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We derived key reactive-
transport parameters and
ranges for carbonate
rocks over a wide range
of heterogeneity and
initial permeabllity




Coupling experiments to parameter
calibration and model refinement
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Dissolution yields preferential flow paths
In more heterogeneous carbonate rocks
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Validation Study — Big Sky Demonstration,
Duperow Formation (Lee Spangler and Stacey Fairweather)

Kevin Dome Storage Project:
Phase lll Large-Scale CCS Study
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Duperow Dolostone
Approach (1231 m)

= Calibrate the
Initial model
permeability
against the
experiment.

= Run simulations
spanning model
parameters (n, k)
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Permeability zones fit to permeability of
unreacted core (0.5 mD)
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parison of model with experiment suggest tha
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Remaining validation experiments span three
orders of magnitude in permeability
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Can we upscale the change porosity and
permeability to the reservoir scale?
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We extend the calibrated core-scale model to simulate carbonate
dissolution at a meter scale

» Model is calibrated against experiment
 Brute force calculation to maintain same resolution as experiment
o 250 million grid blocks Time = 0.0 hours
4096 cores
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id coarsening of 50X requires an increase
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ressure and retain channel development
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Grid coarsening requires an increase in permeabil
power “n” and a decrease available reactive
surface to retain major flow paths

fine-scale 25X 50x
dx = 0.5 mm dx =12.5 mm dx =25 nm
n==8 n=11 n=12

1700 hours
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Summary

= Derived key reactive-transport parameters and
ranges for carbonate rocks over a wide range of
heterogeneity and initial permeability

= Conducting a validation study using core from
an independent CO2 storage formation

= Using numerical methods to scale laboratory
parameters to reservoir
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