

Tim Fout Systems Engineering & Analysis Directorate

August 13, 2018

Presentation Outline

- SEA Background
- Progress Reports
 - Fossil Energy Baseline Update (Revision 4)
 - Case Summary
 - Preliminary Performance Results
 - Carbon Capture Retrofit Database
 - Background
 - Walkthrough

Systems Engineering & Analysis (SEA)

Teams and Scope

Energy Process Analysis

Energy Process Design, Analysis, and Cost Estimation

- Plant-level modeling, performance assessment
- Cost estimation for plant-level systems
- General plant-level technology evaluation and support

Advanced Technology Design & Cost Estimation **Energy Systems Analysis**

Resource Availability and Cost Modeling

- CO₂ storage (saline and EOR)
- Fossil fuel extraction
- Rare earth elements

Life Cycle Analysis (LCA)

Process Systems Engineering Research

- Process synthesis, design, optimization, intensification
- Steady state and dynamic process model development
- Uncertainty quantification
- Advanced process control

Design, optimization, and modeling framework to be expanded to all SEA "systems"

Advanced Energy Systems through Process Systems Engineering

Energy Markets Analysis

Energy Economy Modeling and Impact Assessment

- Enhanced fossil energy representation
- Multi-model scenario/policy analysis
- Grid, infrastructure, energy-water

 General regulatory, market and financial expertise

NETL Cost and Performance Baseline for Fossil Energy Plants Series of Reports

Overview

- Determine cost and performance estimates of near-term commercial offerings for power plants, both with and without current technology for CO₂ capture
 - Consistent design basis and analysis methodology
 - Up-to-date performance and capital cost estimates
 - Technologies built and deployed in the near-term
- Purpose and use
 - Compare existing technologies
 - Guide R&D for advancing technologies within the DOE Office of Fossil Energy (FE) Programs

https://www.netl.doe.gov/research/energy-analysis/baseline-studies

Cost and Performance Baseline for Fossil Energy Plants

Volume	Revision	Date	Fuel Types	Technology	Notes
1a	3	July 2015	Bituminous Coal, Natural Gas	PC, NGCC with and without CO ₂ Capture	
1b	2b	July 2015	Bituminous Coal	IGCC with and without CO ₂ capture	Year dollar update only
1 Supplement	0	June 2015	Bituminous Coal	PC and IGCC Partial CO ₂ Capture	Sensitivity to CO ₂ capture levels
3	0	Sept 2011	Sub-bituminous & Lignite Coal, Natural Gas	PC, IGCC, & NGCC with and without CO ₂ capture	

Overview

- Comprehensive update to NETL Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity
 - aka Bituminous Baseline Study
 - Revision 4
- Current report split into two volumes
 - PC and NGCC were updated with new technical and cost data Volume 1a, Revision 3
 - IGCC only received a year \$ update (to 2011 \$), with no technical or cost estimation updates <u>Volume 1b, Revision 2b</u>
- Revision 4 will bring the two volumes into one full report
 - Incorporates comprehensive technical updates to all cases (PC, IGCC, and NGCC, with and without 90% CCS)
 - Includes updated cost estimates for all technologies, to be reported in 2018 \$
- Performance modeling was developed using Aspen Plus V10.0
- Peer Review of performance estimates
- Report posting estimated in December 2018

Technical Updates

- Updated bituminous coal characteristics, reducing chlorine content to 1,671 ppmw
- Implemented Effluent Limitation Guidelines (ELG) regulation compliance systems for PC and IGCC cases
 - PC spray dryer evaporator
 - IGCC brine concentrator and crystallizer
- PC net plant electrical output updated from 550 MWnet to 650 MWnet
 - Size selection driven by Black & Veatch (B&V) guidance, and updated NGCC output
- Updated CO₂ capture system estimate for PC and NGCC capture cases
- Revised CO₂ compression process for stable operation
- Updated CT and ST performance estimates for NGCC cases
- Updates to IGCC cases include:
 - Water gas shift and COS reactor, ASU, steam turbine, Selexol system

