Operating Stresses and their Effects on Degradation of LSM-Based SOFC Cathodes

> Mark De Guire, Arthur Heuer Case Western Reserve University Department of Material Science & Engineering Kickoff meeting for DE-FE0031189 30 November 2017, 10:00 a.m.

Outline

- Background
- Technical approach
- Project objective(s)
- Project structure
- Project schedule
- Project budget
- Project Management Plan, including Risk Management

- Goal: reduce long-term performance loss in SOFCs
 - Metric: area specific resistance (ASR)
 - Lifetime: \geq 5 years (40 kh)
 - Target: total average ASR rise <1% / kh
- Focus of this work: cathode optimization

- Causes of long-term performance loss in SOFCs?
 - Microstructural evolution
 - Loss of catalytic activity in electrodes
 - Mechanical degradation
 - Others ...
 - Effects are probably *coupled*
- Focus of this work: Cathode optimization
 - **Composition microstructure performance** relationships

• What drives microstructural change in SOFC cathodes?

Temperature	Current density	\leftarrow prior work			
Cathode atmosp	← this project				
Plausible microstructu	ure / performance links				
 Coarsening of m 	icrostructure (pores, YSZ, LSM)	← SEM, 3DR			
 Loss of three-pha 	se boundary (TPB) density	← 3DR			
• Interdiffusion \Rightarrow	changes in conductivity,	← TEM + EDXS			
catalytic activity, r	nechanical strength				

SEM: scanning electron microscopy3DR: three-dimensional reconstructionTEM: transmission electron microscopyEDXS: energy-dispersive x-ray spectroscopy

- What drives microstructural change in SOFC cathodes?
 - Temperature Current density ← prior work

 \leftarrow this project

- Cathode atmosphere
- Test conditions in prior work:
 - Accelerated: 1000 °C, 760 mA cm⁻²; ambient air at cathode
 - Conventional: 900 °C, 380 mA cm⁻²; ambient air at cathode
- In LSM cathodes: role of Mn excess? ← prior work & this project
 - A: $(La_{0.85} Sr_{0.15})_{0.90} MnO_{3\pm\delta} (LSM 85-90) 11\% Mn excess$
 - B: (La_{0.80} Sr_{0.20})_{0.95} MnO_{3±δ} (LSM 80-95) 5% Mn excess
 - C: (La_{0.80} Sr_{0.20})_{0.98} MnO_{3±δ} (LSM 80-98) 2% Mn excess

Prior work: Electrode ASR vs. t — accelerated testing

٠

Prior work: Mn excess and MnO_x formation (TEM + EDXS)

LSM 85-90 (A), accel'd

- More, larger MnO_x
- Accumulation of MnO_x at electrolyte interface

LSM 80-95 (B), accel'd

e'lyte

LSM-8YSZ cathode

• Sparse MnO_x (arrows)

LSM 80-98 (C) (not shown): *no* MnO_x

Wang et al., Met. Mater. Trans E 1 [3] 263-271 (2014).

Prior work: Microstructure after 500 h accel'd testing

as received

e'lyte cathode CCC

LSM 80-95 (B)

LSM 80-98 (C)

- Coarsening of pores & LSM
- Densification of CCC

10 µm

 Highest overall microstructural stability

- Coarsening of pores & LSM
- Densification of CCC

Procedure: Focused Ion Beam Slice & View for 3DR

Prior work: 3-D reconstruction

	LSM 85-90 (A); 11% Mn xs		LSI	vi 80-95 (B); 59	LSM 80-98 (C); 2% Mn xs		
	as rec'd	493h accel	as rec'd	500h accel	624h accel	as rec'd	500h accel
sample volume, μm ³	4350	4525	6300	5096	4550	4100	5012
porosity, volume %	17 18		29 25		25	28	25
pore diameter, μm	0.23	0.42	0.38	0.5	0.46	0.28	0.44
pore surface area, μm^{-1}	26	14	16	13	13	21	14
total TPB, μm^{-2}	17.1	5.9	14.5	14.8	11	21.7	11.1
active TPB, μm^{-2}	10.3	5.1	13.0	12.5	10	20.0	10.2

Vs. LSM 85-90 (A) and 80-98 (C), *LSM 80-95* (B) shows:

