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Project Overview
Performance Period: 10-01-2015 — 9-31-2018

Project Budget: Total/$1,909,018; DOE Share/$1,520,546; Cost-Share/$388,472

Overall Project Objectives:

1. Prove technical feasibility of membrane/adsorption-enhanced water gas shift (WGS)
Process.

2. Achieve overall fossil energy performance goals of 90% CO, capture, with 95% CO,
purity, at a cost of electricity of 30% less than baseline capture approaches.

Key Project Tasks/Participants:

1. Design, construct and test the lab-scale experimental MR-AR system. (USC)
2. Select and characterize appropriate membranes/adsorbents/catalysts. (M&PT/USC)
3. Develop and experimentally validate mathematical model. (UCLA/USC)

4. Experimentally test the proposed novel process in the lab-scale apparatus, and complete
the initial technical and economic feasibility study. (M&PT/UCLA/USC) 3
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Technology Background
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Technology Background Cont’d

Baseline IGCC Power Plant
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Technology Background Cont’d
Proposed IGCC Power Plant
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Technology Background Cont’d

Ceramic Membranes for Large-Scale Applications
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Technology Background Cont’d
Hydrotalcite (HT) Adsorbents & Co/Mo-Based Sour-Shift Catalysts

Hydrotalcite (HT) Adsorbent:

» HT adsorbent shown to have a working CO, capacity of 3-4 wt.% during past
(HAMR) MSR, WGS reaction studies. Theoretical capacity >16 wt.%.

Co/Mo-Based Sour Shift Catalyst:

» Commercial Co/Mo-based sour shift catalyst has been used in our past and ongoing
lab-scale MR studies with simulated coal-derived and biomass-derived syngas.
Shown to have stable performance for >1000 hr of continuous operation.
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Technology Background Cont’d
Proposed Process Advantages vs. SOTA

Key Innovation:

» Highly-efficient, low-temperature, membrane/adsorptive reactor process for the
water-gas-shift reaction of coal-gasifier syngas for pre-combustion CO, capture

Unique Advantages:

* No syngas pretreatment required: Ceramic membranes proven stable in
past/ongoing studies to all gas contaminants present in coal-derived syngas.

* Improved WGS Efficiency: Enhanced reactor yield and selectivity via
removal of both H, and CO, from the reacting phase.

« Significantly reduced catalyst weight usage requirements: Reaction rate
enhancement (over conventional WGSR), due to removal of both products,
potentially allows one to operate at lower W/F 4 (kg.,/(mol/hr)).

 Efficient H, production, and superior CO, recovery and purity: The
synergy of the MR and AR units makes the simultaneous satisfaction of the
CO, recovery/purity, carbon utilization (CO conversion), and hydrogen
recovery/purity goals, a potential reality.
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Technology Background Cont’d

Key Technical Objectives and Focus

 Prepare and characterize membranes/adsorbents and validate
their performance at the relevant experimental conditions.

e Validate catalyst performance at the relevant pressure
conditions. Verify applicability of global reaction Kinetics.

« Complete construction of lab-scale MR-AR experimental
system and test the individual MR and AR subsystems.

 Develop and experimentally validate mathematical model.

UCLA/USC/M&PT “
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Technical Approach/Project Scope
Proposed MR-AR Process

USC.
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O Potential use of a TSA/PPSA regeneration scheme allows high pressure CO, recovery

0 MR-AR process overcomes limitations of stand-alone systems (WGSR, WGS-MR, WGS-AR)
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Progress and Current Status of Project, Cont’d
Completed Project Tasks

Budget Period 1 (BP1):

Task 1.0 — Project Management and Planning

Task 2.0 — Materials Preparation and Characterization

Task 3.0 — Design and Construction of the Lab-Scale
Experimental System

Task 4.0 — Initial Testing and Modeling of the Lab-Scale
Experimental System

12
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Progress and Current Status of Project, Cont’d
Current Project Tasks

Budget Period 2 (BP2):

Task 5.0 - Integrated Testing and Modeling of the Lab-Scale
Experimental System.

Task 6.0 - Preliminary Process Design/Optimization and
Economic Evaluation.