Case Configuration

Case	Unit Cycle	Steam Cycle, psig/°F/°F	Combustion Turbine	Gasifier/Boiler Technology	H₂S Separation	Sulfur Removal	PM Control	CO ₂ Separation ^A	Process Water Treatment
B1A		1800/1050/1050		CI II	Sulfinol-M		Cyclone, candle filter, and	N/A	Vacuum flash. brine
B1B		1800/1000/1000		Shell	Selexol		water scrubber	Selexol 2 nd stage	concentrator, crystallizer
B4A		1800/1050/1050		CB&I E-Gas™	Refrigerated MDEA		Cyclone, candle filter, and	N/A	Vacuum flash. brine concentrator,
B4B	IGCC	1800/1000/1000	2 x State-of-the- art 2008 F-Class	CDQI L-Oas	Selexol	Claus Plant/Sulfur	water scrubber	Selexol 2 nd stage	crystallizer
B5A		1800/1050/1050	u11 2000 1 Class	GEE Radiant	Selexol	riang sanai	Quench, water scrubber,	N/A	Vacuum flash. brine concentrator,
B5B		1800/1000/1000		GEE RAUIAIIL	Selexui		and AGR adsorber	Selexol 2 nd stage	crystallizer
B5B-Q		1800/1000/1000		GEE Quench	Selexol		Quench, water scrubber, and AGR adsorber	Selexol 2 nd stage	Vacuum flash. brine concentrator, crystallizer
B11A		2400/1050/1050		Subcritical PC	N/A	Wet FGD/	Baghouse	N/A	Spray dryer
B11B	PC	2400/1050/1050	N/A	Subcritical PC	N/A	Gypsum	Baghouse	Cansolv	evaporator
B12A	PC	2500/1100/1100	IN/A	SC DC	N/A	Wet FGD/	Baghouse	N/A	Spray dryer
B12B	3500/1100/1100 SC PC	N/A	Gypsum	Baghouse	Cansolv	evaporator			
B31A	NGCC	2400/1085/1085	2 x State-of-the-	HRSG	N/A	N/A	N/A	N/A	N/A
B31B	NGCC	2400/1085/1085	art 2017 F-Class	пков	IN/A	IN/A	IV/A	Cansolv	N/A

B5B (GEE Radiant Capture)

Block Flow Diagram

Rev2B Versus Rev4 – IGCC Net Power & Efficiency

Performance Summary

		Integrated Gasification Combined Cycle									
	Sh	ell	E-Gas	™ FSQ	GEE R+Q						
	B1A	B1B	B4A	B4B	B5A	B5B	B5B-Q				
PERFORMANCE											
Gross Power Output (MWe)	765	696	763	741	765	741	685				
Auxiliary Power Requirement (MWe)	126	176	122	185	131	185	185				
Net Power Output (MWe)	640	520	641	557	634	557	499				
Coal Flow rate (lb/hr)	435,459	467,340	456,329	482,197	464,732	482,580	482,918				
Natural Gas Flow rate (lb/hr)	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
HHV Thermal Input (kW _t)	1,488,819	1,597,818	1,560,173	1,648,615	1,588,902	1,649,926	1,651,082				
Net Plant HHV Efficiency (%)	43.00%	32.50%	41.10%	33.80%	39.90%	33.70%	30.20%				
Net Plant HHV Heat Rate (Btu/kWh)	7,942	10,491	8,308	10,095	8,554	10,113	11,282				
Raw Water Withdrawal, gpm	4,128	4,927	4,357	5,039	4,798	5,355	6,128				
Process Water Discharge, gpm	922	1,040	944	1,068	1,033	1,087	1,182				
Raw Water Consumption, gpm	3,206	3,887	3,413	3,971	3,766	4,267	4,946				

