

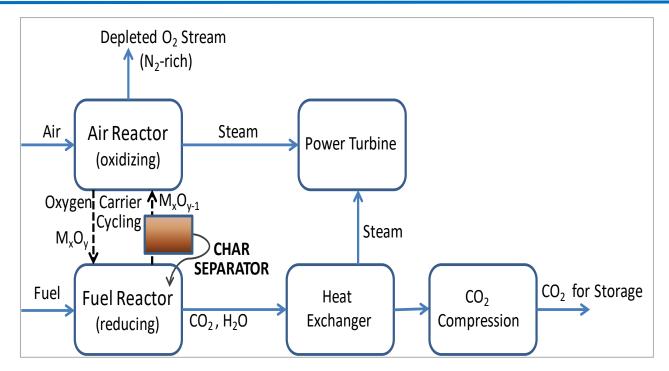
Low-Cost and Recyclable Oxygen Carrier and Novel Process for Chemical Looping Combustion

DOE Kick-off Meeting February 13, 2018

University of North Dakota

Envergex LLC

Barr Engineering

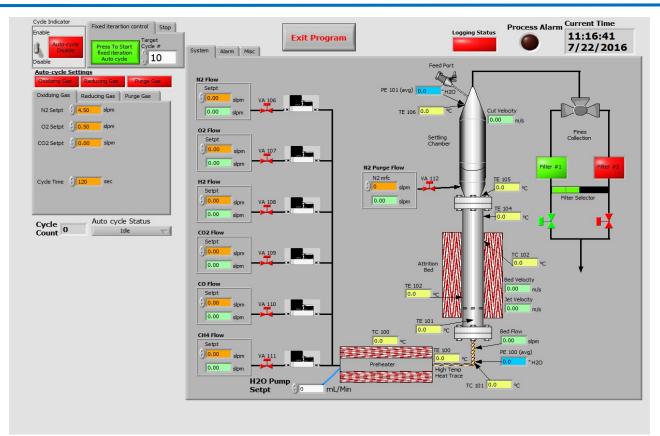

Microbeam Technologies, Inc

Carbontec Energy Corporation

Presentation Overview

- Brief Background on chemical looping combustion (CLC)
- Background on existing CLC projects at UND/Envergex
- Project Goals and Objectives
- Technical Approach
- Scope of Work
- Schedule and Deliverables
- Budget
- Project Management
- Questions/Discussion

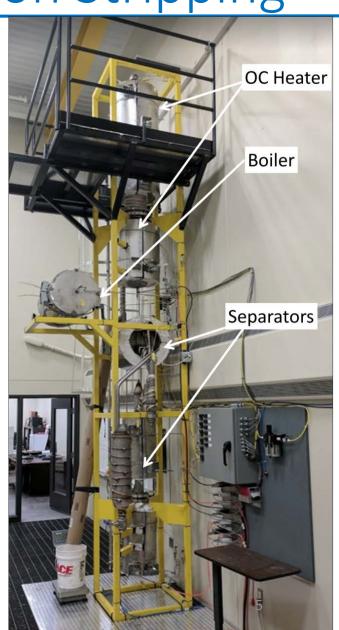
Background on CLC


KEY ADVANTAGES OF CLC:

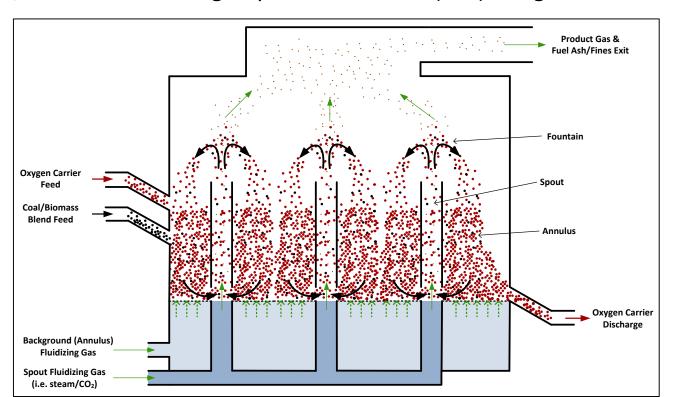
- In-situ CO₂ capture decreased cost compared to plants with post-combustion systems
- Oxygen for fuel provided by metal oxide no separate oxygen separation needed

