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1.  GOALS AND OBJECTIVES

Shale reservoirs are highly complex physically and chemically. The majority of chemical
additives used in hydraulic fracturing were developed based on research findings from
conventional oil/gas systems.  Due to the difference in industrial processes and source material, a
different way of thinking for unconventional systems is needed. As a community, we lack
understanding of the fundamental geochemical and kinetic parameters that govern precipitation
of ubiquitous scale phases such as barite in unconventional reservoirs during and following
stimulation. We also lack basic physical-chemical numerical models to predict gas and fluid
transport across the altered zone.

This project is conducting fundamental research to address two crucial and interrelated
reservoir performance needs that provide the potential to deliver significant increases in
efficiency:

(i) Reducing scale precipitation through better understanding and control of fundamental
geochemical and kinetic factors; and

(ii) Improving microscale knowledge of the fracture-matrix interface required to develop
chemical/physical manipulation approaches that can access resource in the matrix.

We are accomplishing these goals through a suite of activities that integrate synchrotron-
based imaging and CT methods, electron microscopy, permeability measurements, and
geochemical and reactive transport modeling. This approach is allowing us to associate pore- and
fracture-scale geochemical processes to resultant changes in transport properties.

Task 1 encompasses project management activities. The three scientific tasks defined in our
project management plan are (Figure 1): Task 2: Characterizing the influence of dissolved
organic compounds, pH, and ionic strength on barite scale precipitation. In contrast, Tasks 3 and
4 are focused on characterizing and modeling the chemical/microstructural alteration of shale-
fracture interfaces and the impact of this alteration on gas transport. Task 3 is nominally oriented
toward porosity generation within the altered layer, whereas Task  4 is focused on secondary
mineral precipitation within the altered layer (‘precipitation favorable’ conditions).  These two
chemical processes are interrelated (dissolution leads to precipitation), and the work flows for
subtasks 3 and 4 are similar. Consequently, Task 3 and 4 efforts have been merged and are
reported in section 3 (this section) as “Task 3&4”.  The merged work flow for Task 3&4 self-
organizes into 3 primary activities: (a) Chemical reactions and sub-core-scale geochemical
characterization; (b) permeability measurement, which requires whole-core characterization
using core-flood approaches; and (c) numerical modeling of altered shale-matrix interfaces.
Results for each are presented separately later in this section. Effort for Task 3&4 in Year 1 has
focused on activities (a) and (b), whereas numerical modeling will be a more significant focus in
Year 2.
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Tasks 3 & 4 (b) Measuring permeability alteration induced by fracture fluid reaction
5. Micro CT Imaging and segmentation were collected on both post-reaction Marcellus and

Eagle Ford samples to identify the depth of the penetration from the reaction fluid front into
the altered zone.

6. Porosity calculation from fluid penetration porosimetry measurements on both pre- and post-
reaction Marcellus and Eagle Ford samples

Tasks 3 & 4 (c) Numerical simulation of secondary porosity generation and scale
precipitation during shale-fluid interactions
7. Kinetic/thermodynamic modeling of shale experiments to develop a chemical reaction

network for shale-fluid interactions.

8. A one-dimensional reactive transport model was developed to simulate whole core
experiments under dissolution-favorable conditions in order to understand the coupling
between chemical reactions and transport during shale-fluid interactions.

Details of task progress:

Task 2: Effects of dissolved organic matter on the precipitation and stability of secondary
mineral phases

  Barite (BaSO4) scale precipitation is a prime concern in nearly all hydraulic fracturing
systems, both in shale bodies and in piping, because of its ubiquitous presence and low solubility,
tends to be over-saturated.  Barite is added to drilling muds (DM) at high concentrations (> 10
g/kg) in order to increase the density of the muds and aid in the drilling process [1-3].  Even
though some operators attempt to remove as much of the drilling mud as possible, significant
amounts of DM is imbedded in the rock during the drilling process remain. This leftover DM can
then react with the initial hydrochloric acid slug (~15%) injected down bore hole to clean up
perforations in the bore casing and to help clean out the drilling mud. In comparison to the
drilling mud, barium concentrations native to the shale host rock are lower, typically ≤ 1 g/kg in
the solid [4].  The high volume/pressure of the injection fluid and the low pH (~ pH 0), result in a
high probability of dissolving and mobilizing Ba from the DM and forcing it into the natural
fractures as well as the shale matrix itself. This introduction of significant quantities of Ba2+ and
SO4

2-, including that which is leached from the shale itself, will lead to scale production,
clogging of newly developed secondary porosity, and overall attenuation of permeability.

The scope of this task includes investigating the effects of various classes of added and
natural organics found in hydraulic fracturing systems, including fracture fluid additives
(biocides, breakers, crosslinkers, friction reducers, scale inhibitor, Fe-control, corrosion inhibitor,
and gellants), as well as those present in shale (both formation and produced waters). Major
questions being addressed by this task are, how do variations in pH, ionic strength, dissolved
organic compounds, and mineral surface area impact Ba release into hydraulic fracturing systems
and subsequent barite scale precipitation?
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Progress in quarter 7:
A draft of the manuscript has been submitted to Energy & Fuels for review

Results and Planned Experiments: All planned experimental work for this task is complete.

