Tim Fout Systems Engineering & Analysis Directorate August 13, 2018 #### **Presentation Outline** - SEA Background - Progress Reports - Fossil Energy Baseline Update (Revision 4) - Case Summary - Preliminary Performance Results - Carbon Capture Retrofit Database - Background - Walkthrough ## Systems Engineering & Analysis (SEA) Teams and Scope #### **Energy Process Analysis** Energy Process Design, Analysis, and Cost Estimation - Plant-level modeling, performance assessment - Cost estimation for plant-level systems - General plant-level technology evaluation and support Advanced Technology Design & Cost Estimation **Energy Systems Analysis** Resource Availability and Cost Modeling - CO₂ storage (saline and EOR) - Fossil fuel extraction - Rare earth elements Life Cycle Analysis (LCA) ## Process Systems Engineering Research - Process synthesis, design, optimization, intensification - Steady state and dynamic process model development - Uncertainty quantification - Advanced process control Design, optimization, and modeling framework to be expanded to all SEA "systems" Advanced Energy Systems through Process Systems Engineering #### **Energy Markets Analysis** **Energy Economy Modeling and Impact Assessment** - Enhanced fossil energy representation - Multi-model scenario/policy analysis - Grid, infrastructure, energy-water General regulatory, market and financial expertise # NETL Cost and Performance Baseline for Fossil Energy Plants Series of Reports #### Overview - Determine cost and performance estimates of near-term commercial offerings for power plants, both with and without current technology for CO₂ capture - Consistent design basis and analysis methodology - Up-to-date performance and capital cost estimates - Technologies built and deployed in the near-term - Purpose and use - Compare existing technologies - Guide R&D for advancing technologies within the DOE Office of Fossil Energy (FE) Programs https://www.netl.doe.gov/research/energy-analysis/baseline-studies ## Cost and Performance Baseline for Fossil Energy Plants | Volume | Revision | Date | Fuel Types | Technology | Notes | |-----------------|----------|-----------|--|---|---| | 1a | 3 | July 2015 | Bituminous Coal,
Natural Gas | PC, NGCC with and without CO ₂ Capture | | | 1b | 2b | July 2015 | Bituminous Coal | IGCC with and without CO ₂ capture | Year dollar
update only | | 1
Supplement | 0 | June 2015 | Bituminous Coal | PC and IGCC Partial CO ₂
Capture | Sensitivity to CO ₂ capture levels | | 3 | 0 | Sept 2011 | Sub-bituminous &
Lignite Coal, Natural
Gas | PC, IGCC, & NGCC with and without CO ₂ capture | | Overview - Comprehensive update to NETL Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity - aka Bituminous Baseline Study - Revision 4 - Current report split into two volumes - PC and NGCC were updated with new technical and cost data Volume 1a, Revision 3 - IGCC only received a year \$ update (to 2011 \$), with no technical or cost estimation updates <u>Volume 1b, Revision 2b</u> - Revision 4 will bring the two volumes into one full report - Incorporates comprehensive technical updates to all cases (PC, IGCC, and NGCC, with and without 90% CCS) - Includes updated cost estimates for all technologies, to be reported in 2018 \$ - Performance modeling was developed using Aspen Plus V10.0 - Peer Review of performance estimates - Report posting estimated in December 2018 **Technical Updates** - Updated bituminous coal characteristics, reducing chlorine content to 1,671 ppmw - Implemented Effluent Limitation Guidelines (ELG) regulation compliance systems for PC and IGCC cases - PC spray dryer evaporator - IGCC brine concentrator and crystallizer - PC net plant electrical output updated from 550 MWnet to 650 MWnet - Size selection driven by Black & Veatch (B&V) guidance, and updated NGCC output - Updated CO₂ capture system estimate for PC and NGCC capture cases - Revised CO₂ compression process for stable operation - Updated CT and ST performance estimates for NGCC cases - Updates to IGCC cases include: - Water gas shift and COS reactor, ASU, steam turbine, Selexol system **Case Configuration** | Case | Unit