Performance Summary

		Integrated Gasification Combined Cycle			cle									
	Sh	ell	E-Gas™ FSQ GEE R+Q											
	B1A	B1B	B4A	В	4B	B5A B5B B5B		B5B-Q						
PERFORMANCE														
Gross Power Output (MWe)	765	696	763	7	741 765 741 68		685	Emissi			Emissic	ns Sun	nmary	
Auxiliary Power Requirement (MWe)	126	176	122	1					Shell	E-Gas	™ FSQ		GEE R+Q	
Net Power Output (MWe)	640	520	641	5										
Coal Flow rate (lb/hr)	435,459	467,340	456,329	482				B1A	B1B	B4A	B4B	B5A	B5B	B5B-Q
Natural Gas Flow rate (lb/hr)	N/A	N/A	N/A	1	EMISSI	ONS								
HHV Thermal Input (kW _t)	1,488,819	1,597,818	1,560,173	1,64	CO2 Ca	pture Rate	, %	0	90	0	90	0	90	90
Net Plant HHV Efficiency (%)	43.00%	32.50%	41.10%	33	CO₂ Em	nissions (lb/	/MMBtu)	200	21	199	20	197	20	20
Net Plant HHV Heat Rate (Btu/kWh)	7,942	10,491	8,308	10			/MWh-gross)	1,328	161	1,391	153	1,396	151	163
Raw Water Withdrawal, gpm	4,128	4,927	4,357	5,			/MWh-net)	1,589	215	1,657	203	1,685	201	224
Process Water Discharge, gpm	922	1,040	944	1,		issions (lb/		0.02	0	0.028	0	0.002	0	0
Raw Water Consumption, gpm	3,206	3,887	3,413	3,	SO₂ Em	issions (lb/	MWh-gross)	0.13	0	0.192	0	0.015	0	0
					NOx En	nissions (lb	/MMBtu)	0.023	0.019	0.022	0.019	0.021	0.019	0.019
					NOx En	nissions (lb	/MWh-gross	0.39	0.382	0.393	0.371	0.376	0.364	0.394
					PM Em	issions (lb/	MMBtu)	0.007	0.007	0.007	0.007	0.007	0.007	0.007
					PM Em	issions (lb/	MWh-gross)	0.047	0.056	0.05	0.054	0.05	0.054	0.058
					Hg Emi	ssions (lb/1	ΓBtu)	0.452	0.383	0.43	0.396	0.423	0.395	0.365

3.00E-06

3.00E-06

3.00E-06 3.00E-06

3.00E-06

3.00E-06

3.00E-06

Hg Emissions (lb/MWh-gross)^c

Final Block Flow Diagram - B12B

B31B (NGCC Capture)

Block Flow Diagram

Rev3 Versus Rev4 - PC/NGCC Net Power & Efficiency

Performance Summary

		Pulverized	NG	icc			
	PC Sub	critical	PC Supe	ercritical	State-of-the-art 2017 F-Class		
	B11A	B11A B11B		B12B	B31A	B31B	
PERFORMANCE							
Gross Power Output (MWe)	687	776	685	770	740	690	
Auxiliary Power Requirement (MWe)	37	126	35	120	14	44	
Net Power Output (MWe)	650	650	650	650	727	646	
Coal Flow rate (lb/hr)	492,047	634,448	472,037	603,246	N/A	N/A	
Natural Gas Flow rate (lb/hr)	N/A	N/A	N/A	N/A	205,630	205,630	
HHV Thermal Input (kW _t)	1,682,291	2,169,156	1,613,879	2,062,478	1,354,905	1,354,905	
Net Plant HHV Efficiency (%)	38.60%	30.00%	40.30%	31.50%	53.60%	47.70%	
Net Plant HHV Heat Rate (Btu/kWh)	8,832	11,387	8,473	10,828	6,363	7,158	
Raw Water Withdrawal, gpm	6,480	10.427	6,053	9,719	2,902	4,704	
Process Water Discharge, gpm	1,333	3,044	1,242	2,850	657	1,655	
Raw Water Consumption, gpm	5,147	7,383	4,811	6,869	2,245	3,050	