Table 1: Task 2 objectives for Quarter 7

Goal Status

Initial draft of manuscript Completed
Manuscript submission Completed

Manuscript plans:  A manuscript draft detailing the effect of various organics on the
precipitation of barite at various ionic strengths has been submitted to Energy & Fuels for review
and potential publication.  The manuscript includes variations, the lack of variation in speciation
and crystallinity of Ba-bearing precipitates.  A working title for this manuscript is: Organic and
inorganic controls on barite precipitation in hydraulic fracturing systems.  Additionally, a peer-
reviewed extended abstract (conference paper) was accepted and published for the URTeC
conference this summer in Houston, TX entitled: Barium Sources in Hydraulic Fracturing
Systems and Chemical Controls on its Release into Solution.

Task 3&4 (a): Fundamental precipitation and dissolution reactions controlling porosity
Understanding the properties of the altered zone at shale surfaces through experimentation

and modeling is centrally important to developing chemical manipulation technologies to
increase the efficiency and recovery factors for unconventional gas and oil production. Our
ultimate goal is to manipulate the permeability of the altered zone in-formation to increase access
to matrix. To do this successfully, we need to understand how to induce the formation of
connected porosity across the altered zone without triggering geochemical reactions that
precipitate secondary minerals. In the present quarter, we present important new results that help
to constrain two seminal properties of the altered zone, thickness (Task 3&4(a)) and
permeability (Task 3&4 (b)). In Task 3 & 4 (c), secondary porosity generation and mineral
precipitation is numerically simulated in order to understand the mechanisms of shale-fluid
interactions and predict future shale alteration based on initial shale mineralogy.

In this section (Task 3&4(a)) we reacted whole cores with fracture fluid and characterized
them with μ-x-ray CT and synchrotron μ-XRF chemical mapping to determine porosity changes,
alteration zone thickness, primary minerals dissolving (e.g., carbonate and pyrite), and
precipitating phases (e.g., Fe/Al oxides and Ca/Ba sulfate).  These measurements allow us to
identify the spatial distribution of these reactions within the shale pore structure.
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measurements and SEM imaging with Energy Dispersive Spectroscopy (EDS) analysis, we
performed µ-CT imaging on both post-reaction samples to image the depth of penetration of the
fracture fluid reaction front onto the shale matrix and measure the altered zone length over the
reaction duration. This will provide us with insight on where the fluid is concentrated and pushed
into the shale matrix. Afterwards we calculated pre- and post-reaction porosity changes on both
samples using an assortment of fluid penetration measurements. Results are listed in Table 4.

Results in Quarter 7:
In previous reports we showed barite precipitation occurring in shale matrices and

microcracks for both sample sets.  Because this only showed precipitation, we wanted to
investigate the total depth of barite precipitation into both the shale matrix and microcracks
including understanding the dissolution-to-precipitation rates occurring for each sample set. To
answer this question, we acquired 3D reconstructed x-ray CT imaging of the post-reaction shale
samples and segment the reconstructed 3D core into 2 main regions: a shale matrix +
microcracks region (green) and the fracture fluid reaction (yellow).

In Figures 6 and 7, we highlight a panel view comparison for each sample, where each
column is showing a 2D XY plane view of the reacted core plug surface (left column), 3D
reconstructed volume (middle column), and a 2D XZ plane view showing the depth of barite
penetration into the shale matrix and microcracks (right column). The top row of the figure is
image displayed in greyscale intensity, while the bottom row image is displayed in segmented
color regions representing shale matrix versus reacted shale. All 3D volumes are reconstructed
with 20µm x 20µm x 20µm voxel size.

For the Marcellus sample, as seen in Figure 6, we can see the post-reacted Marcellus core top
view (left column) and microcore 3D volume (middle column) showing microcrack distribution
of the shale sample and the bright regions signifying the altered zone being imaged. By
segmenting the 3D volume into shale matrix and microcracks (green) as a single volume, we can
isolate the reacted zone with the high concentration of alterations and reactions (yellow)
generated across the microcore (right column). We measure the depth of penetration of barite
precipitation along the reacted zone to be around 800µm, as shown from the 2D cross sectional
view A-A’ (bottom right).

We compare our findings to the reconstructed 3D CT volume of the Eagle Ford microcore, as
shown in Figure 7. There is more overall alteration, coupled with thicker altered zone, in the
Eagle Ford shale matrix and microcracks than in the Marcellus sample. This corresponds to
higher dissolution-to-precipitation rates observed from PSD measurements and SEM/EDS
imaging.  Since most of the reacted shale surface is dissolved and altered, more precipitation will
occur at to deeper depths into the shale matrix due to the presence of microcracks (bottom right).
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dissolution rate and total system pH. Since the Eagle Ford sample is predominantly made up of
carbonates, it had a higher dissolution-to-precipitation rate, which generated more secondary
porosity porosity compared to the low-carbonate/high-clay Marcellus sample. Calculated bulk
density gives us an idea of the dissolution-to-precipitation rates (kinetics) occurring in each
sample throughout the reaction time with the fracture fluid. The Eagle Ford sample shows the
bulk density to decrease post-reaction to fracture fluid, suggesting porosity opening reactions
dominate, while bulk density increases for the Marcellus sample, suggesting porosity occluding
reactions dominate. These observations help to explain – at the microstructural level – the
observed permeability behavior (reported in Quarter 6). The increased porosity in Eagle Ford
supports higher permeability, whereas loss of permeability in the Marcellus shale attenuates
permeability.