Cycle | Steam Cycle,
psig/°F/°F | Combustion
Turbine | Gasifier/Boiler
Technology | H₂S
Separation | Sulfur
Removal | PM Control | CO ₂
Separation ^A | Process Water
Treatment | |-------|----------------------|----------------------------|---------------------------------------|-------------------------------|----------------------|-----------------------|---|--|--| | B1A | | 1800/1050/1050 | | CI II | Sulfinol-M | | Cyclone, candle filter, and | N/A | Vacuum flash. brine | | B1B | | 1800/1000/1000 | | Shell | Selexol | | water scrubber | Selexol 2 nd
stage | concentrator,
crystallizer | | B4A | | 1800/1050/1050 | | CB&I E-Gas™ | Refrigerated
MDEA | | Cyclone, candle filter, and | N/A | Vacuum flash. brine concentrator, | | B4B | IGCC | 1800/1000/1000 | 2 x State-of-the-
art 2008 F-Class | CDQI L-Oas | Selexol | Claus
Plant/Sulfur | water scrubber | Selexol 2 nd
stage | crystallizer | | B5A | | 1800/1050/1050 | u11 2000 1 Class | GEE Radiant | Selexol | riang sanai | Quench, water scrubber, | N/A | Vacuum flash. brine concentrator, | | B5B | | 1800/1000/1000 | | GEE RAUIAIIL | Selexui | | and AGR adsorber | Selexol 2 nd
stage | crystallizer | | B5B-Q | | 1800/1000/1000 | | GEE Quench | Selexol | | Quench, water scrubber,
and AGR adsorber | Selexol 2 nd
stage | Vacuum flash. brine concentrator, crystallizer | | B11A | | 2400/1050/1050 | | Subcritical PC | N/A | Wet FGD/ | Baghouse | N/A | Spray dryer | | B11B | PC | 2400/1050/1050 | N/A | Subcritical PC | N/A | Gypsum | Baghouse | Cansolv | evaporator | | B12A | PC | 2500/1100/1100 | IN/A | SC DC | N/A | Wet FGD/ | Baghouse | N/A | Spray dryer | | B12B | 3500/1100/1100 SC PC | N/A | Gypsum | Baghouse | Cansolv | evaporator | | | | | B31A | NGCC | 2400/1085/1085 | 2 x State-of-the- | HRSG | N/A | N/A | N/A | N/A | N/A | | B31B | NGCC | 2400/1085/1085 | art 2017 F-Class | пков | IN/A | IN/A | IV/A | Cansolv | N/A | ## **B5B** (GEE Radiant Capture) Block Flow Diagram Rev2B Versus Rev4 – IGCC Net Power & Efficiency #### Performance Summary | | | Integrated Gasification Combined Cycle | | | | | | | | | | |--------------------------------------|-----------|--|-----------|-----------|-----------|-----------|-----------|--|--|--|--| | | Sh | ell | E-Gas | ™ FSQ | GEE R+Q | | | | | | | | | B1A | B1B | B4A | B4B | B5A | B5B | B5B-Q | | | | | | PERFORMANCE | | | | | | | | | | | | | Gross Power Output (MWe) | 765 | 696 | 763 | 741 | 765 | 741 | 685 | | | | | | Auxiliary Power Requirement
(MWe) | 126 | 176 | 122 | 185 | 131 | 185 | 185 | | | | | | Net Power Output (MWe) | 640 | 520 | 641 | 557 | 634 | 557 | 499 | | | | | | Coal Flow rate (lb/hr) | 435,459 | 467,340 | 456,329 | 482,197 | 464,732 | 482,580 | 482,918 | | | | | | Natural Gas Flow rate (lb/hr) | N/A | | | | | HHV Thermal Input (kW _t) | 1,488,819 | 1,597,818 | 1,560,173 | 1,648,615 | 1,588,902 | 1,649,926 | 1,651,082 | | | | | | Net Plant HHV Efficiency (%) | 43.00% | 32.50% | 41.10% | 33.80% | 39.90% | 33.70% | 30.20% | | | | | | Net Plant HHV Heat Rate
(Btu/kWh) | 7,942 | 10,491 | 8,308 | 10,095 | 8,554 | 10,113 | 11,282 | | | | | | Raw Water Withdrawal, gpm | 4,128 | 4,927 | 4,357 | 5,039 | 4,798 | 5,355 | 6,128 | | | | | | Process Water Discharge, gpm | 922 | 1,040 | 944 | 1,068 | 1,033 | 1,087 | 1,182 | | | | | | Raw Water Consumption, gpm | 3,206 | 3,887 | 3,413 | 3,971 | 3,766 | 4,267 | 4,946 | | | | | #### Performance Summary | | | Integrated Gasification Combined Cycle | | | cle | | | | | | | | | | |--------------------------------------|-----------|--|--------------------|------|----------------|---------------|-------------|--------|-------|-------|---------|--------|---------|-------| | | Sh | ell | E-Gas™ FSQ GEE R+Q | | | | | | | | | | | | | | B1A | B1B | B4A | В | 4B | B5A B5B B5B | | B5B-Q | | | | | | | | PERFORMANCE | | | | | | | | | | | | | | | | Gross Power Output (MWe) | 765 | 696 | 763 | 7 | 741 765 741 68 | | 685 | Emissi | | | Emissic | ns Sun | nmary | | | Auxiliary Power Requirement
