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Overall Goal:

• Develop and validate advanced catalytic materials and 

systems for purifying flue gas from pressurized oxy-

combustion (OC) to meet CO2 purity specifications for EOR 

and improve performance over 1st-generation OC

Specific Objectives (1/1/2017 to 12/31/2019):

• Develop high-performance supported catalysts and a reverse 

flow fixed-bed reactor (RFFB) design for O2 removal via direct 

reduction by CH4;

• Develop multifunctional catalytic packing materials and a 

catalytic direct contact cooler (DCC) design for enhanced 

oxidation and removal of NO and Hg; 

• Fabricate and test a small bench-scale RFFB and a catalytic 

DCC with a slipstream of flue gas from the Staged 

Pressurized Oxy-Combustion (SPOC) testing facility at 

Washington University in St. Louis (WUSTL); 

• Characterize the fate and transformation of Hg, heavy metals, 

and major gas species in flue gas from the SPOC facility; and

• Perform a high-level techno-economic analysis for the 

catalytic flue gas purification technology integrated into a 

conceptual 550-MWe SPOC plant

Project Overview Catalytic O2 Reduction by CH4: 

• Direct reduction of O2 by CH4 in a catalytic reactor avoids 

multiple steps and reduces operating complexity and costs

• Reaction heat recovery integrated into to the plant 

• A RFFB reactor design used to maintain temperature profile 

by storing reaction heat and recovery for preheating feed gas

Catalytic Oxidation of NO in DCC:

• Without a catalyst, SO2 is removed in a few seconds vs. 90% 

NO/NO2 removal requires a higher pressure (15 to 30 bar) 

and a longer time (hundreds of seconds)

• Inexpensive carbon-based catalysts used to enhance NO 

oxidation reaction (1) and achieve high-efficiency NO/SO2

removal simultaneously:

 A single DCC to replace two DCCs at increasing pressures

 Hg removal and reemission control combined in DCC

• Increasing operation pressure slightly reduces CO formation 

(1/3 CO reduction by increasing pressure from 15 to 45 bar) 

• Steam addition suppresses CO formation only slightly 

(Increasing steam from 0.25 to 10% halves CO concentration)

DFT Calculations for O2 Reduction by CH4 on Metals:

• Calculations performed to identify effective metal catalysts

• O2 dissociation is thermodynamically favorable on selected 

metals

• Small difference in CH4 adsorption energy among the metals

• CH4 adsorption energy is much larger than O2 indicating CH4

is more difficult to adsorb on the metal surfaces than O2

Synthesis of Metal Catalysts for O2 Reduction:

• Two synthesis routes used to develop metal or bimetallic 

catalysts on support with defined morphology

 Wet synthesis - colloidal synthesis and impregnation

 Gas-phase flame synthesis

• Impregnation parameters (e.g., precursor, solvent, acid or 

base treatment of support surface, thermal treatment T) 

investigated to prepare >40 Pd, Cu, or PdAu alloy catalysts

• Colloidal synthesis parameters (e.g., solvent, reduction 

technique, surfactant) were investigated to prepare >30 Pd, 

Cu or PdAu alloy catalysts

Performance Screening of Metal Catalysts for O2 Reduction:

• Activity and selectivity of synthesized catalysts are under 

screening evaluation

• A 0.28-in ID and 19-in long differential fixed-bed reactor (rated 

at 250 bar & 1,000 F) used for the screening testing

(2) Development of Catalysts & System for Enhanced NO/Hg 

Oxidation in DCC

Synthesis of Carbon-Based Catalysts for NO/Hg Oxidation:

• Initial efforts are focused on surface modifications for 4 

commercially available granular activated carbons:

 Bituminous coal-based (Filtrasorb400, Calgon Carbon)

 Coconut shell-based (GC 4X8SA, General Carbon)

 Wood-based (Nuchar, MeadWestvaco)

 Sulfur-impregnated (GC-IPSg, General Carbon)

• Surface treatment approaches:

 Introduction of N functional groups by melamine treatment 

 Incorporation of Cu and CeO2 catalysts by impregnation

 Growth of carbon nanofibers by C2H2 chemical vapor 

deposition on surface of carbon-Cu/CeO2

 Hydrophobic modification by introduction of silane

functionalities or methyl groups

Design, Fabrication, &Testing of a Bench-Scale Catalytic DCC 

• A catalytic DCC (0.5-3 inch ID by 1-2 ft length) capable of 

treating 1–10 SLPM flue gas under 16 bar is in progress

• Performance of synthesized carbon materials to be tested

Component Limit

CO2 95 vol%

N2 1 vol%

Ar 1 vol%

H2O 300 ppm wt

O2 100 ppmv

SO2 100 ppmv

NOx 100 ppmv

CO 35 ppmv

H2 1 vol%

CH4 1 vol%

C2H6 1 vol%

C3+ 1 vol%

CO2 purity requirements 

for EOR [2]

Component Composition

O2 2.9 vol%

N2 0.6 vol%

Ar 3.3 vol%

CO2 63.0 vol%

H2O 29.4 vol%

SO2 1,000-8,000 ppmv

NOx ~400 ppmv

Typical flue gas composition 

from OC boilers [1]

Refs: 1) Internal simulation results; 

2) DOE/NETL. Quality Guidelines 

for Energy System Studies: CO2

Impurity Design Parameters, 

August 2013.

