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Project Objective

* Develop a cost-effective design and
fabrication process for a novel
transformational membrane and its
membrane modules that capture CO, from
coal-derived syngas

* 95% CO, Purity
* >99% H, Recovery

« COE 30% Less than Baseline Approaches



2-Budget Period Project

« BP1: 10/01/2018 - 03/31/2020

— Laboratory-scale membrane synthesis, characterization and
transport performance studies
— High-level preliminary techno-economic analysis

« BP2: 04/01/2020 - 09/30/2021

— Laboratory-scale membrane synthesis, characterization and
transport performance studies to continue

— Fabrication, characterization and transport performance
studies of scale-up membrane (14" wide by 20’ long)

— Fabrication, performance and stability testing of spiral-wound
membrane modules

— Update techno-economic analysis performed in BP 1

 Integrated program with fundamental studies, applied research,
synthesis, characterization and transport studies, and high-level
techno-economic analysis



Funding and Performance Dates

» Total Budget: 10/01/2018 — 09/30/2021
DOE: $799,988; OSU: $199,998 (20% cost share)

* BP1: 10/01/2018 — 03/31/2020
DOE: $386,694; OSU: $96,674

« BP2: 04/01/2020 — 09/30/2021
DOE: $413,294; OSU: $103,324



Technical Background: Proposed Process
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* Proposed membrane process does not require significant
syngas cooling (compared to competition)



Location of Proposed Technology In
IGCC Plant
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Selective Amine Polymer Layer /

Polymer Support
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Amine Polymer Layer Contains Mobile

“and Fixed Carriers: Facilitated Transport
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Tunable Amine-CO, Chemistry

* Reaction of CO, with Unhindered Amines

CO> + R-NH>; 2 R-NH>"-COO-

R—-NH,"-COO~ + R—-NH;, =
Overa

R-NH-COO- + R—NH3*
I .

CO2 + 2 R-NH2 & R-N

1-COO~ + R—NH3"

» Reaction of CO, with Hindered Amines
Overall: Can double the CO, capacity
CO; + R;=NH-R, + H20 = R;R,~NH,* + HCOg3




Facilitated Transport vs.
Solution-Diffusion Mechanism

* CO, Facilitated Transport Flux: Very High

— CO,-amine reaction enhances CO, flux

* H, Flux: Very Low
— H, does not react with amine
— H, transport follows conventional physical solution-
diffusion mechanism, which is very slow



Membrane Performances

CO,/H, selectivity
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Membrane Performances

CO, permeance (GPU)
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Effect of Carrier Saturation

Phenomenon on Perform
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Effect of CO, Permeance on
Cost of Electricity Increase
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Membranes Synthesized with
Tuned H,S/CO, Selectivities
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Effect of H,S/CO, Selectivity on H,S
Concentration in H, Product

Sweet syngas H,S (ppmv)
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Plans for Future Testing/Development

 Remaining BP1
— Increase CO, Sorption at High Pressure

— Enhance Membrane Mechanical Properties
— Preliminary Techno-Economic Analysis

« BP2

— Membrane Scale-up and Characterization
+ Continuous roll-to-roll fabrication (14" wide by 20’ long)

— Prototype SW Module Fabrication
+ Fabricate 9 prototype SW modules (800 cm? each)
+ 200-h stability test with simulated syngas

— Final Techno-Economic Analysis
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