Catalytic Removal of Oxygen and Pollutants in Exhaust Gases from Pressurized Oxy-Combustors
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Project Overview Catalytic O, Reduction by CHy:  Increasing operation pressure slightly reduces CO formation
. Direct reduction of O, by CH, in a catalytic reactor avoids (1/3 CO reduction by increasing pressure from 15 to 45 bar)
Overall Goal: multiple steps and reduces operating complexity and costs «  Steam addition suppresses CO formation only slightly
.+ Develop and validate advanced catalytic materials and * Reaction heat recovery integrated into to the plant (Increasing steam from 0.25 to 10% halves CO concentration)
systems for purifying flue gas from pressurized oxy- A RFFB reactor design used to maintain temperature profile 0 050 R p——. .
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Refs: 1) Internal simulation results; CO 35 ppgnv Catalytic Oxidation of NO in DCC: « O, dissociation is thermodynamically favorable on selected ey s e
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(1) NO(g) + %02(g) = NO,(g) (slowest, both K. & k; favored at low T & high P) is more difficult to adsorb on the metal surfaces than O, Schematic (a) and photograph (b) of the differential fixed-bed reactor
(2) NO5(g) + SO,(g) + H,O(aqg) = NO(g)+ H,SO4(aq) (fast, Lead Chamber process) 11 0.08 - —
Specific Objectives (1/1/2017 to 12/31/2019): (3) 2NO4(g) + H,0(aq) = HNO(aq) + HNOs(aq) (slow, nitric acid process) S T 005 yams (2) Development of Catalysts & System for Enhanced NO/Hg
+  Develop high-performance supported catalysts and a reverse (4) 3HNO-aq) = ANOs(aq) + 2NOAQ) + H,Olaq) (slow, nifric acid process) S = 9 o Oxidation in DCC
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Technical Gaps for State-of-the-Art OC Flue Gas Purification: & techno-economic 6. Preliminary process Ll e | Diffusion burner treating 1-10 SLPM flue gas under 16 bar is in progress
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« O, removal: Known commercial catalysts or scavengers are T ' ; Methane Performance of synthesized carbon materials to be tested
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+  NO removal: Mismatching reaction times between SO, and Project Progress In solvent or aerosols S - e o
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* Hgremoval: Aregular DCC is not highly effective to capture Thermodynamic Equilibria Calculations for O, Reduction: i | id PP = [0
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* Oz removal via catalytic reduction (7) H, + O, = H,0 (H, oxidation)
*  NO/SO,/Hg removal with catalytic oxidation «  Near-stoichiometry conditions thermodynamically favor Future Work
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