Technical Gaps for State-of-the-Art OC Flue Gas Purification:

• O2 removal: Known commercial catalysts or scavengers are 

suitable only for trace amounts of O2 (<~1,000 ppmv); 

• NO removal: Mismatching reaction times between SO2 and 

NO removal in a regular DCC (~10 vs.100 s for 90% removal)

• Hg removal: A regular DCC is not highly effective to capture 

elemental Hg; potential Hg reemission issue in DCC water 

neutralization unit (similar to a wet scrubber)

• Hg speciation: Emissions, fates & transformation of Hg and 

heavy metals are not well known for pressurized OC systems

Novel Catalytic Approaches to Overcome Technical Gaps:

• O2 removal via catalytic reduction

• NO/SO2/Hg removal with catalytic oxidation

Technology Background

(Units highlighted in blue are 

focuses of the current project)
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H2O & balance CO2 at 15 bar & 400C)

Flame synthesis setupColloidal synthesis setup

Generate reduced metals 

dispersed in solution

Add surfactants leading to 

strong attraction between 

the metal and the support

Drying & calcination 

treatment

TEM micrographs of a Pd-based catalyst (left) and a Pd/Au alloy catalyst 

(right); uniform size of 5.6 nm for Pd and 2.7 nm for PdAu nanoparticles

Au/α-Al2O3 without (left) or with 

(right) surface treatment by acid: 

Acid treatment resulted in a 

uniform distribution of metal on the 

alumina surface due to a greater 

metal-surface interaction

PdAu3/α-Al2O3 thermally treated at 

600⁰C (left) and 300⁰C (right): Both 

metal nanoparticle size and 

dispersion were improved at a 

lower temperature during thermal 

treatment)
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To EOR

(1) NO(g) + ½O2(g) = NO2(g) (slowest, both Ke & kr favored at low T & high P)

(2) NO2(g) + SO2(g) + H2O(aq) = NO(g)+ H2SO4(aq) (fast, Lead Chamber process)

(3) 2NO2(g) + H2O(aq) = HNO2(aq) + HNO3(aq) (slow, nitric acid process)

(4) 3HNO2(aq) = HNO3(aq) + 2NO(g) + H2O(aq) (slow, nitric acid process)

Catalytic materials 

development and 

evaluation  

Bench scale reactor 

development

Slipstream testing of 

bench reactors  at 

SPOC pilot facility

Process analysis 

& techno-economic 

analysis (TEA) 

2. Synthesis & evaluation of 

catalysts for O2 reduction 

with methane 

(~50 catalysts)

3. Synthesis & evaluation of 

catalytic packings & additives 

for NO/SO2/Hg removal 

(~50 catalysts / 30 additives)

5-10 catalysts

Fab & testing of bench scale 

reverse flow fixed-bed reactor 

1-2 catalysts

5.Slipstream testing of bench 

scale catalytic O2 reduction & 

catalytic DCC systems at 

SPOC pilot facility

6. Preliminary process 

analysis and high-level TEA

4. Field measurements of Hg 

and gas species in SPOC flue 

gas

Fab & testing of bench scale 

DCC catalytic packed-bed 

reactor 

10 catalysts / 5 additives

1-2 catalysts  & additives

(1) Development of Catalysts & System for O2 Reduction

Thermodynamic Equilibria Calculations for O2 Reduction:

• Near-stoichiometry conditions thermodynamically favor 

minimal formation of CO while few CH4 or O2 slips over

• CO formation highly sensitive to temperature; Low operating 

temperature reduces formation of CO

Project Progress

(1) CH4 + 2O2 = CO2 + 2H2O (complete oxidation)

(2) CH4 + 3/2 O2 = CO + 2H2O (partial oxidation)

(3) CO + 1/2 O2 = CO2 (CO oxidation)

(4) CH4 + H2O = CO + 3H2 (CH4 wet reforming)

(5) CH4 + CO2 = 2CO + 2H2 (CH4 dry reforming)

(6) CO + H2O = CO2 + H2 (WGS reaction)

(7) H2 + O2 = H2O (H2 oxidation)
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Gas flow into 

preheater/ reactor

Preheater and 

fixed-bed reactor

Mass flow 
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configuration

PR: P regulator; BPC: back-P controller; MF: mass flow 

controller; TCr: T controller; TC: thermal couple
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Schematic (a) and photograph (b) of the differential fixed-bed reactor

Schematic of a bench-scale DCC packed with a carbon-based catalyst

• Continue DFT modeling to guide catalysts development 

• Synthesis optimization and screening testing of noble and 

non-noble metal catalysts for O2 reduction and carbon-based 

catalysts for enhanced NO/Hg oxidation

• Complete design and fabrication of a bench-scale RFFB and 

a bench-scale catalytic DCC system and conduct testing with 

selected catalytic materials

DOE/NETL support thru Cooperative Agreement DE-FE0029161

Energy diagram for O2 dissociation 

on different metal surfaces

Energy diagram for CH4 adsorption 

on different metal surfaces
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