- Less pore coarsening and loss of pore area
- Stabler TPB (total and active)

A – **B** – **C** comparison: Phase profiles across cathode (3DR)

All three cathodes developed slight porosity gradients after 500 h of accelerated testing, with lowest porosity at cathode-electrolyte interface

Emerging relationships: Mn excess, ASR, TPB density

- As Mn excess ↓,
 ASR ↓
 (A → □ → C)
- As test *t* **↑**:
 - Active TPB
 - Total ASR
- Effects diminish as Mn excess ↓ (A → C)

 $\frac{\text{reproducibility}}{\text{ASR} [\Omega \text{ cm}^2], 0 \text{ h: } \pm 0.08 \text{ (A); } \pm 0.03 \text{ (B)}}$ active TPB density [μm^{-2}], 0 h: ± 3.0 (C)

Technical approach: overview of new project

Technical approach: button cells

- 8YSZ electrolyte from tape (Electro-Science Laboratories)
 - 32 mm in diameter 100 µm thick (fired)
- Screen-printed electrodes, 9.5 mm dia.
 - NiO-8YSZ anode same in all cells
 - LSM-8YSZ cathodes
 - Select ≥ two of compositions A, B, C, & D

Technical approach: cell testing

	temperature [°C]	current density [mA cm ⁻²]	oxygen partial pressure, p_{O2}		
conventional	900	380	0.2		
aggressive	1000	760	0.1		

	temperature [°C]	current density [mA cm ⁻²]	cathode p_{O2}	
prior work	900	380	0.2	
prior work	1000	760		
	900	380		
current work	900	OCV (control)	0.1	
	1000	760		
	1000	OCV (control)		

- Aging tests: effects of operating temperature at OCV
- **Durability testing:** effects of operating conditions

Technical approach: *low-p*₀₂ *cathode atmosphere*

• Past work: ambient air $(p_{O_2} = 0.2)$ for cathode atmosphere

Technical approach: *low-p*₀₂ *cathode atmosphere*

- Past work: ambient air ($p_{O_2} = 0.2$) for cathode atmosphere
- This work: *tube-in-*

tube test fixture

- Proven design
- Controlled p_{O2}
- Aggressive

condition

 $(p_{o_2} = 0.1)$

Technical approach: intermittent cycling

Accelerated CompositionC-500hrs

- Example of observed voltage fluctuations
 - 24-h cycle (17 of 20 d)
 Current cycling (10 of 15 LSV sweeps)

Project objectives

- Overall objectives:
 - Understand effect of operational parameters on performance in SOFCs with LSM / YSZ cathodes
 - Relate performance changes to microstructural changes (and Mn excess)

Project objectives

- Specific objectives:
 - Test cells under *reduced* p₀₂ ≥ 500 h
 - Aging
 Diagnostic (all cells)
 - Durability
 Current load cycling (all cells)
 - Use \geq 2 LSM compositions from prior work
 - Conduct detailed *microstructural characterization*
 - TEM EDXS 3DR (FIB/SEM)
 - Relate cell performance to operating conditions and microstructural changes — design rules

Project structure: Personnel

- Project Director: Mark R. De Guire, Ph.D.
- Principal Investigators:
 - Mark R. De Guire, Ph.D.

Associate Professor, Department of Materials Science and Engineering, CWRU

• Arthur H. Heuer, Ph.D.

Distinguished University Professor and Kyocera Professor of Materials Emeritus, Department of Materials Science and Engineering, CWRU

- Other personnel: Amir Avishai, Ph.D. Swagelok Center for Surface Analysis of Materials, CWRU
- Graduate Assistant: TBD CWRU

Project structure

De Guire
Graduate Assistant; ESFC*
Graduate Assistant, SCSAM ⁺ staff
Graduate Assistant
sis Graduate Assistant
SCSAM [†] staff SCSAM [†] staff Graduate Assistant

Mechanistic understanding & design rules (T11) De Guire, Heuer, Graduate Assistant

*) Engineering Services Fabrication Center, CWRU
 *) Swagelok Center for Surface Analysis of Materials, CWRU

Project schedule*

*) PMP to be revised to reflect actual start/end dates of 10/01/2017 - 09/30/2019