Performance Summary

		Pulverized	Coal Boiler			NGCC								
	PC Sub	critical	PC Supe	rcritical	Stat	e-of-th: F-Cl	e-art 2017 ass							
	B11A	B11B	B12A	B12B	В	31A	B31B							
PERFORMANCE												Emissic	ns Sum	marv
Gross Power Output (MWe)	687	776	685	770	7	740	690					LITIISSIC	7113 JUIT	ппагу
Auxiliary Power Requirement (MWe)	37	126	35	120					PC Sub	critical	PC Supe	ercritical	State-of-th F-C	
Net Power Output (MWe)	650	650	650	650	į				B11A	B11B	B12A	B12B	B31A	B31B
Coal Flow rate (lb/hr)	492,047	634,448	472,037	603,246	I	EMISSI	ONS						3020	
Natural Gas Flow rate (lb/hr)	N/A	N/A	N/A	N/A	20			0/	0	90	0	90	0	90
HHV Thermal Input (kW _t)	1,682,291	2,169,156	1,613,879	2,062,478	1,3		pture Rate,				0			
Net Plant HHV Efficiency (%)	38.60%	30.00%	40.30%	31.50%	53		issions (lb/l		202	20	202	20	119	12
Net Plant HHV Heat Rate (Btu/kWh)	8,832	11,387	8,473	10,828	6		issions (lb/l issions (lb/l	MWh-gross) MWh-net)	1,691 1,787	193 230	1,627 1,714	185 219	741 755	80 85
Raw Water Withdrawal, gpm	6,480	10.427	6,053	9,719	2	SO₂ Em	issions (lb/N	 ИМВtu) ^В	0.081	0	0.081	0	0.001	0
Process Water Discharge, gpm	1,333	3,044	1,242	2,850				//Wh-gross)	0.674	0	0.648	0	0.006	0
Raw Water Consumption, gpm	5,147	7,383	4,811	6,869	2		nissions (lb/		0.084	0.073	0.087	0.077	0.004	0.003
								MWh-gross)	0.7	0.7	0.7	0.7	0.022	0.022
						PM Emi	issions (lb/N	/IMBtu)	0.011	0.009	0.011	0.01	0.002	0
						PM Em	issions (lb/N	/IWh-gross)	0.09	0.09	0.09	0.09	0.012	0
						Hg Emi:	ssions (lb/Tl	Btu)	0.359	0.314	0.373	0.328	0	0
						Hg Emi	ssions (lb/M	IWh-gross) ^C	3.00E-06	3.00E-06	3.00E-06	3.00E-06	0	0

SOA Post-Combustion Capture System Quotes

2nd Generation Post-Combustion Capture System Cost/Perf

SOA Post-Combustion Capture System Quotes

2nd Generation Post-Combustion Capture System Cost/Perf QGESS: Retrofit Cost Estimating Methodology

1 9

SOA Post-Combustion
Capture System
Quotes

Systems Analysis of
Capture Retrofits for
Reference Plants:
PC, NGCC, Industrial

Post-Combustion
Capture System
Cost/Perf

QGESS: Retrofit
Cost Estimating
Methodology

Supporting Reports

• PC

• "Eliminating the Derate of Carbon Capture Retrofits Study Update," Late 2017

• NGCC

• "Cost and Performance of Retrofitting NGCC Units for Carbon Capture," Late 2017

• Industrial

• "Cost of Capturing CO₂ from Industrial Sources," DOE/NETL-2013/1602, January 2014

Subcritical PC Retrofit Results

Retrofit Capex	\$741,400,000
Heat Rate (pre retrofit)	8,740 Btu/kWh
Heat Rate (post retrofit)	11,300 Btu/kWh
CO ₂ Capture Rate	880,451 Lb CO ₂ /hr
Energy Penalty	≈0.14 kWh/Lb CO ₂ captured
Incremental O&M	\$16.9/MWh

NGCC Retrofit Results

 NGCC cost of electricity highly sensitive to gas price!

Retrofit Capex	\$647,300,000
Heat Rate (pre retrofit) HHV	6,607 Btu/kWh
Heat Rate (post retrofit) HHV	7,583 Btu/kWh
CO ₂ Capture Rate	445,333 Lb CO ₂ /hr
Energy Penalty	≈0.19 kWh/Lb CO ₂ captured
Incremental O&M	\$6.15/MWh

NGCC Retrofit Results

 NGCC cost of electricity highly sensitive to gas price!