(MWe) | 126 | 176 | 122 | 1 | | | | | Shell | E-Gas | ™ FSQ | | GEE R+Q | | | Net Power Output (MWe) | 640 | 520 | 641 | 5 | | | | | | | | | | | | Coal Flow rate (lb/hr) | 435,459 | 467,340 | 456,329 | 482 | | | | B1A | B1B | B4A | B4B | B5A | B5B | B5B-Q | | Natural Gas Flow rate (lb/hr) | N/A | N/A | N/A | 1 | EMISSI | ONS | | | | | | | | | | HHV Thermal Input (kW _t) | 1,488,819 | 1,597,818 | 1,560,173 | 1,64 | CO2 Ca | pture Rate | , % | 0 | 90 | 0 | 90 | 0 | 90 | 90 | | Net Plant HHV Efficiency (%) | 43.00% | 32.50% | 41.10% | 33 | CO₂ Em | nissions (lb/ | /MMBtu) | 200 | 21 | 199 | 20 | 197 | 20 | 20 | | Net Plant HHV Heat Rate
(Btu/kWh) | 7,942 | 10,491 | 8,308 | 10 | | | /MWh-gross) | 1,328 | 161 | 1,391 | 153 | 1,396 | 151 | 163 | | Raw Water Withdrawal, gpm | 4,128 | 4,927 | 4,357 | 5, | | | /MWh-net) | 1,589 | 215 | 1,657 | 203 | 1,685 | 201 | 224 | | Process Water Discharge, gpm | 922 | 1,040 | 944 | 1, | | issions (lb/ | | 0.02 | 0 | 0.028 | 0 | 0.002 | 0 | 0 | | Raw Water Consumption, gpm | 3,206 | 3,887 | 3,413 | 3, | SO₂ Em | issions (lb/ | MWh-gross) | 0.13 | 0 | 0.192 | 0 | 0.015 | 0 | 0 | | | | | | | NOx En | nissions (lb | /MMBtu) | 0.023 | 0.019 | 0.022 | 0.019 | 0.021 | 0.019 | 0.019 | | | | | | | NOx En | nissions (lb | /MWh-gross | 0.39 | 0.382 | 0.393 | 0.371 | 0.376 | 0.364 | 0.394 | | | | | | | PM Em | issions (lb/ | MMBtu) | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | | | | | | | PM Em | issions (lb/ | MWh-gross) | 0.047 | 0.056 | 0.05 | 0.054 | 0.05 | 0.054 | 0.058 | | | | | | | Hg Emi | ssions (lb/1 | ΓBtu) | 0.452 | 0.383 | 0.43 | 0.396 | 0.423 | 0.395 | 0.365 | 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.00E-06 Hg Emissions (lb/MWh-gross)^c ## Final Block Flow Diagram - B12B ## B31B (NGCC Capture) Block Flow Diagram Rev3 Versus Rev4 - PC/NGCC Net Power & Efficiency #### Performance Summary | | | Pulverized | NG | icc | | | | |--------------------------------------|-----------|------------|-----------|------------|----------------------------------|-----------|--| | | PC Sub | critical | PC Supe | ercritical | State-of-the-art 2017
F-Class | | | | | B11A | B11A B11B | | B12B | B31A | B31B | | | PERFORMANCE | | | | | | | | | Gross Power Output (MWe) | 687 | 776 | 685 | 770 | 740 | 690 | | | Auxiliary Power Requirement
(MWe) | 37 | 126 | 35 | 120 | 14 | 44 | | | Net Power Output (MWe) | 650 | 650 | 650 | 650 | 727 | 646 | | | Coal Flow rate (lb/hr) | 492,047 | 634,448 | 472,037 | 603,246 | N/A | N/A | | | Natural Gas Flow rate (lb/hr) | N/A | N/A | N/A | N/A | 205,630 | 205,630 | | | HHV Thermal Input (kW _t) | 1,682,291 | 2,169,156 | 1,613,879 | 2,062,478 | 1,354,905 | 1,354,905 | | | Net Plant HHV Efficiency (%) | 38.60% | 30.00% | 40.30% | 31.50% | 53.60% | 47.70% | | | Net Plant HHV Heat Rate
(Btu/kWh) | 8,832 | 11,387 | 8,473 | 10,828 | 6,363 | 7,158 | | | Raw Water Withdrawal, gpm | 6,480 | 10.427 | 6,053 | 9,719 | 2,902 | 4,704 | | | Process Water Discharge, gpm | 1,333 | 3,044 | 1,242 | 2,850 | 657 | 1,655 | | | Raw Water Consumption, gpm | 5,147 | 7,383 | 4,811 | 6,869 | 2,245 | 3,050 | | #### Performance Summary | | | Pulverized | Coal Boiler | | | NGCC | | | | | | | | | |--------------------------------------|-----------|------------|-------------|-----------|------|------------------|--------------------------------|-------------------------|----------------|------------|----------------|------------|--------------------|----------| | | PC Sub | critical | PC Supe | rcritical | Stat | e-of-th:
F-Cl | e-art 2017
ass | | | | | | | | | | B11A | B11B | B12A | B12B | В | 31A | B31B | | | | | | | | | PERFORMANCE | | | | | | | | | | | | Emissic | ns Sum | marv | | Gross Power Output (MWe) | 687 | 776 | 685 | 770 | 7 | 740 | 690 | | | | | LITIISSIC | 7113 JUIT | ппагу | | Auxiliary Power Requirement
(MWe) | 37 | 126 | 35 | 120 | | | | | PC Sub | critical | PC Supe | ercritical | State-of-th
