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Project Overview

Award Name: Electrochemically-Mediated Sorbent Regeneration in CO, Scrubbing Processes
(FE0026489)

Funding:
oDOE $1,202,052
oCost Share $ 310,601
oTotal $1,512,653

Project Period: August 1, 2017 — July 31, 2020

Project Pls: T. Alan Hatton, Howard Herzog
DOE Project Manager: Ted McMahon

Overall Project Objectives: Develop, characterize and implement electrochemically mediated
sorbent regeneration and CO, release in amine scrubbing processes



Benchmark CO, Capture Technology: Thermal Amine
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Electrochemically Mediated Amine Regeneration (EMAR)
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Electrochemically Mediated Amine Regeneration (EMAR)
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EMAR Anatomy
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Effect of Copper on CO, Loading
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Thermodynamic Cycle

Carnot Cycle EMAR Cycle
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Thermodynamic Cycle
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Thermodynamic Cycle
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Thermodynamic Cycle
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Total Work for EMAR Cell

Work (kJ/mol)
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Thermodynamic Results

Work of Capture and Compression (kJ/mol)
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Thermodynamic Results
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Anatomy of EMAR Cell

Cathode Membrane Anode

15



Scaling Up Electrochemical Systems
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Experimental Demonstration of CO, Release

Liquid flow rate = 10mL/min



Process Automation
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CO, Release in Response to Applied Current
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Cyclic Stability of EMAR Operations
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Series Geometry

- 3 3
QO

T ~ = ]ﬂ

Q \))

mmﬂm ~ Vc

8o [ I <

oS S o

Q20 S 3 |l

55 2 s 8

n < O A P

Mo|4 21poyIe)

21

g _ Moj4 d1pouy
YO OO0 o |

MO|4 J1poyIe)

_ MOj4 2pouy

Mo|4 JIpoyIed

IS NN ]

~ (1mog3ipouy

MO|[4 JIpoLj3e)

AERLRLNRNRRRRNRRN 7/////////////2 OINNNNNNNNNNNN

_ MO|{ dlpouy

OIS IS O

MOJ4 2Ipoyed

{ mold d1pouy




Copper Loading Effect on Current Density
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Copper Loading Effect on Current Density

[(Cu"Am,)>"]
(mol/L)]

0.35

0.3

-10.25

10.2

0.15

0.1

Anode (+) Cathode (-)
Inlet Inlet

Current Density (A/m2)

RN
o
N

RN
(@)
o

e

0.8V

o
o . c
/./ 0.4V ‘\
¢ o
—Model
® Experiment
0 0.2 0.4 0.6 0.8

Copper Loading (x. )




Series Experiments — Current Density

Theoretical Current Density (A/m?) Experimental Current Density (A/m?)
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« Change in the anodic reaction as CO, loading drops or increased advection (diminishing
boundary layer resistance) caused by CO, production in the anode.
» Parasitic side reactions (especially in the cathode) (e.g.,. formation of CuO).



EMAR Advantages

Energy Consumption 15 — 40 kJd/mole

Low temperature

Operation ves
Ease of Deployment Plug-and-Play
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Overpotentials for Electrochemical Reactions
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Overpotentials for Electrochemical Reactions
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observed to improve performance significantly.
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Effects of Supporting Electrolyte on Copper Reduction
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Project Risks and Mitigation Strategies

Technical Risks Probability Risk Mitigation

CO, sorbents and metal ion Medium Wide range of candidate sorbents

systems unsuccessful available. Initial results are
promising

Electrochemical cell models low in Moderate Low Complexity of underlying

fidelity and do not permit mechanisms in electrochemical

optimization cell presents risk for modeling.

Parametric experiments will
generate sufficient data for
empirical optimization.

Process found to be too sensitive Moderate Moderate  Preliminary testing is encouraging.
for long-term operations and Degradation of electrodes or
disturbances sorbents possible, but can be

mitigated through design of
electrode configurations



Resource and Management Risks

e Risk Mitigation

Cost of bench-scale system after Most of the components of the
optimization more expensive than system have been procured and
planned operated in previous work, but the

optimized system might involve
more expensive equipment,
especially for automation.

Management Risks Probability Risk Mitigation

Process performance reaches a Moderate High The progress reports will allow the
plateau that does not satisfy DOE project team to evaluate the
research goals performance of the process and

determine whether it is possible to
explore new dimensions for
performance improvements.



Budget Period

Experimental Design and Work Plan

Evaluate and Test CO, Sorbents and Metal lons for
Electrochemical Regeneration

Process Modeling and Cost Estimation
Electrochemical Cell Model Development

Flow Channel Design and Optimization

Optimization of Electrode Configuration and Cell
Architecture

Evaluation of Optimized Chemistries and Cell
Designs

Identify and Shortlist Candidate Molecules
Thermodynamic and Kinetic Experiments on Candidate
Molecules

Cycling Stability Experiments on Candidate Molecules

Develop process model and evaluate pressure effects
Develop cost estimates

Establish kinetics and mass transfer model
Model validation

Model-aided design of candidate flow channels
Construction and testing of candidate flow channel
configurations

Evaluation of different electrode materials
Evaluation of cell architectures

Design and build instrumented lab-scale apparatus
Testing of candidate systems under wide operating
conditions

Stability testing
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