Retrofit Capex	\$647,300,000
Heat Rate (pre retrofit) HHV	6,607 Btu/kWh
Heat Rate (post retrofit) HHV	7,583 Btu/kWh
CO ₂ Capture Rate	445,333 Lb CO ₂ /hr
Energy Penalty	≈0.19 kWh/Lb CO ₂ captured
Incremental O&M	\$6.15/MWh

Industrial Source CO₂ Capture

Industrial Process	Reference Plant	CO₂ Source Stream	CO ₂ to Product Ratio (tonne	Source Stream CO ₂ Concentra-	Source Stream CO ₂ Partial	CO₂ Ava Cap (M tonnes	Breakeven Cost of Capturing CO ₂		
	Capacity		CO₂/tonne Product)	tion (mol%)	Pressure (psia)	Reference Plant	All U.S. sources	(\$/tonne CO ₂)	
			High Purity	Sources					
Ethanol	50 M gal/year	Distillation gas	0.96	100	18.4	0.14	40	30	
Ammonia	907,000 tonnes/year	Stripping vent	1.9	99	22.8	0.458	6	27	
Natural Gas Processing	500 MMscf/d	CO ₂ vent	N/A ¹	99	23.3	0.649	27	18	
Ethylene Oxide	364,500 tonnes/year	AGR product stream	0.33	100	43.5	0.122	1	25	
Coal-to-Liquids (CTL)	50,000 bbl/d	AGR product stream	N/A ²	100	265	8.74	-	9	
Gas-to-Liquids (GTL)	50,000 bbl/d	AGR product stream	N/A ²	100	265	1.86	-	9	
			Low Purity	Sources					
Refinery Hydrogen	59,000 tonnes/year	PSA tail gas	10.5	44.5	8.9	0.274	68	118	
Iron/Steel	2.54 M tonnes/year	Plant Total COG PPS COG/BFG ³	2.2	N/A 23.2 26.4	N/A 3.4 3.9	3.9 2.75 1.16	49	99 99 101	
Cement SCR/FGD Sensitivity	992,500 tonnes/year	Kiln Off-gas	1.2	22.4	3.3	1.14	80	100 127	
Coal-fired power plants	550 MW	Flue Gas	NA	13.5	2.0	4.13	2,5454	77 ⁵⁶	

Industrial Source Retrofit Methodology

- Facility data for industrial sources based on EPA's Greenhouse Gas Reporting Program¹ and FLIGHT data²
- Plant capacity in report based on typical sizes, cost and performance post-retrofit based on source report, and applied using a scaled approach
- Key parameters of interest include payback period, financing structure, supplemental power or natural gas price

- 1. https://www.epa.gov/ghgreporting/ghgrp-reported-data
- 2. https://ghgdata.epa.gov/ghgp/main.do#

Cumulative CO₂ Supply

Large capacity available, at increasing cost of capture

PC CCRD Walkthrough

Н

Ε

MACROS MUST BE ENABLED TO UTILIZE THIS TOOL

Note: A copy of the User Guide can be viewed by clicking the icon to the right. The User Guide provides a general walkthrough of the CCRDs. Section 2 of the User Guide explans the limitations and expected accuracy of the reported results and must be read prior to using this tool.

Start Program

• Plant Inputs

- Pre-filled with baseline NETL cases as guides
- Input parameters include:
 - Plant Name
 - Plant State
 - Plant NERC Region
 - Gross to Net Factor (MWnet/MWgross)
 - Nameplate Capacity
 - Net Summer Capacity
 - Net Winter Capacity
 - Heat Rate
 - CO₂ Annual Rate
 - NOx Summer Rate
 - NOx Control Equipment

- SO₂ Annual Rate
- SO₂ Control Equipment
- Weighted Average Variable O&M
- Fuel Costs (12 month weighted average)
- Cooling System Type
- Capacity Factor (2016, 2015, 2014)