13
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Technical Approach/Project Scope, Cont’d
Milestone Log

Budget o Plannefj Actua! o
Period ID Task Description Completion Completion Verification Method
Date Date
1 a 1 Updated PMP submitted 10/31/2015 10/29/2015 PMP document
1 b 1 Kick-off meeting convened 121312015 | 11/16/2015 | | resentation file/report
documents
Construction of the lab-scale MR-AR Description and
1 c 3 experimental system (designed for pressures up 3/31/2016 3/31/2016 | photographs provided in
to 25 bar) completed the quarterly report
Preparation/characterization of the CMS
1 q » mempranes at the anticipated process 6/30/2016 6/30/2016 Results reported in the
conditions (up to 300°C and 25 bar total quarterly report
pressure) completed
Preparation/characterization of the HT-based
adsorbents at the anticipated process conditions
(300-450°C and up to 25 bar total pressure)
completed. Adsorbent working capacity, .
1 e 2 adsorption/desorption kinetics determined. 12/31/2016 12/31/2016 Results reported in the
Global rate expression for Co/Mo-based sour quarterly report
shift catalysts at the anticipated process
conditions (up to 300°C and 25 bar total
pressure) generated

14
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Technical Approach/Project Scope, Cont’
Milestone Log

g

Budget . Plannefj Actua! e
Period ID Task Description Completion Completion Verification Method
Date Date
MR subsystem testing and reporting of key
parameters (permeance, selectivity, catalyst .
1 f 4 weight, temperature, pressures, residence time, 3/31/2017 3/31/2017 Results reported in the
. . quarterly report
CO conversion, effluent stream compositions,
etc.) completed
AR subsystem testing and reporting of key
parameters (adsorbent and catalyst weight,
g 4 tempe_ratures, pressur(_es, re3|der-1ce time, 3/31/2017 3/31/2017 Results reported in the
1 desorption mode, working capacity, energy quarterly report
demand, effluent stream compositions, etc.)
completed
Mathematical model modifications to simulate
1 h 4 the-: hybrid MR-AR process and validate model 3/31/2017 3/31/2017 Results reported in the
using experimental MR and AR subsystem test quarterly report
results completed
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Technical Approach/Project Scope, Cont’d
Milestone Log

¢ USC [

Budget Planned Actual
Period ID Task Description Completion Completion Verification Method
Date Date
Parametric testing of the integrated, lab-scale
: 5 MR-AR system and identification of optimal 9/30/2017 Results reported in the
2 operating conditions for long-term testing quarterly report
completed
Short-term (24 hr for initial screening) and
long-term (>100 hr) hydrothermal and 3/31/2018 Results reported in the
2 J 5 chemical stability (e.g., NH;, H,S, H,0, etc.) quarterly report
materials evaluations at the anticipated
process conditions completed
5 K 5 Integrated system modeling and data analysis 3/31/2018 Results reported in the
completed quarterly report
Materials optimization with respect to
membrane permeance/selectivity and
) | 5 adsorbent working capacity at the anticipated 6/30/2018 Results reported in the
process conditions (up to 300°C for quarterly report
membranes and 300-450°C for adsorbents, and
up to 25 bar total pressure) completed
UCLA | :[op UCLA/USC/M&PT
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Technical Approach/Project Scope, Cont’d

Milestone Log

Budget Planned Actual
Period ID Task Description Completion Completion Verification Method
Date Date
Operation of the integrated lab-scale MR-AR
» m 5 system for at Ie'ajst 500 hr at the optlma}l 6/30/2018 Results reported in the
operating conditions to evaluate material quarterly report
stability and process operability completed
Preliminary process design and optimization .
. . Results reported in
2 n 6 based on integrated MR-AR experimental 9/30/2018 . P
Final Report
results completed
o 6 Initial te(':r)n'lcal and e.conomlc feasibility study 9/30/2018 R-esults reported in
2 and sensitivity analysis completed Final Report
1,2 QR 1 Quarterly report Each quarter Quarterly Report files
2 FR 1 Draft Final report 10/31/2018 Draft Final Report file
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Progress and Current Status of Project
Materials Preparation and Characterization

Performance Assessment

Project Targets for CMS Membranes
H, permeance at > 550 GPU ; H,/CO at = 80 to 100

Performance of Selected CMS Membranes at 250°C

Part ID He Nz H2 COz 2/N2 z/CO 2/C02
[GPU] [GPU] [GPU] [GPU] [] []

HMR-41(10”) 121-126

HMR-44(10") 645 4.2 722 11.3 172 143-150 64

HMR-45(10”) 366 0.85 400 3.2 471 392-410 126*

HMR-46(10") 684 4.7 - 12.0

HMR-52(10") 556 3.8 539 14.3 148 123-129 38

HMR-39(10” 381 4.4 - - 86 72-75

HMR-47(10”) 846 45 819 4.9 179  149-156 167*

HMR-49(10”) 434 1.7 427 8.3 249  207-216 51

HMR-48(10”) 418 4.4 451 6.8 102 85-89 68

HMR-42(10") 368 1.0 364 0.7 361  301-314 540% 18
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Progress and Current Status of Project, Cont’d
Materials Preparation and Characterization

700 280
600 - 240
> 500 - 200
S 2
8 400 - 160 .2
5 2
£ ©
S 300 120 @
& z
(5} ) <5
T 200 I g0 T
|
100 1 - 40
|
0 : 0
0 10 20 30 40
Run Time [Days] 19




USC.