Table 4. Measured pore size distributions from fluid penetration measurements for pre- and
post-reaction shales.

Planned Experiments in the next quarter:

· No further experiments are planned

Manuscript Plans for Tasks 3&4(b).
URTeC 2018 extended abstract “Effects of Hydraulic Fracturing Fluid Chemistry on Shale
Matrix Permeability” has been published and presented.

Task 3&4 (c): Reactive transport modeling of shale-fluid interactions
Manipulation of reactions occurring in-situ in shale reservoirs will require a firm

understanding of the rates of reactions. Iron dissolution and oxidation are two such important
reactions, which help control iron scale precipitation. In our previous work, we showed
qualitatively that organics naturally present in shale (bitumen) helped to accelerate iron oxidation
by orders of magnitude, but we did not develop a rate law that can be used to quantify and
ultimately predict this process in shales. In Quarter 7, we developed a kinetic rate law for
bitumen-catalyzed Fe(II) oxidation. In this quarter we incorporated this rate law into a chemical
model to simulate the shale sands experiments published in Harrison et al. (2017) [5] and in Jew
et al, (2017) [6].  The modeling allows us to simulate the chemical reaction network in these
experiments and refine reaction kinetics of the bitumen-catalyzed Fe(II) oxidation pathway.

Pre-
reaction

Post-
reaction

Pre-
reaction

Post-
reaction

Grain Density (g/cc) 2.24 2.47 2.30 2.35

Calculated Porosity via Density
(%vol) 3.10 7.8 2.15 3.00

Calculated Pore Volume from
MICP (cc/g) 0.013 0.034 0.009 0.013

Bulk Density (g/cc) 2.34 2.28 2.25 2.28

Eagle Ford Marcellus

Mercury Porosimetry
(Washburn Equation)

Helium Pycnometry (Gas
Displacement Method)

Measurement Tool (Method)
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Results in Quarter 7:
Barite precipitation

The mineralogical composition of New York Marcellus and Eagle Ford shales used in the
shale “sand” experiments were previously reported in Harrison et al. (2017) [5] and Jew et al,
(2017) [6]. Note: overall compositions differ between reported values for sand and whole-core
experiments.  In the shale “sand” experiments, 150 – 250 μm particles were prepared and 1 g
submerged in 200 mL of synthetic fracture fluid, with a 50 mL headspace above the fracture
fluid. The reaction lasted 3 weeks at 80o C and 1 bar without agitation, and time-resolved
samples were collected. More details about experimental materials and methods can be found in
Harrison et al. (2017) [5] and Jew et al, (2017) [6].

Table 5.  Objectives in Tasks 3&4 (c) for Quarter 7

Goal Status

Build a chemical model to simulate Marcellus and Eagle Ford sand
experiments performed in 2016 and 2017

Complete

Chemical modeling was carried out using the reactive transport modeling software package
CrunchFlow [7]. A closed-system batch model consisting of a single grid cell characterized by
the experimental fluid volume and rock mass was developed to reflect the experimental setup.
The major aqueous species we focus on in the numerical simulation include pH, Ca2+ from
carbonate dissolution, SO4

2- from pyrite oxidation, and total aqueous Fe controlled by the balance
between pyrite dissolution, Fe(II) oxidation, and Fe(III)-(hydr)oxide precipitation.

Mineral composition reported in volume percentages (௠௜௡௘௥௔௟
௦௛௔௟௘

× 100% ) in Table 6 is
calculated from that reported in Harrison et al. (2017) [5] and Jew et al (2017) [6], assuming all
minerals are similar in density. The mineral volume percentages used in model, also reported in
Table 6, were originally based on the measured values. However, because the overall reaction
rate is a product of the mineral volume, reactive surface area, and reaction affinity, in order to
match the observed reaction rates required the adjustment of total mineral volumes, indicating
some of the minerals in the shale were not accessible to the fluid.  Several minerals commonly
found in shale, but not detected using XRD, were also included (based on mass balance
comparisons between the model and experiments). These mineral percentages are then multiplied
by the volume fraction of shale sands in the reaction medium (e.g., 0.2 vol% shale sands in 200
mL fracture fluid) to yield the initial mineral fraction used in the single reaction cell in the model.
The initial aqueous composition used in the model is the same for both Marcellus and Eagle Ford
systems, as shown in Table 7. The fraction of bitumen was estimated with the assumption that
bitumen content is about 10 ppm in shale with a density of 0.9 g/cm3. The amount of bitumen
does not affect the Fe(II)-oxidation rate because the rate law for bitumen-catalyzed Fe(II)-
oxidation is not sensitive to the absolute amount of bitumen as long as bitumen is present.
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Table 6. Mineral volume percentages measured in experiments compared to values required
to reproduce observed mass balance using the model simulations. The decrease in model values
relative to measured can be interpreted to reflect the fluid-accessible volume relative to the total

or bulk volume.