4	Α	В	C	D	E	F	G	Н	1	j	K	L			М
1															
2															
	Plant Informa	ation - U	Jser Data Entry												
3						Gross to Net		1							
	Unit ID	Plant ID	Plant Name	Plant State	Plant NERC	Factor N	ameplate	Net Summer	Net Winter	Heat Rate,	CO2 Annual Rate,	NOx Summer	NOx Control Equipm		
,	Unit ID	Plant ID	Plant Name	Plant State	Region	MW _{net} /MW _{gros} C	apacity, MW	Capacity, MW	Capacity, MW	Btu/kWh	lbs/MMBtu	Rate, Ibs/MMBtu	NOX Control Equipi	nent	
5	1	B11A	SubCritical PC NETL bituminous baseline no capture	MO	SERC	95	550	55	0 550	8.740	204	0.083	B Low NOx Burners: Se	elective Catalytic Reduc	ction
6		B12A		MO	SERC	95	550							elective Catalytic Reduc	
7	3 5	S12A	SuperCritical PC NETL subbituminous baseline no capture	MT	WECC	94	550	55	0 550	8,813	215	0.070	Low NOx Burners; Se	elective Catalytic Reduc	ction
8	4 5	S13A	UltraSuperCritical PC NETL subbituminous baseline no captu	MT	WECC	95	550	55	0 550	8,552	215	0.070	Low NOx Burners; Se	elective Catalytic Reduc	tion
9		L12A	1 0	ND	MRO	94	550							elective Catalytic Reduc	
10		L13A	UltraSuperCritical PC NETL ND Lignite baseline no capture		MRO	94	550							elective Catalytic Reduc	ction
11		S22A	SuperCritical CFB NETL subbituminous baseline no capture		WECC	95	550						Selective Non-catalyt		
12	8 1	L22A	SuperCritical CFB NETL ND Lignite baseline no capture	ND	MRO	95	550	55	0 550	8,975	219	0.070	Selective Non-catalyt	ic Reduction	
1	N		0		Р	Q		R			S		Т	U	V
1															
2															
_															
3				107-		107-1-be-d									
	SO ₂ Annua	.			ighted rage	Weighted Average Fixe	Fuel Co	osts (12					Capacity Factor	Capacity Factor	Capacity Factor
	Rate. Ibs/M		SO ₂ Control Equipment		iable O&M	O&M Costs,	month		ooling System	Туре					2014, %
4	reace, ibarn	IMDU			ts, \$/MWh	\$/MWh	averag	e), \$/MWh					2010, 70	2010, 70	2014, 70
5		0.085 \	Wet Limestone FGD		9.23	3	9.30	25.67 R	ecirculating with	induced draf	t cooling tower(s)		85.0	85.0	85.0
6		0.085 \	Wet Limestone FGD		9.0	-	9.60	24 61 R	ecirculating with	induced draft	t cooling tower(s)		85.0	85.0	05.0
					9.0	0									85.0
7		0.119 L	Lime Spray Dryer FGD		5.10		9.00				t cooling tower(s) -	a parallel wet/dry	85.0	85.0	
7 8)		7.80 R	ecirculating with	induced draf					85.0
7 8 9		0.119 L	Lime Spray Dryer FGD		5.10)	9.00	7.80 R 7.60 R	ecirculating with	induced draft induced draft	t cooling tower(s) -	a parallel wet/dry	85.0	85.0	85.0 85.0
9		0.119 L 0.132 L	Lime Spray Dryer FGD Lime Spray Dryer FGD Lime Spray Dryer FGD		5.10 5.10		9.00 9.30	7.80 R 7.60 R 7.50 R	ecirculating with ecirculating with ecirculating with	induced draft induced draft induced draft	t cooling tower(s) - t cooling tower(s) - t cooling tower(s) -	a parallel wet/dry a parallel wet/dry	85.0 85.0	85.0 85.0	85.0 85.0 85.0
9 10		0.119 L 0.132 L 0.132 L	Lime Spray Dryer FGD Lime Spray Dryer FGD Lime Spray Dryer FGD Lime Spray Dryer FGD		5.10 5.10 6.10 6.10		9.00 9.30 9.70 10.10	7.80 R 7.60 R 7.50 R 7.30 R	ecirculating with ecirculating with ecirculating with ecirculating with	induced draft induced draft induced draft induced draft	t cooling tower(s) - t cooling tower(s) - t cooling tower(s) - t cooling tower(s) -	a parallel wet/dry a parallel wet/dry a parallel wet/dry	85.0 85.0 85.0	85.0 85.0 85.0	85.0 85.0 85.0 85.0
9		0.119 L 0.132 L 0.132 L 0.102 F	Lime Spray Dryer FGD Lime Spray Dryer FGD Lime Spray Dryer FGD		5.10 5.10 6.10		9.00 9.30 9.70	7.80 R 7.60 R 7.50 R 7.30 R 7.80 R	ecirculating with ecirculating with ecirculating with ecirculating with ecirculating with	induced draft induced draft induced draft induced draft induced draft	t cooling tower(s) - t cooling tower(s) - t cooling tower(s) -	a parallel wet/dry a parallel wet/dry a parallel wet/dry a parallel wet/dry	85.0 85.0 85.0 85.0	85.0 85.0 85.0 85.0	85.0 85.0 85.0 85.0 85.0