Project budget* — by budget period

	bu 10/0	dget period 1/17–09/30	1)/18	bu 10/0	1/18–09/30	total		
	gov't funding	cost share	total	gov't funding	cost share	total	gov't funding	cost share
CWRU	\$151,270	\$37,260	\$188,530	\$148,730	\$38,240	\$186,970	\$300,000	\$75,500
CS %:		19.8%			20.4%			20.1%

*) To be confirmed by CWRU financial support staff

Project budget* — by task

DOE, **+ CWRU** cost share

	Task1	Task2	Task3	Task4	Task5	Tasks6	Task7	Task8	Task9	Task10	Task11	Total
a. Personnel	22,736	8,477	9,625	9,625	9,625	9,625	9,625	9,625	7,616	7,616	19,425	123,620
b. Fringe Benefits	5,960	993	993	993	993	993	993	993	993	993	4,967	19,866
c. Travel	4,500	-	-	-	-	-	-	-	-	-	4,500	9,000
d. Equipment	-	-	-	-	-	-	-	-	-	-	-	-
e. Supplies	-	3,091	1,545	1,545	1,545	1,545	1,545	1,545	1,545	1,545	-	15,454
f. Contractual	-	-	-	-	-	-	-	-	-	-	-	-
g. Construction	-	-	-	-	-	-	-	-	-	-	-	-
h. Other Direct Costs	3,421	10,955	9,925	9,925	9,925	9,925	9,925	9,925	7,530	7,530	3,421	92,409
Total Direct Costs	36,617	23,516	22,089	22,089	22,089	22,089	22,089	22,089	17,685	17,685	32,313	260,349
Indirect Costs	19,917	10,414	8,737	8,737	8,737	8,737	8,737	8,737	7,532	7,532	17,335	115,151
Total Costs	56,534	33,930	30,826	30,826	30,826	30,826	30,826	30,826	25,216	25,216	49,648	375,500

*) To be confirmed by CWRU financial support staff

Risk:Delay in starting a testCategory:ScheduleImpact:ModerateMitigation & response:

- Budget for replacement hardware
- Two test stands are available; schedule presumes one

Risk: Disruption of test in progress

Category: Schedule; Resource

Impact: Moderate

- Thorough training
- Adherence to standard test protocols
- Design fixture to eliminate water buildup in exhaust line
- Have additional backup cells

Risk:Intermittent unavailability of SCSAM facilitiesCategory:ScheduleImpact:LowMitigation & response:

- Test schedule is independent of microstructural characterization schedule
- Test schedule includes breaks in SCSAM usage

Risk: Delay in fabricating test fixtures

Category: Schedule

Impact: High

- Close consultation with original designers
- Thoroughly test first fixture before building second

Risk: Unexpected outcomes of low- p_{O_2} testing

Category: Technical/Scope

Impact: Moderate

Mitigation & response:

- Check that fixture delivers intended atmosphere
- In consultation with FPO, modify work scope to include other variations in test conditions, e.g. longer time, higher current density (e.g. 1,000 mA cm⁻²),

Risk: High variability between tests

Category: Technical/Scope

Impact: Moderate

- Thorough training
- Adherence to standard test protocols
- Accept that other uncontrolled variables may be in play

Risk: Exceed allotted SCSAM budget

Category: Budgetary

Impact: Low

Mitigation & response:

 Conserve usage hours: analyze smaller 3D volumes, conduct fewer pointand-shoot analyses

Risk: Unavailability of personnel

Category: External influences; Schedule

Impact: Moderate

- Design project schedule with academic schedule in mind (exams, breaks)
- Conduct training sessions on actual test specimens
- Environmental, safety, and health risks None foreseen

Summary

- Significance
 - Practical LSM compositions
 - Realistic initial LSM/YSZ microstructures
 - Standard anodes and electrolytes
 - "Aggressive" conditions have practical precedents
 - Temperature gradients
 - Hot spots
 - Disruptions in air supply
- Mechanistic understanding and design rules: Anchor observed composition – microstructure – performance relationships in sound materials science and electrochemistry principles

Reproducibility of 3D reconstruction data

LSM 80-98 (C) as received, two specimens