Marcellus Eagle Ford
Minerals Measured (%) Model (%) Measured (%) Model (%)

Pyrite 6.4 0.91 2.7 0.7
Calcite 11.6 9.5 64.5 70.0

Dolomite 1.1 1.1 - -
Clay (illite) 35.0 35.0 7.6 7.6

Feldspar (albite) 3.7 0.56 - -
Quartz 42.2 42.2 25.2 25.2

SiO2(am) - 0.20 - 0.20
Siderite - 0.25 - -

Hematite - 0.0025 - 0.0025
Bitumen - 0.0020 - 0.0020

Table 7. Initial aqueous composition for fracture fluid in the model

Species Value Notes
pH 2 Tuned with HCl in the experiment
Cl- 408 ppm (1.15×10-2 M) Calculated from charge balance

O2(aq)
* 8 ppm (2.56×10-4 M) Equilibrated with atmospheric O2 at 25 oC

CO2(aq)
** 0.6 ppm (1.40×10-5 M) Equilibrated with atmospheric CO2 at 25 oC

Organics 10 ppm Combines all organic chemicals added to the fracture fluid
* Allow additional O2 (in headspace or diffused from outside of the reactor) dissolving into solution
during reaction.
** Allow CO2 generated from CaCO3 dissolution to partition between the fracture fluid and the reactor
headspace during reaction, according to Henry’s Law.

Key reactions and parameters used in the model are listed in Table 8. Most aqueous chemical
reactions involving the formation of aqueous complexes are described by equilibrium
relationships, except the Fe(II)-oxidation reaction which is known to be a kinetically limited
reaction. As reported in Quarter 6 Report, the Fe(II) oxidation occurs in two pathways, namely
the H+-dependent pathway and the bitumen-dependent pathway. Both the pathways are
incorporated into the model to simulate shale-fluid interactions. The aqueous Fe(II) oxidation
reaction rate is written as (variables are defined at top of page 17, where text continues):

Rate = ݇ ∙ ∏(ܽ)ఔ ∙ ( ொ
௄౛౧

− 1) Eq.1

Table 8. Key reactions and parameters in the model at 80 oC
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Speciation reactions
Species Reaction logKeq

H

Hା + OHି ↔ HଶO 12.60
HCl(ୟ୯) ↔ Hା + Clି -0.64

COଶ(ୟ୯) + HଶO ↔ Hା + HCOଷ
ି -6.30

COଷ
ଶି + Hା ↔ HCOଷ

ି 10.08
HଶS(ୟ୯) ↔ Hା + HSି -6.54

HଶSOସ(ୟ୯) ↔ SOସ
ଶି + 2Hା 1.02

Ca

CaOHା + Hା ↔ Caଶା + HଶO 12.85
CaClା ↔ Caଶା + Clି 0.49

CaClଶ(ୟ୯) ↔ Caଶା + 2Clି 0.54
CaSOସ(ୟ୯) ↔ Caଶା + SOସ

ଶି -2.38

Fe(II)

FeOHା + Hା ↔ Feଶା + HଶO 7.87
Fe(OH)ଶ(ୟ୯) + 2Hା ↔ Feଶା + 2HଶO 17.23

FeClା ↔ Feଶା + Clି -0.070
FeClଶ(ୟ୯) ↔ Feଶା + 2Clି 2.02

FeCOଷ(ୟ୯) + Hା ↔ Feଶା + HCOଷ
ି 5.60

FeHCOଷ
ା ↔ Feଶା + HCOଷ

ି -2.72
FeSOସ(ୟ୯) ↔ Feଶା + SOସ

ଶି -2.20

Fe(III)

FeOHଶା + Hା ↔ Feଷା + HଶO 1.34
Fe(OH)ଶା + Hା ↔ Feଷା + 2HଶO 4.73

Fe(OH)ଷ(ୟ୯) + 3Hା ↔ Feଷା + 3HଶO 12.95
FeClଶା ↔ Feଷା + Clି -0.36
FeClଶା ↔ Feଷା + 2Clି -2.13

FeCOଷ
ା + Hା ↔ Feଷା + HCOଷ

ି 1.73
FeSOସ

ା ↔ Feଷା + SOସ
ଶି -3.00

Al
AlOHଶା + Hା ↔ Alଷା + HଶO 3.52

Al(OH)ଶା + 2Hା ↔ Alଷା + 2HଶO 7.82
AlSOସ

ା ↔ Alଷା + SOଷ
ଶି -3.01

Mg MgClା ↔ Mgଶା + Clି -0.048
MgCOଷ(ୟ୯) + Hା ↔ HCOଷ

ି + Mgଶା 6.73
Fe(II) oxidation aqueous kinetic reactions

Pathway Reaction ෑ(ܽ)஝ logKeq logk

H+-dependent Feଶା + Hା + 0.25Oଶ(ୟ୯)
→ Feଷା + 0.5HଶO

(Fe2+)1.0(O2(aq))1.0(H+)-2.0

0.938
-5.82

Bitument-
dependent (Fe2+)1.0(O2(aq))1.0(Bitumen)0.1 5.9 for Marcellus;