4	А	В	С	D	E	F
1			Us	er Inpu	ts and (Constants Used in Calculations
2						ed Scenarios to be Analyzed Here
3					iiput Desiii	ed Scenarios to be Analyzed Here
4	Parameter	Units		Value		Comments
5			SCENARIO #1	SCENARIO #2	SCENARIO #3	
6	CO. Continue Boto	Choose option	Default	Default	Default	
7	CO₂ Capture Rate	%	90%	90%	90%	
8	CO ₂ Capture Technology	Choose Option	Amine Based	Amine Based	Amine Based	
9	Pre-Retrofit Capacity Factor	Choose Option	User Input	User Input	User Input	Unit Actual uses plant level reported CFs. Average value is the average reported capacity factor
10	rie-Netroni Capacity Factor	%	85%	75%	65%	To the Actual uses plant level reported Crs. Average value is the average reported capacity factor
11	Post-Retrofit Capacity Factor	Choose Option	Delta	Delta	Delta	Use Absolute or delta from pre-retrofit CF. If the delta entered is lower than the unit's actual CF
12	ost-netront capacity ractor	% or Reduction Delta	0%	10%	10%	calculations.
13	Retrofit Unit Capacity Applicability Limit	Choose Option	Default	Default	Default	All units with a nameplate capacity below the limit are excluded from all calculations.
14	rections offic capacity repricability clinic	MW	25	25	25	This will a numeriate capacity below the limit are excluded from an ediculations.
15	Retrofit Cost Factor	Choose Option	Default	Default	Default	Multiplier applied to Total Plant Capital Cost.
16			1.10	1.10	1.10	That ip it is a state of the st
17		Choose Option	High Risk	High Risk	High Risk	
18	Capital Charge Factor	Choose Option	30-year	30-year	30-year	Default values are for a 3-year construction period with either a 10-, 20-, or 30-year economic li
19			0.111	0.111	0.111	
20		Advanced Options				
21	CO ₂ Emissions Rate	Choose option	Unit Actual	Unit Actual	Unit Actual	
22	_	lb/MMBtu	N/A	N/A	N/A	
23	Maximum CO ₂ Capture Rate Per Train	Choose option	Default	Default	Default	If the CO ₂ production rate exceeds the maximum, multiple trains will be used.
24	DI . C	TPD	15,772	15,772	15,772	
	Plant Capacity Metric	Choose Option	Nameplate	Nameplate	Nameplate	
26	Cost Year Basis	Choose Option	Default	Default	Default	Cooled housed on Chamical Funitarian Cook Index (CERCI). Only 2014 on 2017 and he collected
27	Cooling preference?	Year Choose Option	2011	2011	2011	Scaled based on Chemical Engineering Cost Index (CEPCI). Only 2011 or 2017 can be selected Select cooling system (dry or wet) based on either type of existing cooling system or location's (
_	Cooling preferences	Choose Option	Existing Default	Existing	Existing	Select cooling system (dry or wet) based on either type of existing cooling system or location s l Cost for lost revenue/price to purchase make-up power. State uses annual average retail price
30	Projected Sales Price of Electricity	\$/MWh	60	State N/A	State N/A	sectors from EIA. Only used in breakeven CO ₂ metric calculations.
_	Include SCR with retrofit?	Choose Option	Yes	Yes	Yes	pectors from Erg. Only used in breakeven CO2 metric calculations.
	Include SCR with retrofit?	Choose Option	Yes	Yes	Yes	
22		Choose Option	None	None	None	
34	Additional Heat Rate Penalty	Btu/kWh	N/A	N/A	N/A	This value is a user specified penalty in addition to the calculated values for CO2 capture and se
35		Choose Option	Default	Default	Default	COE and Breakeven CO ₂ Emissions Penalty include T&S.
36	CO ₂ Transport and Storage Costs	\$/tonne captured	11.00	11.00	11.00	Breakeven CO ₂ Sales Price never includes T&S.
		+, sapranea				presented degrades the fierer moides reco

