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• Find out how much the stored CO2 is there, and 
quantify the uncertainty. 10 million ton 
plus/minus 50%, or plus/minus 5%?

3

Background



Major Challenges
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• Sparse time-lapse data
e.g. Cranfield 4Dseismic
Baseline: 2007
Repeat: 2010

• Lack of estimated physical 
properties of CO2 plume

• Lack of a quantitative 
estimation of plume 
uncertainty



Proposed solutions
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• Sparse time-lapse data
(Nearly) Continuously monitoring 
 temporal (Daley et al., 2007) 
 spatial resolution



Proposed solutions
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Zhu et al., JGR, 2017

• Sparse time-lapse data
Continuous monitoring

• Lack of estimated physical 
properties of CO2 plume
Time-lapse full waveform 
inversion of Vel. & Q with data 
assimilation
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• Sparse time-lapse data
Continuous monitoring

• Lack of estimated physical 
properties of CO2 plume
Time-lapse full waveform inversion 
of Vel. & Q with data assimilation

• Lack of a quantitative estimation 
of plume uncertainty
Bayesian inversion framework, data 
assimilation

Proposed solutions
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Project Overview:  
Goals and Objectives

• develop methodologies for fast seismic full waveform 
inversion of CASSM datasets for simultaneously 
estimating velocity and attenuation, and with data 
assimilation; (Tasks 2 & 3)

• develop joint Bayesian petrophysical inversion of seismic 
models and pressure data for providing and updating 
CO2 saturation models; (Tasks 4)

• demonstrate the methods using multiple datasets
including (surface and borehole) synthetic, laboratory, 
and field CASSM datasets. (Tasks 5 & 6)
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Technical status

• develop methodologies for fast seismic full waveform 
inversion of CASSM datasets for simultaneously 
estimating velocity and attenuation, and with data 
assimilation; (Tasks 2 & 3)
– Tasks 2.1

• develop joint Bayesian petrophysical inversion of seismic 
models and pressure data for providing and updating 
CO2 saturation models; (Tasks 4)

• demonstrate the methods using multiple datasets 
including (surface and borehole) synthetic, laboratory, 
and field CASSM datasets. (Tasks 5 & 6)



Why attenuation?
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Pride et al. 2003

Daley et al. 2007

Field observations at Frio

Theoretical predictions
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Basis of current full waveform 
inversion technique
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But, reality…...
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Task 2

• Find a suitable wave equation
– model wave propagation with attenuation
– Facilitate inverse wave propagation
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Seismic attenuation modeling by a 
viscoacoustic wave equation
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Dispersion Loss

Zhu and Harris (2014) Geophysics

Attenuation
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Attenuation compensation
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1D inversion example
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To find a better efficient solver 
(subtask 2.1)

Dispersion Loss

Zhu and Harris (2014) Geophysics

Difficulty!!! because of spatial variable

Gas: low Q(x,y,z)

Dry rock: high Q(x,y,z)



To find a better efficient solver 
(subtask 2.1)
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Zhu and Harris (2014) Geophysics

Dispersion Loss

Difficulty!!! because of spatial variable
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Dispersion Loss



Accuracy tests

Phase Velocity Loss Coefficient
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Xing and Zhu (2018) SEG abstract



Wavefield snapshot
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Xing and Zhu (2018) SEG abstract
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Wavefield snapshot



Accomplishments to Date
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Task 2.0
• Development of a simple formulation of time-domain 

viscoacoustic wave equation 
• Building the numerical scheme and numerical code of solving 

the new wave equation
• Accuracy tests

Task 4.0
• The development of Frio flow models was initiated.  A Frio flow 

model using the CMG simulator is being developed from the 
existing LBNL flow model which uses the TOUGH2 simulator. 



Synergy Opportunities

• develop methodologies for fast seismic full waveform 
inversion of continuous active source seismic monitoring, 
(CASSM) datasets;  ---- DAS data (collab. with DAS projects)

• develop joint Bayesian petrophysical inversion of seismic 
models and pressure data for providing and updating CO2
saturation models; --- joint inversion framework (collab. with 
joint-inversion of (EM, acoustic etc.) projects)
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Project Summary
• Key findings:
• Build our seismic modeling with attenuation code (Task 2.1)

– A simple formulation of time-domain viscoacoustic wave equation 
– The numerical scheme and numerical code of solving the new wave 

equation
– Accuracy tests
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Next Step

• Subtask 2.2 – Theoretical development of joint full 
waveform inversion (FWI): 

25

Joint FWI

Seismic 
Velocity

Seismic 
Attenuation

The two-step studies include: (1) Use of Q
tomography for processing data and 
estimating an initial Q model for the FWI 
input; and (2) Development of the joint 
FWI. 
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Dispersion-dominant Loss-dominant
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Appendix
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Benefit to the Program 
• This project is closely related to Program’s goal of 

developing and validating methodologies and
technologies to measure and account for 99 percent 
of injected CO2 in the injection zones.

• The proposed methodology will enable us to delineate 
the CO2 plume boundaries with great confidence, 
addressing FOA goals including “…detect stored CO2
and assess the CO2 plume boundaries over time 
within the target reservoir…”
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Benefit to the Program 
• The integrated inversion results from the Bayesian 

approach can give the estimate realizations of CO2
saturation models but also can quantify the limits of 
detection and thresholds of uncertainty, directly 
addresses FOA requesting “…quantify the limits of 
detection and thresholds of uncertainty… methods 
should take into account the qualities of fluids (i.e., 
CO2 saturation, composition, etc.)”.

• “Real-time” ability to delineate CO2 plume boundaries 
and quantifying CO2 saturation using seismic CASSM 
and pressure data should allow DOE’s investment in 
future monitoring systems that eliminate the expensive 
and personnel-intensive effort of independent inversions.
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All Tasks 
Tasks 2 & 3, &6Task 4.1

Leading task 4 Leading task 5 Help on Frio and 
CASSM systemsTask 4.2

Organization 
Chart
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Gantt Chart
Budget Period 1 Budget Period 2

Task Description Year 1 Year 2 Year 3 Year 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 Update project management plan

2 Joint FWI for Vp and Qp

2.1  Derivation of viscoacoustic equation

2.2  Theoretical development

2.3  Validation tests *
3 Time-lapse FWI with data assimilation

3.1  Data assimilation

3.2  Validation tests *
4 Bayesian inversion technique

4.1  Reservoir modeling

4.2 Pressure inversion

4.3  Bayesian inversion framework *
5 Lab experiments

5.1  Experimental design and fabrication

5.2  Experimental acquisition

5.3  Data processing and analysis

6 Demonstration

6.1 Laboratory data

6.2  Field data

7 Synthesis of results
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