7.9 for Eagle Ford
Mineral kinetic reactions

Mineral Reaction ෑ(ܽ)஝ logKsp logk

Pyrite Pyrite + 	HଶO + 3.5Oଶ(ୟ୯) → 2Hା + 2SOସ
ଶି + Feଶା (O2(aq))0.5(H+)-0.11 217 -8.0 for Marcellus;

-8.5 for Eagle Ford
Calcite Calcite + 	Hା → Caଶା + HCOଷ

ି (H+)1.0 1.05 -5.5
Dolomite Dolomite + 	2Hା → Caଶା + Mgଶା + 2HCOଷ

ି (H+)0.5 0.70 -7.5
Clay

(illite)
Illite + 	8Hା → 0.25Mgଶା + 0.6Kା + 2.3Alଷା

+ 3.5SiOଶ(ୟ୯) + 5.0HଶO None 3.79 -11.0

Feldspar
(albite) Albite + 4Hା → Alଷା + Naା + 2HଶO + 3SiOଶ(ୟ୯) None 0.93 -11.0

Quartz Quartz → SiOଶ(ୟ୯) None -3.24 -15.0
SiO2(am) SiOଶ(ୟ୫) → SiOଶ(ୟ୯) None -2.27 -7.2
Siderite Siderite + Hା → Feଶା + HCOଷ

ି None -1.17 -7.0
Hematite Hematite + 6Hା → 2Feଷା + 3HଶO None -4.94 -8.0
Bitumen Bitumen(ୱ) → Bitument(ୟ୯) (Organics)1.0 -1.30 -2.3
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Fe(III) (hydr)oxide precipitation that produces H+ and decreases pH (as demonstrated in Quarter
6 Report Task 3&4 (c)), and the dissolution of clay and feldspar that consumes H+.

As shown in the Fe figure for Marcellus, the Fe concentration increases at the beginning of
the reaction due to mineral dissolution. Most of the Fe is dissolved from pyrite but including a
small amount (lower than XRD detectable content) of siderite in the model is required to capture
the rapid initial increase in the Fe concentration. The Fe concentration drops after a couple of
days due to Fe(II)-oxidation and Fe(III) (hydr)oxide precipitation.

Unlike the Marcellus system, the modeling results for pH evolution in the Eagle Ford system
are lower by about 1 pH unit relative to the pH measured in the Eagle Ford experiments. Even
though the model predicts that 81.5% of carbonate is still present at the end of the reaction, the
model does not predict further carbonate dissolution to increase pH. To explain this pH
discrepancy, one needs to consider the difference between in situ condition (i.e., what the model
predicts) and the measurement condition (i.e., the condition when the aqueous solution was
analyzed in the experiments). During the reaction, the reactor was sealed with a rubber cap,
allowing limited gas diffusion (if any) across the reactor boundaries. As the carbonate was
dissolving, CO3

2- released from the solid phase increased the CO2 fugacity. The CO2 would
escape from the solution and accumulate in the reactor headspace according to Henry’s law. A
mass balance calculation showed that with 200 mL reaction fluid and 50 mL headspace, the end
pH for the Eagle Ford reaction solution before CO2 degasses should be pH 6.1 (lower than
experimentally measured pH), as shown by the solid line in Figure 9. In the experiments, the pH
measurements were conducted after a liquid sample was transferred out of the reactor. During the
sampling process, more CO2 degassed from the solution, and pH should increase somewhat to
higher values. Thus, we conclude that the model-data discrepancy in pH (about 0.5 pH units) is
due to CO2 degassing prior to measurement.

To match the experimentally measured Fe concentration in the Eagle Ford system also
required an increase in the rate constant (k) for the bitumen-catalyzed Fe(II)-oxidation. The high
pH and the time lapse between sampling and measurement for the Eagle Ford system could be a
possible explanation for the higher rate constant (8 × 107 mol/kg of water/yr, compared to 8 × 105

mol/kg of water/yr for the Marcellus system). However, it is also possible that the in situ Fe
concentrations were higher than the concentrations measured after sampling, because after
sampling the solution could have further reacted with O2 and experienced pH increase due to
CO2 degassing, both processes favoring Fe(II) oxidation and precipitation that lowers the
aqueous Fe concentration.   Another explanation for the different rates of bitumen-catalyzed
oxidation between the Marcellus and Eagle Ford systems is the bitumen itself. As bitumen is a
composite of organic-soluble organic compounds in shale without a standard chemical formula,
the composition can vary considerably from shale to shale. The bitumen used to study Fe(II)
oxidation in shale-free systems (i.e., the experiments simulated in Quarter 6) was extracted from
Marcellus, and a k value of 8 × 105 mol/kg of water/yr was obtained from modeling. It is possible
that the bitumen in Eagle Ford has greater catalytic potential for Fe(II)-oxidation.