Excess sorption (wt%/q)
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Progress and Current Status of Project, Cont’d
Materials Preparation and Characterization
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Progress and Current Status of Project, Cont’d
Materials Preparation and Characterization

Global Reaction Kinetics- Empirical Model and Comparison with Microkinetc Models

[z _ 57 240 D c .d
g 60 —Teo= Ae RT PcoPH,0Pco,PH, (1 _ ,3)
S 50
QO 40
O 4577.8
% 30 g = 1 (PCOZ-PHZ) Keq = exp( — 4,33)
©
=2 Keq (Pco - Pryo )
» 10
0
0 20 40 60 80
Measured CO conversion Root-Mean-Square Deviation (RMSD)
A[mol/(atm(@tbtctd) . h . g)] 18957 Direct oxidation 3.38
E [J/mol] 58074 Associative 5.12
a 4 Formate intermediate 8.04
b -1.46 Empirical model 3.32
Cc 0.13
d 1.44 21
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Progress and Current Status of Project, Cont’d
Design and Construction of the Lab-Scale MR-AR System.
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Progress and Current Status of Project, Cont d
Design and Construction of Lab-Scale Experimental System
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Progress and Current Status of Project, Cont’d
MR Sub-System Operation Testing

MR Perfomance — Membrane HMR-52 (10”)

Reactor pressure = 14.5 bar, Reactor temperature
= 250°C, H,0:C0O=1.1
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MR Perfomance — Membrane HMR-52 (10”)

Reactor pressure = 14.5 bar, Reactor
temperature = 250°C, H,0:C0O=1.1
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Progress and Current Status of Project, Cont’d
AR Sub-System Operation Testing

Empty Reactor Dynamics Blank Experiments Using onl
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Progress and Current Status of Project, Cont’d
AR Sub-System Operation Testing

CO, Breakthrough Experiments
Reactor pressure =5, 10, 15, 20, 25 bar, Oven

temperature = 400°C, Flow rate=500 sccm

CO, Breakthrough Experiments

Reactor pressure = 25 bar, Oven temperature =
400°C, Flow rate=500 sccm
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Progress and Current Status of Project, Cont’d
AR Sub-System Operation Testing

€O,/ H,0 Breakthrough Experiments CO,/ H,S Breakthrough Experiments
Reactor pressure = 25 bar, Oven temperature = Reactor pressure = 25 bar, Oven temperature =

300°C, Total flow rate=500 sccm, Various steam 300°C, Total flow rate=500 sccm, H,S
concentration (0, 10, 20, 40 vol.%) concentration (0, 1000 ppm)
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Progress and Current Status of Project, Cont’d
Membrane Reactor (MR) and Multi-scale Modeling Approach

Membrane Reactor Depiction Multi-scale Modeling Approach
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Advantages:

* In-situ removal of H, significantly enhances CO conversion and H, purity.

» Eliminates the need for excess steam in the reaction.

* Minimizes the need for downstream hydrogen purification.

* Reduces the amount of catalyst for a desired conversion level.

« Operates at lower reaction temperatures, reduces material costs, and increases operation safety. 28
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Progress and Current Status of Project, Cont’d

Adsorptive Reactor (AR) and Multi-scale Modeling Approach
Multi-scale Modeling Approach

Adsorptive Reactor Depiction

® Catalyst Pellet
o Adsorbent Pellet

Catalysis z b Adsorbent

Pellet Pellet
Advantages:

» In-situ removal of CO, significantly enhance CO conversion and CO, purity.

z
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(C. surface,
(Tr)surface

Multi-scale communication

r

Catalysis pellet domain T
(1D+1D)

z=0

» Eliminates the need for excess steam in the reaction.

* Minimizes the need for downstream CO, purification.