F-C | | | Net Power Output (MWe) | 650 | 650 | 650 | 650 | į | | | | B11A | B11B | B12A | B12B | B31A | B31B | | Coal Flow rate (lb/hr) | 492,047 | 634,448 | 472,037 | 603,246 | I | EMISSI | ONS | | | | | | 3020 | | | Natural Gas Flow rate (lb/hr) | N/A | N/A | N/A | N/A | 20 | | | 0/ | 0 | 90 | 0 | 90 | 0 | 90 | | HHV Thermal Input (kW _t) | 1,682,291 | 2,169,156 | 1,613,879 | 2,062,478 | 1,3 | | pture Rate, | | | | 0 | | | | | Net Plant HHV Efficiency (%) | 38.60% | 30.00% | 40.30% | 31.50% | 53 | | issions (lb/l | | 202 | 20 | 202 | 20 | 119 | 12 | | Net Plant HHV Heat Rate
(Btu/kWh) | 8,832 | 11,387 | 8,473 | 10,828 | 6 | | issions (lb/l
issions (lb/l | MWh-gross)
MWh-net) | 1,691
1,787 | 193
230 | 1,627
1,714 | 185
219 | 741
755 | 80
85 | | Raw Water Withdrawal, gpm | 6,480 | 10.427 | 6,053 | 9,719 | 2 | SO₂ Em | issions (lb/N |
ИМВtu) ^В | 0.081 | 0 | 0.081 | 0 | 0.001 | 0 | | Process Water Discharge, gpm | 1,333 | 3,044 | 1,242 | 2,850 | | | | //Wh-gross) | 0.674 | 0 | 0.648 | 0 | 0.006 | 0 | | Raw Water Consumption, gpm | 5,147 | 7,383 | 4,811 | 6,869 | 2 | | nissions (lb/ | | 0.084 | 0.073 | 0.087 | 0.077 | 0.004 | 0.003 | | | | | | | | | | MWh-gross) | 0.7 | 0.7 | 0.7 | 0.7 | 0.022 | 0.022 | | | | | | | | PM Emi | issions (lb/N | /IMBtu) | 0.011 | 0.009 | 0.011 | 0.01 | 0.002 | 0 | | | | | | | | PM Em | issions (lb/N | /IWh-gross) | 0.09 | 0.09 | 0.09 | 0.09 | 0.012 | 0 | | | | | | | | Hg Emi: | ssions (lb/Tl | Btu) | 0.359 | 0.314 | 0.373 | 0.328 | 0 | 0 | | | | | | | | Hg Emi | ssions (lb/M | IWh-gross) ^C | 3.00E-06 | 3.00E-06 | 3.00E-06 | 3.00E-06 | 0 | 0 | SOA Post-Combustion Capture System Quotes 2nd Generation Post-Combustion Capture System Cost/Perf SOA Post-Combustion Capture System Quotes 2nd Generation Post-Combustion Capture System Cost/Perf QGESS: Retrofit Cost Estimating Methodology 1 9 SOA Post-Combustion Capture System Quotes Systems Analysis of Capture Retrofits for Reference Plants: PC, NGCC, Industrial Post-Combustion Capture System Cost/Perf QGESS: Retrofit Cost Estimating Methodology #### **Supporting Reports** #### • PC • "Eliminating the Derate of Carbon Capture Retrofits Study Update," Late 2017 #### • NGCC • "Cost and Performance of Retrofitting NGCC Units for Carbon Capture," Late 2017 #### • Industrial • "Cost of Capturing CO₂ from Industrial Sources," DOE/NETL-2013/1602, January 2014 #### **Subcritical PC Retrofit Results** | Retrofit Capex | \$741,400,000 | |------------------------------|---------------------------------------| | Heat Rate (pre
retrofit) | 8,740 Btu/kWh | | Heat Rate (post retrofit) | 11,300 Btu/kWh | | CO ₂ Capture Rate | 880,451 Lb CO ₂ /hr | | Energy Penalty | ≈0.14 kWh/Lb CO ₂ captured | | Incremental O&M | \$16.9/MWh | #### **NGCC** Retrofit Results NGCC cost of electricity highly sensitive to gas price! | Retrofit Capex | \$647,300,000 | |----------------------------------|---------------------------------------| | Heat Rate (pre
retrofit) HHV | 6,607 Btu/kWh | | Heat Rate (post
retrofit) HHV | 7,583 Btu/kWh | | CO ₂ Capture Rate | 445,333 Lb CO ₂ /hr | | Energy Penalty | ≈0.19 kWh/Lb CO ₂ captured | | Incremental O&M | \$6.15/MWh | #### **NGCC** Retrofit Results NGCC cost of electricity highly sensitive to gas price! | Retrofit Capex | \$647,300,000 | |---------------------------------|---------------------------------------| | Heat Rate (pre
retrofit) HHV | 6,607 Btu/kWh | | Heat Rate (post retrofit) HHV | 7,583 Btu/kWh | | CO ₂ Capture Rate | 445,333 Lb CO ₂ /hr | | Energy Penalty | ≈0.19 kWh/Lb CO ₂ captured | | Incremental O&M | \$6.15/MWh | ## Industrial Source CO₂ Capture | Industrial Process | Reference
Plant | CO₂ Source
Stream | CO ₂ to
Product Ratio
(tonne | Source
Stream
CO ₂
Concentra- | Source
Stream
CO ₂
Partial | CO₂ Ava
Cap
(M tonnes | Breakeven
Cost of
Capturing
CO ₂ | | | |-------------------------------|------------------------|--|---|---|--|-----------------------------|--|--------------------------------|--| | | Capacity | | CO₂/tonne
Product) | tion
(mol%) | Pressure
(psia) | Reference
Plant | All U.S.