Scenario Results

- CAPEX
 - Additional SCR, FGD
 - CO₂ Removal and Compression
 - Letdown turbine
 - Cooling Water
 - BOP
 - Total Retrofit Cost TPC and TOC
- Incremental OPEX
 - Fixed (Labor, Taxes & Insurance)
 - Variable (Chemicals/Waste, Maintenance)
 - Total Fixed and Total Variable
- Parasitic Load
 - SCR Load, FGD Load (if additional removal required)
 - Parasitic Cooling and Electrical Load
 - Parasitic Steam Turbine Derate

- Overall Summary
 - Makeup/Excess Power Costs/Credits
 - Total Incremental Cost
 - Existing Fixed O&M in COE Change
 - CO₂ T&S Cost
 - Total Incremental COE
 - Breakeven CO₂ Sales Price
 - Breakeven CO₂ Emissions Penalty

• Results Tab

4	А	В	С	D	Е	F	G	Н	1	J	K	
	1) Filter Column 'E' for CCS Retrofit Applicability.					SCENARIO #1						
1	2) Filter appropriate data for charts, if necessary											
2					CCS retrofit applicability	Pre-Retrofit Total Capacity	CO2 Captured	Total Incremental COE	Breakeven CO₂ Sales Price	CO ₂ Emissions	Cumulative Capacity	
3	Plant Name	Unit ID ↓1	State 🔻	Plant ID ▼	Yes/No ▼	MW ▼	10^3 TPY ▼	\$/MWh ▼	\$/tonne 🔻	Penalty \$/tonne ▼	MW -	
4	SubCritical PC NETL bituminous baseline no car	1	МО	B11A	Υ	550	3,286	59.9	68.4	79.4	550	
5	SuperCritical PC NETL bituminous baseline no	2	MO	B12A	Υ	550	3,150	57.5	69.2	80.2	1,100	
6	SuperCritical PC NETL subbituminous baseline	3	MT	S12A	Υ	550	3,487	66.0	69.7	80.7	1,650	
7	UltraSuperCritical PC NETL subbituminous base	4	MT	S13A	Υ	550	3,384	64.1	70.3	81.3	2,200	
8	SuperCritical PC NETL ND Lignite baseline no ca	5	ND	L12A	Υ	550	3,679	79.3	76.9	87.9	2,750	
9	UltraSuperCritical PC NETL ND Lignite baseline	6	ND	L13A	Υ	550	3,558	76.7	77.6	88.6	3,300	
10	SuperCritical CFB NETL subbituminous baseline	7	MT	S22A	Υ	550	3,443	65.2	69.9	80.9	3,850	
11	SuperCritical CFB NETL ND Lignite baseline no o	8	ND	L22A	Υ	550	3,622	68.9	69.0	80.0	4,400	

• Charts Tab

User Manuals

Acknowledgements

NETL

Robert James

Travis Shultz

Eric Grol

Jeff Hoffmann

Kristin Gerdes

Greg Hackett

Walter Shelton

Michael Matuszewski*

Leidos

Norma Kuehn

Marc Turner

Alexander Zoelle

Key Logic

Mark Woods

Deloitte Consulting

Dale Keairns

Eric Lewis

Questions?

Timothy Fout

Engineering Process Analysis Team

Timothy.Fout@netl.doe.gov

304-285-1341