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Project Overview

Award Name:  Electrochemically-Mediated Sorbent Regeneration in CO2 Scrubbing Processes 

(FE0026489)

Funding:  

DOE $1,202,052  

Cost Share $   310,601  

Total $1,512,653

Project Period:August 1, 2017 – July 31, 2020

Project PIs:  T. Alan Hatton, Howard Herzog

DOE Project Manager:  Ted McMahon

Overall Project Objectives:  Develop, characterize and implement electrochemically mediated 

sorbent regeneration and CO2 release in amine scrubbing processes
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Benchmark CO2 Capture Technology: Thermal Amine

3

HeatCool

CO2 Amine Amine/CO2 Complex

CO2

Amine



Electrochemically Mediated Amine Regeneration (EMAR)
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Plug and Play Efficient High Pressure Release✓ ✓ ✓
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EMAR Anatomy

6

• Cost

• Electrochemical transition happens within the aqueous stability window

• Metal ion has sufficiently strong binding to displace CO2 (amine specific!)

• Solubility

• Electrochemical kinetics
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Effect of Copper on CO2 Loading
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Thermodynamic Cycle

Carnot Cycle EMAR Cycle
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Thermodynamic Cycle
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Thermodynamic Cycle
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Thermodynamic Cycle
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Total Work for EMAR Cell
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Thermodynamic Results
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Thermodynamic Results
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Anatomy of EMAR Cell
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Scaling Up Electrochemical Systems
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Experimental Demonstration of CO2 Release

17Liquid flow rate = 10mL/min



Process Automation
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CO2 Release in Response to Applied Current
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Cyclic Stability of EMAR Operations
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Series Geometry
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Series geometry

high voltage

low current

A
n
o
d
e

C
a

th
o
d
e

 
V

stack
= nV

cell

 
I

stack
= I

cell

 
P = nV

cell
I

cell



Copper Loading Effect on Current Density
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Copper Loading Effect on Current Density
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Series Experiments – Current Density

Theoretical Current Density (A/m2) Experimental Current Density (A/m2)
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• Change in the anodic reaction as CO2 loading drops or increased advection (diminishing 

boundary layer resistance) caused by CO2 production in the anode.

• Parasitic side reactions (especially in the cathode) (e.g.,. formation of CuO).



EMAR Advantages

Electrochemical Thermal

Energy Consumption 15 – 40 kJ/mole 50-70 kJ/mole

Low temperature 

Operation
Yes No

Ease of Deployment Plug-and-Play Expensive Retrofit

High Pressure 

Desorption
Yes No



Overpotentials for Electrochemical Reactions
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In absence of CO2, formation of EDA complex does not significantly

hinder Cu deposition and dissolution. EDA Stabilizes Cu2+ in solution



Overpotentials for Electrochemical Reactions
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In presence of CO2, kinetics are significantly hindered. However, chlorides were

observed to improve performance significantly.

EMAR Cathode 

ideally operates in 

absence of CO2



Effects of Supporting Electrolyte on Copper Reduction
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NaCl NaNO3



Project Risks and Mitigation Strategies
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Technical Risks Probability Impact Risk Mitigation

CO2 sorbents and metal ion 

systems unsuccessful

Medium Low Wide range of candidate sorbents 

available.  Initial results are 

promising 

Electrochemical cell models low in 

fidelity and do not permit 

optimization 

Moderate Low Complexity of underlying 

mechanisms in electrochemical 

cell presents risk for modeling. 

Parametric experiments will 

generate sufficient data for 

empirical optimization. 

Process found to be too sensitive

for long-term operations and 

disturbances

Moderate Moderate Preliminary testing is encouraging. 

Degradation of electrodes or 

sorbents possible, but can be 

mitigated through design of 

electrode configurations 



Resource and Management Risks
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Resource Risks Probability Impact Risk Mitigation

Cost of bench-scale system after 

optimization more expensive than 

planned 

Low Low Most of the components of the 

system have been procured and 

operated in previous work, but the 

optimized system might involve 

more expensive equipment, 

especially for automation. 

Management Risks Probability Impact Risk Mitigation

Process performance reaches a 

plateau that does not satisfy DOE 

research goals 

Moderate High The progress reports will allow the 

project team to evaluate the 

performance of the process and 

determine whether it is possible to 

explore new dimensions for 

performance improvements. 



Experimental Design and Work Plan
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Task SubTask

Evaluate and Test CO2 Sorbents and Metal Ions for 

Electrochemical Regeneration 

• Identify and Shortlist Candidate Molecules

• Thermodynamic and Kinetic Experiments on Candidate 

Molecules 

• Cycling Stability Experiments on Candidate Molecules

Process Modeling and Cost Estimation • Develop process model and evaluate pressure effects

• Develop cost estimates

Electrochemical Cell Model Development • Establish kinetics and mass transfer model

• Model validation

Flow Channel Design and Optimization • Model-aided design of candidate flow channels

• Construction and testing of candidate flow channel 

configurations

Optimization of Electrode Configuration and Cell 

Architecture

• Evaluation of different electrode materials

• Evaluation of cell architectures

Evaluation of Optimized Chemistries and Cell 

Designs

• Design and build instrumented lab-scale apparatus

• Testing of candidate systems under wide operating 

conditions

• Stability testing
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