sources | (\$/tonne
CO ₂) | | | | | | High Purity | Sources | | | | | | | Ethanol | 50 M
gal/year | Distillation
gas | 0.96 | 100 | 18.4 | 0.14 | 40 | 30 | | | Ammonia | 907,000
tonnes/year | Stripping vent | 1.9 | 99 | 22.8 | 0.458 | 6 | 27 | | | Natural Gas Processing | 500
MMscf/d | CO ₂ vent | N/A ¹ | 99 | 23.3 | 0.649 | 27 | 18 | | | Ethylene Oxide | 364,500
tonnes/year | AGR product stream | 0.33 | 100 | 43.5 | 0.122 | 1 | 25 | | | Coal-to-Liquids (CTL) | 50,000 bbl/d | AGR product stream | N/A ² | 100 | 265 | 8.74 | - | 9 | | | Gas-to-Liquids (GTL) | 50,000 bbl/d | AGR product stream | N/A ² | 100 | 265 | 1.86 | - | 9 | | | | | | Low Purity | Sources | | | | | | | Refinery Hydrogen | 59,000
tonnes/year | PSA tail gas | 10.5 | 44.5 | 8.9 | 0.274 | 68 | 118 | | | Iron/Steel | 2.54 M
tonnes/year | Plant Total
COG PPS
COG/BFG ³ | 2.2 | N/A
23.2
26.4 | N/A
3.4
3.9 | 3.9
2.75
1.16 | 49 | 99
99
101 | | | Cement
SCR/FGD Sensitivity | 992,500
tonnes/year | Kiln Off-gas | 1.2 | 22.4 | 3.3 | 1.14 | 80 | 100
127 | | | Coal-fired power plants | 550 MW | Flue Gas | NA | 13.5 | 2.0 | 4.13 | 2,5454 | 77 ⁵⁶ | | ## **Industrial Source Retrofit Methodology** - Facility data for industrial sources based on EPA's Greenhouse Gas Reporting Program¹ and FLIGHT data² - Plant capacity in report based on typical sizes, cost and performance post-retrofit based on source report, and applied using a scaled approach - Key parameters of interest include payback period, financing structure, supplemental power or natural gas price - 1. https://www.epa.gov/ghgreporting/ghgrp-reported-data - 2. https://ghgdata.epa.gov/ghgp/main.do# ## Cumulative CO₂ Supply Large capacity available, at increasing cost of capture #### PC CCRD Walkthrough Н Ε MACROS MUST BE ENABLED TO UTILIZE THIS TOOL Note: A copy of the User Guide can be viewed by clicking the icon to the right. The User Guide provides a general walkthrough of the CCRDs. Section 2 of the User Guide explans the limitations and expected accuracy of the reported results and must be read prior to using this tool. #### Start Program #### • Plant Inputs - Pre-filled with baseline NETL cases as guides - Input parameters include: - Plant Name - Plant State - Plant NERC Region - Gross to Net Factor (MWnet/MWgross) - Nameplate Capacity - Net Summer Capacity - Net Winter Capacity - Heat Rate - CO₂ Annual Rate - NOx Summer Rate - NOx Control Equipment - SO₂ Annual Rate - SO₂ Control Equipment - Weighted Average Variable O&M - Fuel Costs (12 month weighted average) - Cooling System Type - Capacity Factor (2016, 2015, 2014) | 4 | Α | В | C | D | E | F | G | Н | 1 | j | K | L | | | М | |-------------|-----------------------|--|--|-------------|------------------------------|---|-------------------------------|--|---|---|--|--|------------------------------|------------------------------|--------------------------------------| | 1 | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | | Plant Informa | ation - U | Jser Data Entry | | | | | | | | | | | | | | 3 | | | | | | Gross to Net | | 1 | | | | | | | | | | Unit ID | Plant ID | Plant Name | Plant State | Plant NERC | Factor N | ameplate | Net Summer | Net Winter | Heat Rate, | CO2 Annual Rate, | NOx Summer | NOx Control Equipm | | | | , | Unit ID | Plant ID | Plant Name | Plant State | Region | MW _{net} /MW _{gros} C | apacity, MW | Capacity, MW | Capacity, MW | Btu/kWh | lbs/MMBtu | Rate, Ibs/MMBtu | NOX Control Equipi | nent | | | 5 | 1 | B11A | SubCritical PC NETL bituminous baseline no capture | MO | SERC | 95 | 550 | 55 | 0 550 | 8.740 | 204 | 0.083 | B Low NOx Burners: Se | elective Catalytic Reduc | ction | | 6 | | B12A | | MO | SERC | 95 | 550 | | | | | | | elective Catalytic Reduc | | | 7 | 3 5 | S12A | SuperCritical PC NETL subbituminous baseline no capture | MT | WECC | 94 | 550 | 55 | 0 550 | 8,813 | 215 | 0.070 | Low NOx Burners; Se | elective Catalytic Reduc | ction | | 8 | 4 5 | S13A | UltraSuperCritical PC NETL subbituminous baseline no captu | MT | WECC | 95 | 550 | 55 | 0 550 | 8,552 | 215 | 0.070 | Low NOx Burners; Se | elective Catalytic Reduc | tion | | 9 | | L12A | 1 0 | ND | MRO | 94 | 550 | | | | | | | elective Catalytic Reduc | | | 10 | | L13A | UltraSuperCritical PC NETL ND Lignite baseline no capture | | MRO | 94 | 550 | | | | | | | elective Catalytic Reduc | ction | | 11 | | S22A | SuperCritical CFB NETL subbituminous baseline no capture | | WECC | 95 | 550 | | | | | | Selective Non-catalyt | | | | 12 | 8 1 | L22A | SuperCritical CFB NETL ND Lignite baseline no capture | ND | MRO | 95 | 550 | 55 | 0 550 | 8,975 | 219 | 0.070 | Selective Non-catalyt | ic Reduction | | | 1 | N | | 0 | | Р | Q | | R | | | S | | Т | U | V | | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 2 | _ | | | | | | | | | | | | | | | | | 3 | | | | 107- | | 107-1-be-d | | | | | | | | | | | | SO ₂ Annua | . | | | ighted
rage | Weighted
Average Fixe | Fuel Co | osts (12 | | | | | Capacity Factor | Capacity Factor | Capacity Factor | | | Rate. Ibs/M | | SO ₂ Control Equipment | | iable O&M | O&M Costs, | month | | ooling System | Туре | | | | | 2014, % | | 4 | reace, ibarn | IMDU | | | ts, \$/MWh | \$/MWh | averag | e), \$/MWh | | | | | 2010, 70 | 2010, 70 | 2014, 70 | | 5 | | 0.085 \ | Wet Limestone FGD | | 9.23 | 3 | 9.30 | 25.67 R | ecirculating with | induced draf | t cooling tower(s) | | 85.0 | 85.0 | 85.0 | | 6 | | 0.085 \ | Wet Limestone FGD | | 9.0 | - | 9.60 | 24 61 R | ecirculating with | induced draft | t cooling tower(s) | | 85.0 | 85.0 | 05.0 | | | | | | | 9.0 | 0 | | | | | | | | | 85.0 | | 7 | | 0.119 L | Lime Spray Dryer FGD | | 5.10 | | 9.00 | | | | t cooling tower(s) - | a parallel wet/dry | 85.0 | 85.0 | | | 7
8 | | | | | |) | | 7.80 R | ecirculating with | induced draf | | | | | 85.0 | | 7
8
9 | | 0.119 L | Lime Spray Dryer FGD | | 5.10 |) | 9.00 | 7.80 R
7.60 R | ecirculating with | induced draft
induced draft | t cooling tower(s) - | a parallel wet/dry | 85.0 | 85.0 | 85.0
85.0 | | 9 | | 0.119 L
0.132 L | Lime Spray Dryer FGD
Lime Spray Dryer FGD
Lime Spray Dryer FGD | | 5.10
5.10 | | 9.00
9.30 | 7.80 R
7.60 R
7.50 R | ecirculating with
ecirculating with
ecirculating with | induced draft
induced draft
induced draft | t cooling tower(s) -
t cooling tower(s) -
t cooling tower(s) - | a parallel wet/dry
a parallel wet/dry | 85.0
85.0 | 85.0
85.0 | 85.0
85.0
85.0 | | 9
10 | | 0.119 L
0.132 L
0.132 L | Lime Spray Dryer FGD
Lime Spray Dryer FGD
Lime Spray Dryer FGD
Lime Spray Dryer FGD | | 5.10
5.10
6.10
6.10 | | 9.00
9.30
9.70
10.10 | 7.80 R
7.60 R
7.50 R
7.30 R | ecirculating with
ecirculating with
ecirculating with
ecirculating with | induced draft
induced draft
induced draft
induced draft | t cooling tower(s) -
t cooling tower(s) -
t cooling tower(s) -
t cooling tower(s) - | a parallel wet/dry
a parallel wet/dry
a parallel wet/dry | 85.0
85.0
85.0 | 85.0
85.0
85.0 | 85.0
85.0
85.0
85.0 | | 9 | | 0.119 L
0.132 L
0.132 L
0.102 F | Lime Spray Dryer FGD
Lime Spray Dryer FGD
Lime Spray Dryer FGD | | 5.10
5.10
6.10 | | 9.00
9.30
9.70 | 7.80 R
7.60 R
7.50 R
7.30 R
7.80 R | ecirculating with
ecirculating with
ecirculating with
ecirculating with
ecirculating with | induced draft
induced draft
