

#### **Presentation Outline**

SOUTHERN

- Project Overview
- Technology Description and Background
- Technical Approach
- Techno-economic Results
- Summary and Path Forward



# **Project Overview**

# **Project Scope**

- Develop viable heat integration methods for CCS
   Integrate a waste heat recovery technology terms
- Integrate a waste heat recovery technology termed Mitsubishi High Efficiency System (HES) into an existing amine-based CO<sub>2</sub> capture process and host coal unit
- Evaluate improvements in the energy performance and emissions profile of the integrated plant

#### Work Plan

- A 25-MW High Efficiency System will be designed and installed to operate for 12 months in conjunction with the existing 25-MW MHI KM-CDR CCS pilot process at Southern Company's Plant Barry.
- Waste heat in flue gas and CO<sub>2</sub> will be recovered to preheat a 25 MW slipstream of boiler condensate in the Plant Barry steam cycle.

SOUTHERN

 A 0.5 MW pilot ESP will be installed to test the tangential benefits of HES.



#### Goals

- SOUTHERN COMPANY
- Quantify energy efficiency improvements to the integrated process.
- Identify and resolve operational and control problems of the integrated plant.
- Assess the flue gas cooler long term deployment in an acid mist environment.
- Quantify the tangential benefits of the HES technology
  - Improved ESP performance
  - SO<sub>3</sub> concentration reduced in existing systems
  - Reduced solvent consumption by reducing impurity load to the CO<sub>2</sub> capture process island
  - Reduced water consumption in FGD due to lower flue gas temperature at the inlet

#### Relevance of Work

- Typical steam systems extract a significant amount of steam from the turbines to preheat boiler feed water
- Heat integration system between boiler and CO<sub>2</sub> plant will reduce LCOE by minimizing the amount of steam extracted for reheating condensate and reduce steam to the CCS plant
- Trace metals and SO<sub>3</sub> in flue gas result in amine solvent wastage, hazardous waste, and additional costs.

# Project Budget

BP3

**TOTAL** 

\$2,894,610

\$11,983,706

|     | DOE Share   | Recipient Share | % Cost Share |
|-----|-------------|-----------------|--------------|
| BP1 | \$515,630   | \$150,558       |              |
| BP2 | \$8,573,466 | \$2,503,363     |              |

\$845,196

\$3,499,117

22.5%

# Project Team



| Organization | Project Manager/<br>Project Engineer                                |
|--------------|---------------------------------------------------------------------|
| SCS          | Nick Irvin, Todd Wall, Morgan<br>French                             |
| MHIA         | Dale Wilterdink, Takahito<br>Yonekawa, Shintaro Honjo,<br>Cole Maas |
| URS          | Katherine Dombrowski                                                |
| DOE-NETL     | Bruce Lani                                                          |

#### Host Site:

Southern Company's Plant Barry: 25 MW amine-based CO<sub>2</sub> capture process

#### Schedule

- Budget Period 1: through June 2013 (extended)
  - Task 2: Front End Design and Target Cost Estimate
  - Task 3: Permitting
- Budget Period 2: July 2013 July 2014 (delayed)
  - Task 4: Engineering, Procurement, and Construction
- Budget Period 3: Aug 2014

  February 2016 (delayed)
  - Task 5: Operations
  - Task 6: Field Testing and Analysis

#### Completed Work in BP1: Tasks 2 and 3

- Task 2: FEED and Target Cost Estimate
  - Deliverable: Final design package with cost to build
  - Basic Engineering
    - Heat and material balances
    - General arrangement drawings (3D Model)
    - Equipment sizing and duties
    - Control system architecture
    - Process control philosophy
- Task 3: Permitting
  - Confirmed that no permits required, received approval letter from AL Department of Environmental Management

# SOUTHERN

# Technology Description and Background

# 25 MW KM-CDR at Plant Barry





# 25 MW KM-CDR at Plant Barry

- Funded by an industry consortium
- Started operation: June, 2011
- Fully integrated CO<sub>2</sub> capture and compression facility
  - Replicates conditions of a commercial unit
  - Designed for 90% CO<sub>2</sub> capture and compression to 1500 psig
  - Produces 500 metric tons CO<sub>2</sub> per day (>99.9% purity)
- Transport and storage in a saline formation at a nearby oil field (SCS and SECARB)

#### Flue Gas Cooler

- Low temperature flue gas cooler with finned tubes
- Carbon Steel construction
- Captures waste heat at APH outlet (300°F)
- Corrosion mitigated by controlling ash to SO<sub>3</sub> ratio in flue gas, metal surface temperature, and SO<sub>3</sub> condensing onto ash
- Several installations in Japan
  - low-sulfur, coal-fired power plants in Japan
  - Re-heat scrubbed flue gas to eliminate visible plumes
- Technology has not been demonstrated in U.S.
  - Recovered heat can be used in the turbine cycle



# History of Flue Gas Cooler



#### Hirono P/S Japan - 600MW







Tubes after 2 yrs operation

#### **Outline of HES Process Flow**







#### With High Efficiency System







# SOUTHERN

# **Technical Approach**

# Heat Integration with Power Plant



**Boiler Feed Water** 

90°

Fly

Ash

# **Boiler System**

SOUTHERN

 Highly integrated heat recovery system can simplify the LP steam cycle



# Simplified Boiler System





Reduce/Replace LP Feedwater Heaters

# CO<sub>2</sub> Capture Plant Tie-in



SOUTHERN



### Flue Gas Cooler Area-Plan View





## Flue Gas Cooler Area – Plan View





# With Grating





# CO<sub>2</sub> Cooler General Arrangement





# CO<sub>2</sub> Cooler





# Techno-Econ Snapshot



| Plant Configuration     |           | Subcrit-<br>PC Base | w/MEA<br>Base*      | w/MHI<br>KM-CDR*    | KM-CDR<br>& HES     |
|-------------------------|-----------|---------------------|---------------------|---------------------|---------------------|
| Net Plant<br>Efficiency | (HHV)     | 36.8%               | 26.2%<br>(29% Drop) | 28.9%<br>(21% Drop) | 29.7%<br>(19% Drop) |
| Overnight<br>Cost**     | \$MM      | 1,098               | 1,991               | 1,800               | 1,771               |
| COE**                   | Mills/kWh | 59.4                | 117.6               | 101.5               | 98                  |
| COE Ratio               | -         | 1.0                 | 1.98                | 1.71                | 1.65                |

<sup>\*</sup> SBS injection (atomized sodium carbonate) for SO<sub>3</sub> Control

Note: Base cases outlined in Cost and Performance Baseline for Fossil Energy Plants (DOE/NETL, 2010)

<sup>\*\* 2007 \$\$</sup> 

# Field Testing and Analysis



- Baseline Testing
- Test Campaigns
  - Corrosion and Erosion
  - Feedwater Purity Testing
  - SO<sub>3</sub> and Trace Metal Removal Performance
- Data Analysis
  - Verification of heat integration effect
  - Heat recovery for boiler feedwater
  - Reduction of FGD water consumption

#### **Future Plans**

- SOUTHERN
- Awaiting approval of continuation application for BP2
- Begin EPC phase in 2013 (BP2)
- Start operations and testing in 2014 (BP3)