KEY CHALLENGES FOR CLC:

- Oxygen carrier (OC) replacement costs physical attrition, loss of reactivity, agglomeration
- Fuel conversion solid carbon carryover to oxidizer, oxygen demand in reducer exhaust


Existing Projects – OC Characterization

- Developed novel equipment and test methodology to quickly evaluate attrition and reactivity characteristics of OCs for CLC
- Goal to identify OCs with maximum lifetime and ability to ensure high/complete fuel conversion
- Developed large knowledge database

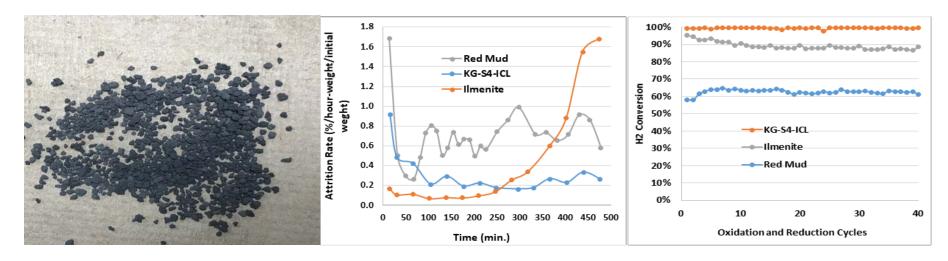

Existing Projects – Carbon Stripping

- In traditional reducer designs, unreacted char results in carbon slip to oxidizer and significant decrease in carbon capture efficiency
- Carbon stripping is likely a necessary component of the CLC process
- But a significant technical challenge
- OC attrition results in size fraction that cannot be separated from carbon by simple elutriation
- Envergex/UND PCS technology is a staged process with multiple separation mechanisms that overcomes this challenge (among others)

Existing Projects – Reducer Design

- The reducer must provide the following:
 - Sufficient OC/fuel contact time
 - Sufficient OC/reduced gas contact time
 - Operational robustness and flexibility
 - Scalability
 - Ability to provide good solids mixing and circulate solids effectively with low pressure drop
- Envergex/UND are evaluating a spouted fluid bed (SFB) design for the CLC reducer

Project Goals and Objectives


<u>Overall Goal</u>: Demonstrate transformational technology that overcomes two key CLC technology gaps:

- high cost of OC replacement/loss
- incomplete fuel conversion, resulting in reduced CO₂ capture efficiency and an oxygen demand downstream of the CLC reducer reactor.

Specific Objectives:

- Demonstrate novel OC manufacturing platform: high performance of "engineered"
 OCs, but with cost structure of natural ores
- Demonstrate economic recyclability of OC fines
- Identify OC phase transformations and interactions with coal impurities that could impact OC/process performance and OC recyclability; identify mitigation strategies
- Test a novel combination of CLC components at the 10 kW_{th}-scale
 - OC, SFB Reducer, PCS Carbon Stripper, Novel Process Configuration
- Perform economic assessment to demonstrate progress towards DOE cost of CO₂ capture and cost of electricity targets.

Technical Approach – Overall Process

- Use unique hydrodynamics available with the SFB reducer design
 - > Thermodynamics limits combination of fuel gas conversion and deep OC reduction
 - > Counter-current operation of the annulus in the SFB can help to overcome this limit
 - \triangleright Goal to cycle between Fe₂O₃ and FeO \rightarrow 1/3 circulating load compared to Fe₂O₃ to Fe₃O₄
- Incorporate the PCS carbon stripper technology
- Goal: 90% CO₂ capture with no/minimal reducer exhaust oxygen demand
- Unique oxygen carrier composition and manufacturing platform
 - ➤ Main component enriched iron oxide powder: abundant and low-cost domestic production
 - > Blending in a small proportion of low-cost additives to avoid agglomeration tendency of pure iron oxide
 - > Low-cost manufacturing that is compatible with simple reformulation/recycle of OC fines caused by attrition

Scope of Work

- Task 1 Project Management and Planning
- Task 2 Laboratory-scale OC Manufacturing & Assessment
- Task 3 Modeling and Laboratory-scale Evaluation of OC Performance with Coal
- Task 4 − 10 kW_{th} Integrated System Installation
- Task 5 Scaled-up OC Manufacturing
- Task 6 10 kW_{th} Testing
- Task 7 Process Design and Techno-Economic Analysis