induced draft
induced draft
induced draft | t cooling tower(s) -
t cooling tower(s) -
t cooling tower(s) - | a parallel wet/dry
a parallel wet/dry
a parallel wet/dry
a parallel wet/dry | 85.0
85.0
85.0
85.0 | 85.0
85.0
85.0
85.0 | 85.0
85.0
85.0
85.0
85.0 | | 4 | А | В | С | D | E | F | |----|--|-----------------------|---------------------|--------------|--------------|--| | 1 | | | Us | er Inpu | ts and (| Constants Used in Calculations | | 2 | | | | | | ed Scenarios to be Analyzed Here | | 3 | | | | | iiput Desiii | ed Scenarios to be Analyzed Here | | 4 | Parameter | Units | | Value | | Comments | | 5 | | | SCENARIO #1 | SCENARIO #2 | SCENARIO #3 | | | 6 | CO. Continue Boto | Choose option | Default | Default | Default | | | 7 | CO₂ Capture Rate | % | 90% | 90% | 90% | | | 8 | CO ₂ Capture Technology | Choose Option | Amine Based | Amine Based | Amine Based | | | 9 | Pre-Retrofit Capacity Factor | Choose Option | User Input | User Input | User Input | Unit Actual uses plant level reported CFs. Average value is the average reported capacity factor | | 10 | rie-Netroni Capacity Factor | % | 85% | 75% | 65% | To the Actual uses plant level reported Crs. Average value is the average reported capacity factor | | 11 | Post-Retrofit Capacity Factor | Choose Option | Delta | Delta | Delta | Use Absolute or delta from pre-retrofit CF. If the delta entered is lower than the unit's actual CF | | 12 | ost-netront capacity ractor | % or Reduction Delta | 0% | 10% | 10% | calculations. | | 13 | Retrofit Unit Capacity Applicability Limit | Choose Option | Default | Default | Default | All units with a nameplate capacity below the limit are excluded from all calculations. | | 14 | rections offic capacity repricability clinic | MW | 25 | 25 | 25 | This will a numeriate capacity below the limit are excluded from an ediculations. | | 15 | Retrofit Cost Factor | Choose Option | Default | Default | Default | Multiplier applied to Total Plant Capital Cost. | | 16 | | | 1.10 | 1.10 | 1.10 | That ip it is a state of the st | | 17 | | Choose Option | High Risk | High Risk | High Risk | | | 18 | Capital Charge Factor | Choose Option | 30-year | 30-year | 30-year | Default values are for a 3-year construction period with either a 10-, 20-, or 30-year economic li | | 19 | | | 0.111 | 0.111 | 0.111 | | | 20 | | Advanced Options | | | | | | 21 | CO ₂ Emissions Rate | Choose option | Unit Actual | Unit Actual | Unit Actual | | | 22 | _ | lb/MMBtu | N/A | N/A | N/A | | | 23 | Maximum CO ₂ Capture Rate Per Train | Choose option | Default | Default | Default | If the CO ₂ production rate exceeds the maximum, multiple trains will be used. | | 24 | DI . C | TPD | 15,772 | 15,772 | 15,772 | | | | Plant Capacity Metric | Choose Option | Nameplate | Nameplate | Nameplate | | | 26 | Cost Year Basis | Choose Option | Default | Default | Default | Cooled housed on Chamical Funitarian Cook Index (CERCI). Only 2014 on 2017 and he collected | | 27 | Cooling preference? | Year
Choose Option | 2011 | 2011 | 2011 | Scaled based on Chemical Engineering Cost Index (CEPCI). Only 2011 or 2017 can be selected
Select cooling system (dry or wet) based on either type of existing cooling system or location's (| | _ | Cooling preferences | Choose Option | Existing
Default | Existing | Existing | Select cooling system (dry or wet) based on either type of existing cooling system or location s l
Cost for lost revenue/price to purchase make-up power. State uses annual average retail price | | 30 | Projected Sales Price of Electricity | \$/MWh | 60 | State
N/A | State
