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• Identify promising physical solvents for CO2 pre-
combustion capture from commercially available organic 
compounds.
―Database search:
NIST database software: melting point, normal boiling point
Open literature: safety, environment, biology properties and price

―Simulation:
In-house computational database development
CO2 solubility, CO2/H2 solubility selectivity

―Experiment and simulation: in case of  missing important pure 
compound properties

• The best identified compounds are purchased and tested at 
NETL and further modified for improvements.

Objectives
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Decouple the Integration of 
Materials and Process Development

[1] Siefert, N. et al., International Journal of Greenhouse Gas Control 2016, 364
[2] Burr, B. et al. Hydrocarbon Processing 2009, 43
[3] Bucklin, R. et al. Energy Progress, 1984, 137 
[3] Burger, J. et al. AIChE J. 2015, 3249 

• Challenge: solvent and 
process are coupled.
Different solvents may lead 
to optimal performance at 
different operating 
conditions, such as T & P

• Strategy: decouple 
the integration 
through sub-
optimization by 
first screening 
solvents, which has 
“the best 
performance 
properties” under 
some specific 
operating 
conditions

Materials 
Development:

Material 
synthesis & 
properties

Chemical 
Process  

Development: 
Implementation 
at large scale & 

cost analysis

Integration
×
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Material Properties Product

Technology Market

[1] Wei, J. Product Engineering: Molecular Structure and Properties, 2007, 
Oxford University Press

Database

Machine
Learning+Theory

(Quantum, MD & MC)

Experiment
(Synthesis, 

characterization, 
testing)

Search
(Open literature, 

database)

Correlation
(Group contribution, 

QSPR, trend)

Forward & Reverse Search Review
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NIST database for pure compounds (~23,000)
• Melting (Tm), boiling (Tb) temperatures, viscosity, 

surface tension, density (molar volume)
Open literature
• Physical properties, such as flash point
• Safety, health, environment
• Price

In-house computational database: quantum 
mechanics for gas – chemical function group  
interactions
 CO2, CH4, H2, H2O, H2S, SO2, O2, N2, etc.

In-house molecular simulation: Monte Carlo 
 Chief criteria: CO2 solubility, CO2/H2 solubility 

selectivity, heat of absorption
 H2O solubility (hydrophobicity/hydrophilicity)

In-house simulation: Molecular Dynamics
 Surface tension, heat capacity, viscosity, CO2

diffusivity, density, vapor pressure, therm. conduct.

10s

best

<100 

Experiment: New chemical synthesis and testing 5

Integrated Computational Method Development
~ 600 compounds 

Tm < 30°C &
Tb > 260°C 
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• ~600 compounds were found in NIST database: Tm < 30°C & Tb > 260°C

Significantly Narrow Down Solvent Search: 
(23,000→600) from the NIST Software

• The NIST 
database software 
contains 22,731 
pure compounds. 
─ 8155 exp. data 

sets for melting 
point
─ 9981 exp. data 

sets for normal 
boiling point

• The software 
provides reverse 
search tools.
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In-house Computation Database: Chemical 
Functional Groups Interacting with CO2

~200 chemical functional groups[1]

• PHO4, C=N, etc. interact most strongly with CO2 (> 15 kJ/mol)
• -O- ether group interacts strongly with CO2 (~ 10-12 kJ/mol) 
• -CH, -CH2, -CH3 interact most weakly with CO2 (< 1 kJ/mol)

[1] Marrero, J.; Gani, R. Fluid Phase 
Equilib. 2001, 183
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Experimental Validation of Simulation:
CO2 Solubility and CO2/H2 Solubility Selectivity

• Simulated CO2
solubility values agree 
with the experimental 
data in most cases
― Consistent trends

• Simulated CO2/H2
solubility values are 
also close to the 
experimental data
― Same trends

298 K

298 K

[1] Shi, W. et al., J. Phys. Chem. C 2015, 19253
[2] Shi, W. et al., J. Phys. Chem. C 2016, 20158
[3] Burr, B. et al. Hydrocarbon Processing 2009, 43

