											
Network	Pores	Throats	max R (mm)	min R (mm)	average R (mm)	min Z	max Z	ave Z			
1x1x1 mm	75	242	0.1958	0.0232	0.0865	2	18	5.71			
2x2x2 mm	539	1794	0.2280	0.0237	0.0852	1	18	6.29			
3x3x3 mm	1878	6269	0.2282	0.0210	0.0835	1	23	6.43			
4x4x4 mm	4526	15282	0.2282	0.0219	0.0827	2	26	6.57			

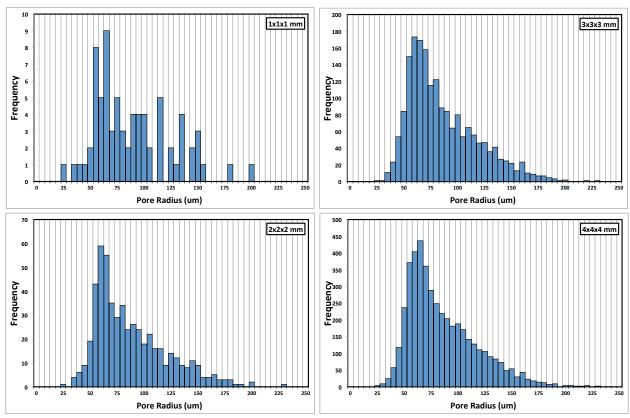
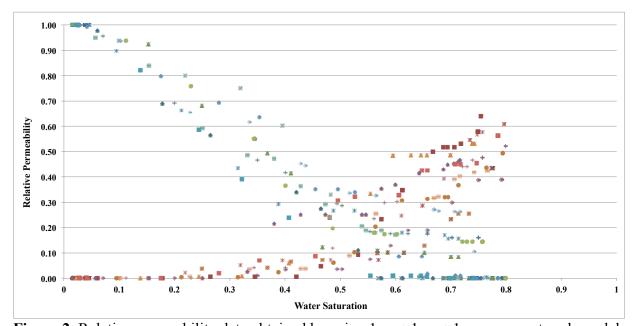
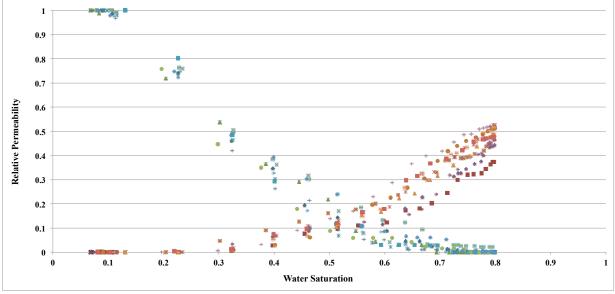
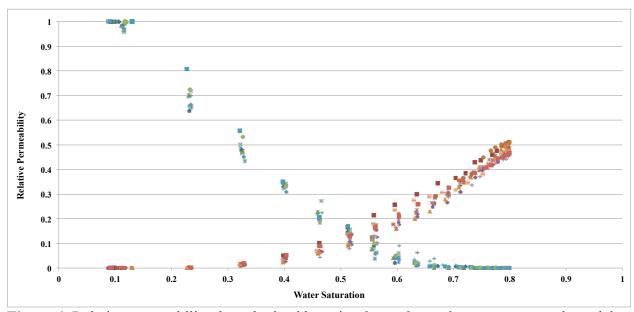


Figure 1. Histogram of pore radii of pore-network models

Ten simulations are performed for each pore-network model. Initial hydrate distribution is $S_h=20\%$. Hydrates are assigned randomly to fill pores. Every simulation run starts with different location of hydrate pores. Pores are filled with either hydrate or water.

Figure 2, 3, 4, and 5 show the results of relative permeability simulation during gas expansion from hydrate dissociation. The pore-network models that have the size of 1mm×1mm×1mm and 2mm×2mm×2mm show very dispersed data points.

The subtasks under Task 4.0 will be performed using the pore-network model whose size is 4mm×4mm.

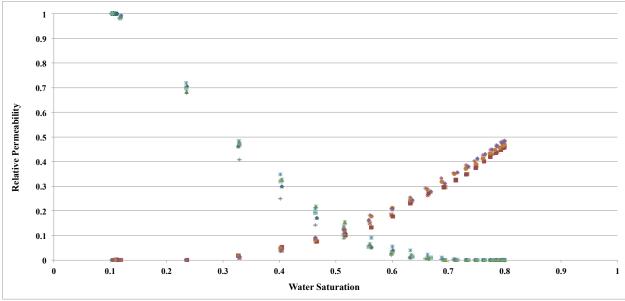

Figure 2. Relative permeability data obtained by using 1mm×1mm×1mm pore-network model.

Figure 3. Relative permeability data obtained by using 2mm×2mm×2mm pore-network model.

Figure 4. Relative permeability data obtained by using 3mm×3mm×3mm pore-network model.

Figure 5. Relative permeability data obtained by using 4mm×4mm×4mm pore-network model.

National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

13131 Dairy Ashford Road, Suite 225 Sugar Land, TX 77478

1450 Queen Avenue SW Albany, OR 97321-2198

Arctic Energy Office 420 L Street, Suite 305 Anchorage, AK 99501

Visit the NETL website at: www.netl.doe.gov

Customer Service Line: 1-800-553-7681