N/A | sectors from EIA. Only used in breakeven CO ₂ metric calculations. | | _ | Include SCR with retrofit? | Choose Option | Yes | Yes | Yes | pectors from Erg. Only used in breakeven CO2 metric calculations. | | | Include SCR with retrofit? | Choose Option | Yes | Yes | Yes | | | 22 | | Choose Option | None | None | None | | | 34 | Additional Heat Rate Penalty | Btu/kWh | N/A | N/A | N/A | This value is a user specified penalty in addition to the calculated values for CO2 capture and se | | 35 | | Choose Option | Default | Default | Default | COE and Breakeven CO ₂ Emissions Penalty include T&S. | | 36 | CO ₂ Transport and Storage Costs | \$/tonne captured | 11.00 | 11.00 | 11.00 | Breakeven CO ₂ Sales Price never includes T&S. | | | | +, sapranea | | | | presented degrades the fierer moides reco | #### Scenario Results - CAPEX - Additional SCR, FGD - CO₂ Removal and Compression - Letdown turbine - Cooling Water - BOP - Total Retrofit Cost TPC and TOC - Incremental OPEX - Fixed (Labor, Taxes & Insurance) - Variable (Chemicals/Waste, Maintenance) - Total Fixed and Total Variable - Parasitic Load - SCR Load, FGD Load (if additional removal required) - Parasitic Cooling and Electrical Load - Parasitic Steam Turbine Derate - Overall Summary - Makeup/Excess Power Costs/Credits - Total Incremental Cost - Existing Fixed O&M in COE Change - CO₂ T&S Cost - Total Incremental COE - Breakeven CO₂ Sales Price - Breakeven CO₂ Emissions Penalty • Results Tab | 4 | А | В | С | D | Е | F | G | Н | 1 | J | K | | |----|--|------------|---------|------------|----------------------------|-----------------------------------|-----------------|-----------------------------|---------------------------------|---------------------------|---------------------|--| | | 1) Filter Column 'E' for CCS Retrofit Applicability. | | | | | SCENARIO #1 | | | | | | | | 1 | 2) Filter appropriate data for charts, if necessary | | | | | | | | | | | | | 2 | | | | | CCS retrofit applicability | Pre-Retrofit
Total
Capacity | CO2
Captured | Total
Incremental
COE | Breakeven
CO₂ Sales
Price | CO ₂ Emissions | Cumulative Capacity | | | 3 | Plant Name | Unit ID ↓1 | State 🔻 | Plant ID ▼ | Yes/No ▼ | MW ▼ | 10^3 TPY ▼ | \$/MWh ▼ | \$/tonne 🔻 | Penalty
\$/tonne ▼ | MW - | | | 4 | SubCritical PC NETL bituminous baseline no car | 1 | МО | B11A | Υ | 550 | 3,286 | 59.9 | 68.4 | 79.4 | 550 | | | 5 | SuperCritical PC NETL bituminous baseline no | 2 | MO | B12A | Υ | 550 | 3,150 | 57.5 | 69.2 | 80.2 | 1,100 | | | 6 | SuperCritical PC NETL subbituminous baseline | 3 | MT | S12A | Υ | 550 | 3,487 | 66.0 | 69.7 | 80.7 | 1,650 | | | 7 | UltraSuperCritical PC NETL subbituminous base | 4 | MT | S13A | Υ | 550 | 3,384 | 64.1 | 70.3 | 81.3 | 2,200 | | | 8 | SuperCritical PC NETL ND Lignite baseline no ca | 5 | ND | L12A | Υ | 550 | 3,679 | 79.3 | 76.9 | 87.9 | 2,750 | | | 9 | UltraSuperCritical PC NETL ND Lignite baseline | 6 | ND | L13A | Υ | 550 | 3,558 | 76.7 | 77.6 | 88.6 | 3,300 | | | 10 | SuperCritical CFB NETL subbituminous baseline | 7 | MT | S22A | Υ | 550 | 3,443 | 65.2 | 69.9 | 80.9 | 3,850 | | | 11 | SuperCritical CFB NETL ND Lignite baseline no o | 8 | ND | L22A | Υ | 550 | 3,622 | 68.9 | 69.0 | 80.0 | 4,400 | | • Charts Tab #### **User Manuals** ## Acknowledgements NETL Robert James Travis Shultz Eric Grol Jeff Hoffmann Kristin Gerdes Greg Hackett Walter Shelton Michael Matuszewski* Leidos Norma Kuehn Marc Turner Alexander Zoelle **Key Logic** Mark Woods **Deloitte Consulting** Dale Keairns Eric Lewis #### **Questions?** **Timothy Fout** **Engineering Process Analysis Team** Timothy.Fout@netl.doe.gov 304-285-1341