From modeling of both Marcellus and Eagle Ford “sand” experiments, three new insights
emerge regarding pyrite oxidation and Fe(III)-scale formation:

First, the fracture fluid has limited access to the majority of pyrite. The sulfate concentrations
measured from both the Marcellus and Eagle Ford experiments show a rapid increase at the
beginning of the reaction followed by a decrease in net release at later times, suggesting that
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pyrite dissolution at a later time point was limited by diffusion. This is reasonable because the
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(i.e., 14% of the total pyrite was dissolved) and 74% for Eagle Ford (i.e., 26% of the total pyrite
was dissolved).

Second, dissolved O
the air in the reactor headspace (includ
obtaining the Fe(II) oxidation kinetics observed in the experiments. Without this supply of O
into the fracture fluid, the initial dissolved O
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9. RISK ANALYSIS
Task 1: No significant risks to report at this stage of the project.

Task 2: No significant risks to report at this stage of the project.

Task 3&4. No significant risks to report at this stage of the project.
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10.  MILESTONE STATUS

Activity and milestones
Verification

method†

Planned
Milestone

Date

Actual
completion

or status
Task 1. Project management
1.1  Development of PMP D 10-31-16 10-28-16
1.2  Recruit postdoc / RA D 4-30-17 10-30-17
1.3  Quarterly research performance reports D 1-30-17‡ 7-30-17
1.4  Annual research performance report D 11-30-17* 11-30-17
1.5  Final technical report D 11-30-18

Task 2. Influence of dissolved organic compounds on precipitate
formation/stability

2.1  Research/evaluation of literature and detailed experimental design D 1-30-17 12-23-16
2.2  Set-up and test stirred tank reactors D 1-30-17 12-19-16
2.3 Complete initial scoping experiments to determine types of

organic compounds for detailed measurement D 4-30-17 3-13-17

2.4  Complete measurements of initial rates of solid precipitation D 7-30-17 6-30-17

2.5  Identification of precipitate mineralogy XRD, XAS,
SEM 10-30-17 9-30-17

2.6  Complete measurement of shale sand dissolution D 7-30-17 6-30-17
2.7  Complete solubility measurements D 7-30-17 10-30-17
2.8 Dissolution rate measurements in presence of shale sands with

coupled dissolution and precipitation D 10-30-17 10-30-17

2.9  Complete initial draft of manuscript D 4-30-18 4-30-18
2.10  Submit manuscript D 7-30-18 7-30-18

Task 3. Impact of secondary pore networks on gas transport across
shale matrix-fracture interfaces

3.1 Research/evaluation of literature and design experiments
favorable for secondary porosity generation D 1-30-17 12-21-16

3.2  Submit beam time proposals D 1-30-17 12-1-16
3.3  Acquire shale samples D 1-30-17 11-9-16
3.4  Conduct telecons quarterly (as needed) with NETL group N 1-30-17‡ Ongoing
3.5  Conduct telecons quarterly (as needed) with LANL group N 1-30-17‡ Ongoing
3.6  Mineralogical characterization of shale samples XRD, SEM 7-30-17 6-30-17
3.7  Measure gas permeability of unreacted cores P 7-30-17 7-30-17
3.8  Collect μ-CT images for unreacted shale cores μ-CT 7-30-17 3-7-17
3.9  Complete image processing for unreacted shale cores D 10-30-17 10-30-17
3.10  Set up and test whole-core reactors: initial scoping experiments D 7-30-17 11-30-16
3.11  Perform shale whole-core reactions D 1-30-18 12-19-16
3.12  Collect μ-CT images on reacted cores μ-CT 4-30-18 12-30-17
3.13  Collect XRM maps on thin section of unreacted and reaction

cores XRM, SEM 4-30-18 4-30-18

3.14  Measure gas permeability through reacted cores P 4-30-18 4-30-18
3.15  Complete image processing and data analysis for reacted cores D 9-30-18 In progress
3.16 Develop a shale sand batch reaction model to refine rate constants

for new Fe(II) oxidation rate law D 9-30-18 7-30-18

3.17  Complete initial draft of manuscript D 9-30-18
3.18  Submit manuscript D 12-30-18
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Activity and milestones
Verification

method†

Planned
Milestone

Date

Actual
completion

or status
Task 4. Impact of secondary precipitation on gas transport across

shale matrix-fracture interfaces
4.1 Research/evaluation of literature and design experiments

favorable for secondary precipitation D 1-30-17 12-21-16
4.2  Measure gas permeability of unreacted cores P 7-30-17 7-30-17
4.3  Collect μ-CT images on unreacted shale cores μ-CT 7-30-17 3-7-17
4.4  Complete image processing and analysis on unreacted shale cores D 10-30-17 10-30-17
4.5  Set up and test whole-core reactors: initial scoping experiments D 10-30-17 3-20-17
4.6  Perform shale whole-core reactions D 4-30-18 4-30-18
4.7  Measure permeability of reacted cores D 9-30-18 3-30-18
4.8  Collect μ-CT images on reacted cores P, μ-CT 10-30-18 3-30-18
4.9 Collect XRM maps on thin section of unreacted and reaction