PDMS: polydimethylsiloxane
TBP: Tributyl phosphate
PEGS: NETL PEG-Siloxane-1
NMP: N-Methyl-2-pyrrolidone
CAS 143-24-8: Selexol surrogate
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Some Solvents with High CO2 Solubility 
at Ambient Condition Are Identified 

• The 
following 
compounds 
exhibit larger 
CO2 loading 
than PDMS
―A1-A5 &

Hypothetical
―B1-B2
―Commercial
―C1-C2,C5

• A: hydrophobic
• B: hydrophobic/hydrophilic
• C: hydrophilic
• PDMS: polydimethylsiloxane
• commercial: methanol, NMP 

298 K

tested at 
NETL

Selexol components
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Some Solvents with High CO2/H2
Solubility Selectivity Are Identified 

• All 
compounds 
except water 
exhibit 
larger 
selectivity 
than PDMS

185
• A: hydrophobic
• B: hydrophobic/hydrophilic
• C: hydrophilic
• PDMS: polydimethylsiloxane
• commercial: methanol, NMP 

298 K

tested at NETL Selexol components
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A2 & A1 Identified from Simulation; 
Experimentally Tested at NETL

A1: Commercial
A2: Modified at 
NETL298 K

• Both sim. and exp. show that A2 exhibits larger CO2 loading than A1 
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• Open literature data
―Reasonably cheap
―No environment, health, and safety issues
―Tmelting < 10°C, Tboiling > 275°C, Tflash~ 125°C

• Simulated and exp. data obtained at NETL
―Reasonably high CO2 loading (1.06 mol/(MPa. L))
―Sufficient high surface tension: little to no foaming
―Reasonably low viscosity

• Simulated data waiting for experimental confirmation
―High CO2/H2 solubility selectivity (~50 at 25°C)
―Much more hydrophobic than NETL PEG-Siloxane-1
―Low CO2 heats of  absorption (~ -10 kJ/mol)
―Low heat capacity
―High CO2 diffusivity in the solvent

Other Favorable Properties: Solvent A1
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Three Factors to Determine CO2 Solubility

• CO2 solubility increases with:
―Free volume fraction
―Function group concentration
―CO2-solvent interaction

• Relevant machine learning codes have been developed to predict CO2 loading 
from free volume fraction, group concentration, and CO2 interaction.

298 K

• Why Selexol (CH2CH2O)n ?
―Pros: large functional concentration 

& strong CO2-solvent interaction
―Cons: small free volume fraction
―(CH2O)n scores better than 

(CH2CH2O)n for all three factors 

298 K
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Water Decreases CO2 Solubility and 
CO2/H2 Selectivity in Hydrophilic Solvent

• Adding 7.5 wt.% water in hydrophilic Selexol surrogate will 
decrease-
―CO2 solubility (dry solvent based)  by 1.45 times, partly due to water interaction with the 

–O- group
―CO2/H2 selectivity by 1.28

1.93 Å

2.94 Å

H2O-solvent: -20.9 kJ/mol

CO2-solvent: -12.8 kJ/mol
298 K



15

• The largest possible CO2 loading at 298 K in any organic 
compound is 11 mol CO2/(MPa. L); minimum CO2 loading is 0.40
mol CO2/(MPa. L);  largest CO2/H2 solubility selectivity is ~300

Largest CO2 Physical Solubility in any 
Organic Compound at 298 K

• When the solvent 
density is 
decreased by 
~10% compared 
to ambient 
condition, it 
exhibits the 
largest CO2
loading.
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Conclusions
• Developed an integrated computational approach
• Built an in-house computational database

• 23,000 compounds from NIST were screened.
• About 20 promising solvents were identified;

two of  them (1 commercial, 1 modified at NETL) 
were tested and the experimental CO2 solubilities are 
consistent with simulations. 

• The CO2 loading limits in any organic physical 
compound at 298 K were obtained. 
―Maximum: 11 mol/(MPa. L)
―Minimum: 0.40 mol/(MPa. L)
―Maximum CO2/H2 solubility selectivity: 300
―Allows comparison with any other organic material
―Useful in process modeling to estimate the minimum operating and capital cost  
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