Cost-effective Stabilization of Nanostructured Cathodes by Atomic Layer Deposition (ALD)

Yuan Cheng Raymond J. Gorte, John M. Vohs University of Pennsylvania

Praveen Cheekatamarla, Wensheng Wang Atrex Energy

Long Term Goals:

Make Electrode Fabrication by Infiltration Practical.

- 1) Make porous scaffold of electrolyte
- 2) Infiltrate catalysts and electronic conductor

Advantages for cathode fabrication:

- A) Separate firing temperatures for YSZ and perovskite.
- B) Composite structure is not random; perovskite coats pores.
 - → High conductivity with low perovskite loading
 - → CTE is that of the scaffold
- C) High-performance is possible.

Problems with Infiltration:

- 1) Difficult to Manufacture:
 - → Need 35-wt% (20-vol%) perovskite phase for conductivity
 - \rightarrow To get this loading requires many steps.
- 2) Long-term stability nanoparticles coarsen

Performance of LSF-YSZ depends on YSZ structure:

- 1) YSZ scaffold should have "fine" structure.
- 2) Infiltrated LSF should have high surface area (effect of calcination T).

J. Am. Ceram. Soc. 94 (2011) 2220.

Also Depends on Perovskite (Infiltrant) Structure:

Intriguing Results from South Carolina:

K. Huang and coworkers, Nanoletters, 2013

Issues With ALD Modification of Electrodes:

- a) The ZrO₂ growth rates in the Huang, et al. work were 0.6 nm/cycle. That is not ALD. Max growth rate in ALD is < 0.1 nm per cycle.
- b) ALD equipment is expensive!
- c) Cost of precursors with ALD in flow systems is prohibitive.
- d) Scale-up to cells and stacks is prohibitive (i.e. There would be no way to deposit onto tubular cells.).

However...:

- 1) Commercial equipment not designed for porous materials.
- 2) Equipment can be very simple and cheap.
 - a) Fast pulsing not required! No need for many cycles.
 - b) Vacuum (millitorr) more effective than carrier gas.
 - c) Easily applied to large cells.

I. ALD can stabilize surface area.

0.5-nm ZrO₂ on CeO₂:

Crystallite size of CeO₂ powder as a function of calcination temperature

	BET Surface Area (m²/g)				
Calcination Temp (K)	CeO ₂	ALD ZrO ₂ on CeO ₂			
673	51	38			
773	42	41			
873	36	42			
973	30	40			
1073	18	39			

II. ALD can be used to add catalysts:

MgAl₂O₄ Support

(a)

Preliminary results for ALD on LSF-YSZ cathodes (600 °C):

- 1) ZrO_2 very effectively blocks surface! 0.8 nm ~ 1.5 unit cell.
- 2) Small amounts of La₂O₃ promotes performance.
- 3) Performance maintained w/ thick LaFeO₃ films.

Project Objectives:

- To determine how SOFC cathode performance is altered via the Atomic Layer Deposition of thin films of oxide promoter.
- To determine the best oxide film compositions and thicknesses for optimal cathode performance.
- To demonstrate that enhancement of cathode performance through ALD addition of structural and electrochemical promoters can be scaled-up to commercial size cells.
- To transfer this capability to a fuel-cell developer for implementation on larger cells and stacks.

Project Structure:

- Task 2.1: Set up and cell fabrication.
 - We need to build a dedicated ALD system capable of handling larger cells.
 - Prepare large batches of button cells with LSCF cathodes to test.
 - Develop ALD protocols (e.g. Oxidation of some precursors at the deposition temperature is difficult.).
- Task 2.2: Examine the effect of various single component oxides.
 - Deposit CeO₂, La₂O₃, Fe₂O₃, NiO, and Co₂O₃.
 - Determine effect of oxide thickness on performance.
 - Determine effect of pretreatment (e.g. temperature treatments on performance.
- Task 2.3: Deposit Mixed Oxides and Perovskites.
 - Prepare LaFeO₃, LaNiO₃, LaCoO₃ overlayers.
 - Determine effect of pretreatment on performance.

Project Structure (continued):

- Task 2.4: Deposit Layered Structures.
 - Prepare cells with 1-nm films of ZrO₂.
 - Deposit LaFeO₃, LaNiO₃, LaCoO₃ overlayers.
 - Determine the effect on performance.
- Task 2.5: Characterization of ALD films.
 - BET
 - XRD
 - SEM.
- Task 3: ALD on Atrex Cells.
 - Demonstrate ALD onto Atrex Cells.
 - Modify Atrex Cells using the most promising ALD formulations.

Project Timeline:

]							
Task	Task Description	1	2	3	4	5	6	7	8
1	Task 1.0: Project management								
	Task 1.1 Communicating with Atrex								
	Task 1.2 Communicating with NETL								
	project managers								
	Task 1.3 Technical reports, conference								\rightarrow
	presentations, journal articles, patents								
2	Task 2.0: ALD modification of button								
	cells								
	Task 2.1 Set up and cell fabrication	→							
	Task 2.2 Single component oxides			\longrightarrow					
	Task 2.3 Mixed oxides and perovksites					\longrightarrow			
	Task 2.4 Layered structures					→	<u> </u>		
	Task 2.5 Characterization of ALD films								
3	Task 3.0: ALD modification of Atrex								
	cells								
	Task 3.1 Modification of ALD setup								
	Task 3.2 ALD on cells supplied by								<u> </u>
	Atrex								
	Task 3.3 Cell testing at Atrex								-
	Task 3.4 Reporting								\longrightarrow
	→ Progress ▲ Milestone								

Project Management:

- The experimental work at Penn will be carried out by students, under the direction of Profs Gorte and Vohs.
- Gorte will be primarily responsible for report writing and communicating with NETL and with Atrex.
- Dr. Cheekatamarla will direct efforts at Atrex Energy.

Risk Management:

- Performance may not be enhanced by ALD of anything
 We already have evidence that this is not true.
- ALD Films may not be stable at SOFC operating temperatures.
- ALD Films may not improve performance of Atrex cells.

Project Budget:

Penn: Total \$375,000.

12,992.00
127,000.00
2,000.00
3,982.00
28,254.00
93,088.00
103,684.00