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We derived key reactive-
transport parameters and 

ranges for carbonate 
rocks over a wide range 

of heterogeneity and 
initial permeability
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Dolomite
5% ϕ and low k

• CHARACTERIZATION
X-ray CT, XRD, SEM, NMR

• FORWARD MODELING
• REACTIVE EXPERIMENT
• MODEL – DATA COMPARISON
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 Calibrate the 
initial model 
permeability 
against the 
experiment.

 Run simulations 
spanning model 
parameters (n, k) 

 Compare 
simulated and 
measured results



Lawrence Livermore National Laboratory

high perm
fractures

medium perm
boundary walls

low perm
dense matrix



Lawrence Livermore National Laboratory

n = 1     3         8

kdol = 10-8 

10-7

10-6



Lawrence Livermore National Laboratory

n = 1

kdol = 10-8 

3.81 cm (1.5 in)

Experiment
7.

6 
cm

 (1
.5

 in
)

Simulation



Lawrence Livermore National Laboratory



Lawrence Livermore National Laboratory

1 km – high k

1 km – moderate k

1 km – very low k

1.3 km – expected high k

Initial permeability
= 0.5 mD
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• Model is calibrated against experiment
• Brute force calculation to maintain same resolution as experiment 

• 250 million grid blocks 
• 4096 cores 
• 1,000 times increase in rock volume 
• 20 times increase in reaction time
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pressure change 
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Grid coarsening requires an increase in permeabil  
power “n” and a decrease available reactive 
surface to retain major flow paths

fine-scale
dx = 0.5 mm

n = 8

25x
dx =12.5 mm

n = 11

1700 hours

50x
dx =25 nm

n = 12
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 Derived key reactive-transport parameters and 
ranges for carbonate rocks over a wide range of 
heterogeneity and initial permeability

 Conducting a validation study using core from 
an independent CO2 storage formation

 Using numerical methods to scale laboratory 
parameters to reservoir
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Injection Zone

dissolution front pressure difference

solution chemistry (pH) solution chemistry (Ca/Mg) 

10 fold permeability increase
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