Task 2 Overview

Subtask 2.1 – OC Manufacturing

- ~40 unique OC formulations
- Composition, binder loading, particle size, granulation method, curing

Subtask 2.2 – OC Characterization and Performance Testing

- Determine physical/chemical characteristics before/after exposure to CLC tests
- Perform CLC testing: reducing gas conversions, impact of sulfur, attrition, agglomeration
- Parameters to include: temperature, gas/solid contact time, reducing gas composition, jet velocity
- Down-select to 2 OCs based on testing

Subtask 2.3 – Longer-term Operation and Recyclability Evaluation

- ~500 redox cycles; evaluate performance and OC characteristics as fn(t)
- Collect fines generated and perform multiple reformulations; evaluate CLC performance/characteristics compared to fresh OC and as function of reformulation number

Task 3 Overview

Subtask 3.1 – Fluidized Bed Testing with Coal

- Use coal as reductant instead of reducing gases
- Parametric and longer-term testing
- Down-select to 1 OC formulation

Subtask 3.2 – Experimental Evaluation of OC/Coal Ash Interactions

- TGA-DSC: Identify zones of phase transformations/reactions of OC/coal ash; characterization to determine OC transformations
- Temperature, contact time, gas phase composition, ash type/composition

Subtask 3.3 – Thermochemical Equilibrium Modeling

- HSC Chemistry 9.0: model reactions of OC with coal ash
- Investigate agglomeration potential using viscosity models
- Develop mitigation strategies to minimize detrimental impacts

Subtask 3.4 – OC Fines Separation and Recyclability

Tests to identify impact of coal impurities on OC recyclability

Tasks 4-6 Overview

Task 4 – 10 kW_{th} System Installation

- Leverage existing and to-be-constructed equipment from existing projects
- SFB reducer, PCS carbon stripper, Novel process configuration
- Circulating CLC system

Task 5 – Scaled-up OC Manufacturing

- ~1000 kg of down-selected OC formulation
- Evaluate physical/chemical characteristics to compare to lab quantities

Task 6 – 10 kW_{th} Testing

- Reducer/oxidizer temperature, OC residence time
- Reducer coal/char residence time
- OC/Coal ratio
- ~100 hours of testing at optimized conditions for two coal types

Task 7 Overview

Task 7 – Process Design and Techno-Economic Assessment

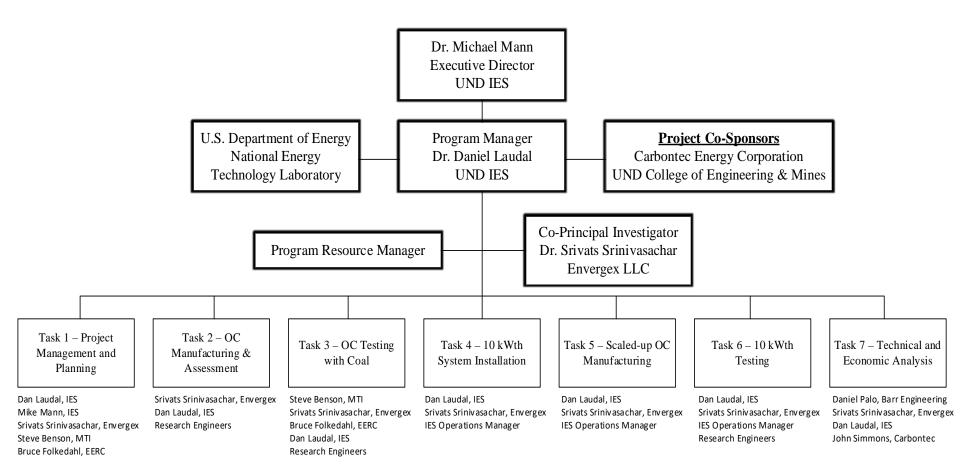
- Benchmark: NETL's Reference Plant Designs and Sensitivity Studies (Stevens et al 2014)
- Process modeling using Aspen Plus®
- Determine economic metrics
- Led by qualified 3rd party A&E Firm Barr Engineering Company

Stevens, R. et al., 2014: "Guidance for NETL's Oxy-combustion R&D Program: Chemical Looping Combustion Reference Plant Designs and Sensitivity Studies," DOE-NETL Report 2014/1643