cores XRM, SEM 10-30-18 7-30-18

4.10  Complete image processing and data analysis for reacted cores D 3-30-19 In progress
4.11  Develop a batch reaction model to refine rate constants for barite

scale precipitation reactions NM 10-30-18 3-30-18

4.12 Build a 1D reactive transport model for shale matrix-fluid
interface reactions D 12-30-18 In progress

‡ Quarterly reports will follow every 3 months following starting date. * Annual reports are due every 12 months on
Nov 30.
† Verification Method Key:
AF = Software for data processing and visualization (Avizo Fire)
D = Documentation or data
EELS = Electron energy loss spectroscopy
FIB-SEM = Focused ion beam – scanning electron microscopy
μ-CT  = Micrometer-scale X-ray computed tomography
nano-CT = Nanometer-scale X-ray computed tomography
N = Note from meeting
NM = Numerical modeling
OP = Optical petrography
P = Pulse-decay permeability
SAXS  = Small angle X-ray scattering
SANS  = Small angle neutron scattering
SEM = Scanning electron microscopy
TEM = Transmission electron microscopy
TXMWiz = Software for data processing of transmission X-ray images (TXM Wizard)
XAS  = X-ray absorption spectroscopy
XRM = X-ray microprobe
XRD  = X-ray diffraction
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11.  SCHEDULE STATUS
All milestones for this quarter have been met. As of the time of writing, the project is on-

schedule.

Changes to schedule and milestones in the past quarter: Qingyun Li (postdoc) is taking 2-
month maternity leave from mid-June to mid-August.  Since Qingyun is performing tasks 3&4(a)
and (c), we have rescheduled the affected subtasks.  These changes were anticipated and
approved in May 2018 and noted in the report for Quarter 6 (May 15, 2018).

Cumulative modification explanation log for milestones list:

Report
Date Task

Planned
date

Revised
date New Task goal / Explanation

5-15-18 3.15 7-30-18 9-30-18 Accommodate 2-month maternity leave
5-15-18 3.16 7-30-18 9-30-18 Accommodate 2-month maternity leave

New task name: “Develop a shale sand batch reaction
model to refine rate constants for new Fe(II)
oxidation rate law”

5-15-18 3.17 7-30-18 9-30-18 Accommodate 2-month maternity leave
5-15-18 3.18 10-31-18 12-30-18 Accommodate 2-month maternity leave
5-15-18 4.10 1-31-19 3-30-19 Accommodate 2-month maternity leave
5-15-18 4.11 10-31-18 NA New task name: Develop a batch reaction model to

refine rate constants for barite scale precipitation
reactions

5-15-18 4.12 NA 12-30-18 New task: Build a 1D reactive model for shale
matrix-fluid interface reactions
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Project timeline from the Project Management Plan. “M” denotes milestones.
Task Title

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

1 Project management plan
1.1 Development of PMP
1.2 Recruit postdoc/RA
1.3 Quarterly research performance reports
1.4 Annual research performance report
1.5 Final technical report
2 Influence of dissolved organic compounds on precipitate formation/stability

2.1 Evaluate literature/ experimental design
2.2 Set-up and test stirred tank reactors
2.3 Complete initial scoping experiments
2.4 Complete measurements of initial rates

of solid precipitation
2.5 Identification of precipitate mineralogy
2.6 Measure shale sand dissolution
2.7 Complete solubility measurements
2.8 Dissolution rate measurements in

presence of shale sands
2.9 Complete initial draft of manuscript
2.10 Submit manuscript

3 Impact of secondary pore networks on gas transport across shale matrix-fracture interfaces
3.1 Evaluate literature/ experimental design
3.2 Submit beam time proposals
3.3 Acquire shale samples
3.4 Quarterly (as needed) with NETL group
3.5 Quarterly (as needed) with LANL group
3.6 Mineral characterization shale samples
3.7 Measure permeability of unreacted cores
3.8 Collect μ-CT images, unreacted  cores
3.9 Image processing, unreacted shale cores

3.10
Test whole-core reactors: Initial scoping
experiments

3.11 Perform shale whole-core reactions
3.12 Collect μ-CT images on reacted cores
3.13 XRM maps, unreacted/ reacted  cores
3.14 Measure permeability of reacted cores
3.15 Image processing, reacted shale cores

3.16
Develop a batch reaction model to refine
rate constants for Fe(II) oxidation

3.17 Complete initial draft of manuscript
3.18 Submit manuscript

4 Impact of matrix precipitation on gas transport across shale matrix-fracture interfaces
4.1 Evaluate literature/ experimental design
4.2 Measure permeability of unreacted cores
4.3 Collect μ-CT images, unreacted  cores
4.4 Image processing, unreacted shale cores

4.5
Test whole-core reactors: Initial scoping
experiments

4.6 Perform shale whole-core reactions
4.7 Measure permeability of reacted cores
4.8 Collect μ-CT images on reacted cores
4.9 XRM maps, unreacted/ reacted  cores
4.10 Image processing, reacted shale cores