* Reduces the amount of catalyst for a desired conversion level.
» Operates at lower reaction temperatures, reduces material costs, and increases operation safety.
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Progress and Current Status of Project, Cont’d
Multi-scale MR/AR Model: Catalyst/Adsorbent Pellet-scale

_ steady — state if MR
Operation = _
dynamic if AR
: C catalyst pellet if MR
Domalin o = _
c/a catalyst/adsorbent pellet if AR

e Component mass conservation
e Energy conservation

 Diffusion Flux (Dusty Gas Model) DGM

30




Progress and Current Status of Project, Cont’d
Multi-scale MR/AR Model: Reactor-scale, Reaction-domain

. steady — state If MR
Operation = .
dynamic if AR
C catalyst pellet if MR |
Domain ¢ =<c/a catalyst/adsorbent pellet if AR}
r reaction zone if MR/ AR

e Component mass conservation
* Energy conservation
 Momentum conservation (Ergun Equation)

 Diffusion Flux (Stefan-Maxwell Model) SMM

UCLA[ESE. | = uciausomert B
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Progress and Current Status of Project, Cont’d
Multi-scale MR Model: Reactor-scale, Permeation Zone

Operation = {steady — state (MR)]

_ r reaction zone
Domain « =

per permeation zone

e Component mass conservation
e Energy conservation

 Momentum conservation

UCLADRE UCLA/USC/M&PT
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Progress and Current Status of Project, Cont’d

Pseudo-homogeneous AR Model: Reactor-scale

Operation = {dynamic (AR)]

Domain ¢ ={r  reaction zone}

e Component mass conservation
e Energy conservation

 Momentum conservation

UCLA/USC/M&PT
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Progress and Current Status of Project, Cont’d
Membrane Reactor Model Experimental Validation

100

7'4 " 7"""

60

40

CO conversion %

20

20 70 120 170
Weight of catalyst / Molar flow rate of CO

Empirical model

70 120 170

Weight of catalyst / Molar flow rate of CO

Empirical model

Multi-scale = = = Equilibrium conversion

Multi-scale = = = Equilibrium conversion

Conversion vs. W/F, for MR (feed pressure 14.1 bar, ~ Conversion vs. W/F, for MR (feed pressure 14.1 bar,
reactor temperature 300°C, sweep ratio = 0.1). reactor temperature 300°C, sweep ratio = 0.3).
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Adsorptive Separator (AS) Model Experlmental Validation

Langmuir 15 bar
Langmur 5 bar 7
20/ 70
F » g 50
é a5 '-% 45
% an % 40
g 30 lg 30
§ é 25
20 20 -
. A0 ——— Experiment
5 = Model (k=0.0051 [1/s])
o 100 200 00 400 500 “:20[5} 700 200 200 1000 1100 120 o 200 400 600 soqﬁmEtleooo 1200 14‘00 1600 180¢C
CO, outlet concentration at the exit of the adsorber CO, outlet concentration at the exit of the adsorber
(Experiment vs. Simulation). Temp.= 523.15 K, Pressure =5 bar. (Experiment vs. Simulation). Temp.= 523.15 K, Pressure = 15 bar.
Langmuir 25 bar
65
60 |
55 |
2 50 |
CO, outlet concentration at the exit ~ § =
of the adsorber g
- . . L 35
(Experiment vs. Simulation). -
Temp.= 523.15 K, Pressure =25 bar. & =
15}
104 —— Experiment
L —— Model (k=0.0051 [1/s])

l(JDO IIDD 1400 lGDO 180C
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Progress and Current Status of Project, Cont’d
Adsorptive Reactor (AR) Model Experimental Validation

5 bar, 523.15 K 5 bar, 523.15 K

1.7
16
15
14
13
12
11}

09

F_CO2 /| F_CO

08
0.7 -
0.6 |
05 [
04
03

—— Simulation | 0.2 — Simulation |
Experiment 01+ — Experiment | |

L 4 1 " 1 ’e L i 4 4 L ] e
100 200 300 400 500 600 700 800 200 1000 1100 120C 0 100 200 300 400 300 600 700 800 900 1000 1100 120C
Time (s) Time (s)

Molar ratio of H,/CO at the AR outlet.

(Experiment vs. Simulation). (Experiment vs Simulation).