Project Schedule

		Ι		2018									2019								2020								
Task/Subtask/Milestone Description	Start Date	End	12	1	2 3	4	5 6	7	8 9 1	0 11	12	1	2	3 4	4 5	6	7	8	9 10	11	12	1	2 3	4	5 (6 7	8	9 10 1	11
		Date		Budget Period 1 Budget Period 2							•		Budget Period 3																
Task 1 - Project Management & Planning	12/01/17	11/30/20																											E
Milestones/Deliverables Update Project Management Plan Kickoff Meeting Quarterly Report Final Technical Report		12/31/17 12/31/17 Quarterly 11/30/20	٥	•		٥		•		0		٥		(o		٥		0			٥		٥		٥		٥	0
Task 2 - Lab-scale OC Manufacturing & Assessment	12/01/17	11/30/18																											П
Subtask 2.1 - OC Manufacturing	12/01/17	08/31/18																											
Subtask 2.2 - OC Characterization and Testing	12/01/17	08/31/18																											
Subtask 2.3 - Long-term Cyclic Testing and Recyclability Evaluation	09/01/18	11/30/18																											
Milestones/Deliverables Down-selection to about two OC types		08/31/18)																				
Task 3 - Modeling and Laboratory-scale Evaluation of OC Performance with Coal	12/01/18	10/31/19																											
Subtask 3.1 - Fluidized Bed Testing	12/01/18	04/30/19																											
Subtask 3.2 - TGA Testing	04/01/19	06/30/19																											
Subtask 3.3 - Thermodynamic Modeling	06/01/19	07/31/19																											
Subtask 3.4 - OC Fines Separation and Recylability	05/01/19	08/31/19																											
Milestones/Deliverables Down-selection to at least one OC type OC Characterization and Testing Summary Report		04/30/19 11/30/19												•	0					٥									
Task 4 - 10 kWth Integrated System Installation	04/01/19	11/30/19																											
Milestones/Deliverables System Design Package Report System Commissioning		05/31/19 11/30/19													٥					٥									
Task 5 - Scaled-up OC Manufacturing	05/01/19	08/31/19																											
Task 6 - 10 kWth Testing	12/01/19	08/31/20																											
Milestones/Deliverables 10 kWth Testing Summary Report		09/30/20																										•	
Task 7 - Process Design and Technical and Economic Analysis	08/01/20	11/30/20																		T									4
Milestones/Deliverables Technical and Economic Analysis Report		11/30/20																											0

Milestones & Deliverables


Budget Period	ID	Task Number	Description	Planned Completion End of month	Actual Completion Date	Verification Method
1	D1	1	Update PMP	12/31/17	02/21/18	PMP File
1	а	1	Kick-off meeting	12/31/17	02/13/18	Web-Ex
1	b	2	Down-selection to about two OC types	08/31/18		Quarterly Report
1	С	3	Down-selection to at least one OC type	04/30/19		Quarterly Report
2	D2	4	10 kW _{th} System Design Package Report	05/31/19		Report File
1	D3	3	OC Characterization and Testing Summary Report	11/30/19		Report File
2	d	4	10 kW _{th} Commissioning	11/30/19		Quarterly Report
3	D4	6	10 kW _{th} Testing Report	09/30/20		Report File
3	D5	7	Techno-Economic Analysis Report	11/30/20		Report File
3	D6	1	Final Technical Report	11/30/20		Report File

Project Budget

Recipient Organization	DOE Funds	Non-Federal Cost Share	Total			
University of North Dakota	1,035,000	250,000	1,285,000			
Envergex LLC	375,000	0	375,000			
Barr Engineering	90,000	0	90,000			
Carbontec (in-kind cost share)	0	125,000	125,000			
Total (\$)	1,500,000	375,000	1,875,000			

Note: Request pending to add Microbeam as new subcontractor

Project Management

Note: Request pending to add Microbeam as new subcontractor

Questions/Discussion

Dr. Daniel Laudal
Institute for Energy Studies
University of North Dakota
daniel.laudal@engr.und.edu
701-777-3456

Dr. Srivats Srinivasachar
Envergex LLC
srivats.srinivasachar@envergex.com
508-347-2933

Dr. Steve Benson
Microbeam Technologies, Inc
sbenson@microbeam.com
701-213-7070