Molar ratio of CO,/CO at the AR outlet.
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Progress and Current Status of Project, Cont’d
Membrane Reactor/Adsorptive Reactor Process

[ | O Quartz Pellet
|| || ll ® Cotalyst Pellet
[
\.\ /| wriz O Adsorbent Pellet
z
J Reaction Zone ® Catalyst Pellet

PR CO+ HO =200+ H
f’_'T. ) LTy ' 'P_,. .a ‘ Sweep, Hz
— Y .mjl-c s | o L.
[ . o - 3
(1 ()
L"l. el .L_?IL».| | “(‘r:.“)“"' Sweep, Hz

Sweep |II
"8 S e | | | if-tdl-lurn e
Owﬁ‘t 5,

\ 't)()()

swgep Hz

Pellet

Adsorbent

Pellet

Catalysis
Pellet

Combined MR + AR System
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Progress and Current Status of Project, Cont’d
Membrane Reactor/Adsorptive Reactor Process

3/ Wmsedels Carbon Depleted Syngas

ix
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Progress and Current Status of Project, Cont’d
Membrane Reactor/Adsorptive Reactor Process
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Progress and Current Status of Project, Cont’d
Proposed Process Scheme — UNISIM Implementation

we Po, e
Membrane Reactor - - Cimereasee
o e
‘_ﬁﬁ" - Turb-out
,.;m - uml'}:hml B2-hesber F'I:FJ'IV Lol
Prody Product
co2
c83  E-100
: —— )l
i ——— ] S'nglt
100 1 N Stage
1 e e _-T;-l:lul
Adsorptive Reactor = s
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Progress and Current Status of Project, Cont’d
Membrane Reactor Components

Membrane Reactors are composed of several components
« Ceramic membrane tubes
» Bundles typically containing 85-100 ceramic membrane tubes
* Pressure Vessel typically containing 1500-3000 bundles

Bundle

Ceramic Tube

Pressure Vessel

. T ™S N
s . — .
. \‘ :
-
\ - -i.‘
> .




Progress and Current Status of Project, Cont’d
Membrane Reactor Operating Modes

« Membrane tube inner/outer flow pattern
e Countercurrent
e Co-current
« Bundle configuration in Pressure Vessels
e Bundles in series
 Bundles in parallel
 Bundles networked

Membrane Reactor Operating Mode Used in TEA:
« Membrane tubes are operated countercurrently
e Bundles are configured in 300 parallel bundle series,
each of which consists of 6 bundles

UCLARSE | uvoiausomser
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Progress and Current Status of Project, Cont’d
Membrane Reactor Vessel: Configuration 1

A
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Progress and Current Status of Project, Cont’d
Membrane Reactor Vessel: Configuration 2

DN z MR-1

———

/ MR-1800
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Progress and Current Status of Project, Cont’d
Preliminary Technical-Economic Analysis (TEA) for MR-AR Technology
(NETL Case Study)

Shell IGCC w/o CCS - 1-Stage Selexol

Shell IGCC w/ CCS- 2 Stage Selexol 543 90
MR-AR IGCC Plant 566 93.5

45
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Progress and Current Status of Project, Cont’d
Preliminary Technical-Economic Analysis (TEA) for MR-AR Technology
(NETL Case Study)

_ Catalyst Amount (ft3) Adsorbent (kg) Water Input (kmol/hr)
0 (no excess water need be
MR-AR Combined System 98% 2,800 3830,000
inputted)

IGCC WGS Reactor 97% 6,200 0 7,200

% CO
_ % H, Purity % H, Recovery % CO, Purity % CO, Recovery
Conversion
Target >95 >95 >90 >95 >90
MR-AR Realization 98.2 95.6 99 99.7 93.5
UCLALSIOR . ¢ UCLA/USC/M&PT ,,
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Progress and Current Status of Project, Cont’d
MR-AR Process Advantages

Simultaneous CO conversion and H, and CO, separation
MR-AR Compression Work: <20% of IGCC w/ CCS compression work
Catalyst Amount: <50% of IGCC w/ CCS catalyst amount

High Purity Hydrogen Produced: 95.6% Hydrogen Purity

UCLA/USC/M&PT
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Progress and Current Status of Project, Cont’d
Summary of Technical Accomplishments To Date

» Completed the construction of the lab-scale MR-AR experimental system.

» Prepared and characterized CMS membranes at the anticipated process
conditions.

» Prepared and characterized adsorbents at the anticipated process
conditions, and generated global rate expressions for the catalyst.

 Began testing of the individual MR and AR subsystems.

» Developed mathematical models and began validating their ability to fit
the experimental data.
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Progress and Current Status of Project, Cont’d

_ Future Plans
Budget Period 2 (BP2):

Task 5.0 - Integrated Testing and Modeling of the Lab-Scale Experimental
System. ----- M&PT, USC

Subtask 5.1 - Materials Optimization and Scale-up.

Subtask 5.2 - Integrated Testing.
Subtask 5.3 - Model Simulations and Data Analysis.

Task 6.0 - Preliminary Process Design/Optimization and Economic
Evaluation. ----- UCLA, M&PT, USC

Subtask 6.1 - Process Design/Optimization.
Subtask 6.2 - Sensitivity Analysis.

49
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