4.11
Develop a batch reaction model to refine
rate constants for barite scale

4.12
Build a 1D reactive model for shale
matrix-fluid interface reactions

2016 2017 2018 2019
Month of project
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12.  COST STATUS

Year 4 Start: 10/1/16   End: 9/30/17 Year 5 Start: 10/1/17   End: 9/30/18
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Task 1 9,686$ 9,686$ 9,686$ 9,686$ 12,750$ 12,750$ 12,750$ 12,750$
Task 2 31,681$ 31,681$ 31,681$ 31,681$ 44,625$ 44,625$ 44,625$ 44,625$
Task 3 42,400$ 42,400$ 42,400$ 42,400$ 35,700$ 35,700$ 35,700$ 35,700$
Task 4 23,733$ 23,733$ 23,733$ 23,733$ 34,425$ 34,425$ 34,425$ 34,425$
Task 5
Task 6

107,500$ 215,000$ 322,500$ 430,000$ 557,500$ 685,000$ 812,500$ 940,000$

Task 1 7,290$ 13,437$ 8,509$ 16,530$ 14,370$ 9,979$ 12,291$
Task 2 25,514$ 47,028$ 29,782$ 57,855$ 50,294$ 34,927$ 43,019$
Task 3 20,411$ 37,622$ 23,826$ 46,284$ 40,236$ 27,942$ 34,415$
Task 4 19,682$ 36,279$ 22,975$ 44,631$ 38,799$ 26,944$ 33,186$
Task 5 -$ -$ -$ -$ -$ -$ -$ -$
Task 6 -$ -$ -$ -$ -$ -$ -$ -$

72,898$ 134,366$ 85,093$ 165,300$ 143,698$ 99,792$ 122,912$ -$

Task 1 2,396$ (3,750)$ 1,177$ (6,843)$ (1,620)$ 2,771$ 459$ 12,750$
Task 2 6,167$ (15,347)$ 1,899$ (26,174)$ (5,669)$ 9,698$ 1,606$ 44,625$
Task 3 21,988$ 4,777$ 18,574$ (3,884)$ (4,536)$ 7,758$ 1,285$ 35,700$
Task 4 4,050$ (12,546)$ 758$ (20,898)$ (4,374)$ 7,481$ 1,239$ 34,425$
Task 5 -$ -$ -$ -$ -$ -$ -$ -$
Task 6 -$ -$ -$ -$ -$ -$ -$ -$

-$ -$ -$ -$ -$ -$ -$ -$

-$ -$ -$ -$ -$ -$ -$ -$
52,503$ 25,637$ 48,044$ (9,755)$ (25,953)$ 1,755$ 6,343$ 133,843$Cumulative Variance

Cumulative Baseline Cost

Basesline Reporting Quarter

Actual Incurred Costs

Federal Share

Non-Federal Share
Total Incurred Costs - Quarterly

(Federal and Non-Federal)
Cumulative Incurred Cost

Variance

Federal Share

Non-Federal Share
Total Variance - Quarterly
(Federal and Non-Federal)

Cost Plan/Status

Baseline Cost Plan

Federal Share

Non-Federal Share
Total Planned Costs

(Federal and Non-Federal)
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13.  COLLABORATIVE LEVERAGING.
We are currently collaborating with 1 Ph.D. student in the Zoback research group at Stanford

University.  Additional, collaboration is ongoing with the Hakala and Lopano groups at NETL. A
new LDRD proposal has been submitted that would support the development of machine
learning algorithms for accelerating segmentation of synchrotron m-CT image data. If successful,
this activity will strongly support the existing NETL project.

14.  CONCLUSIONS
The manuscript for Task 2 has been completed and submitted for review in Energy & Fuels.

A total of 3 peer-reviewed extended manuscripts (conference papers) for the 2018 URTeC have
been published.  The kerogen manuscript submitted to Energy & Fuels was reviewed and a new
version of the manuscript comments was submitted and is awaiting a final decision from the
editor on publication.  We submitted a new FWP for the project to DOE-HQ outlining our plans
for extension of our project.  Additionally, we have started a new industrial collaboration with
Pioneer Natural Resources to understand mineral scaling problems in the Permian Basin.

The properties of the altered zone at shale surfaces are centrally important to developing
chemical manipulation technologies by which shale interfaces can be controlled in-formation to
increase access to matrix. In this quarter, we presented important new results that help to
constrain two seminal properties of the altered zone: thickness and permeability. Image
segmentation analysis of µ-CT data of post reaction cores for both Marcellus-PA and Eagle Ford
show the depth of penetration of the fracture fluid into the shale matrix altered zone to be ca 1
mm. Microfractures were important foci of shale alteration in both Marcellus and Eagle Ford
shales.

In our Quarter 6 report, we showed that Marcellus shale permeability decreased 20% after
reaction with fracture fluids, whereas Eagle Ford porosity increased by an order of magnitude.
However, we did not present microscale results that could explain this sharply contrasting
behavior. In the present report, we show that the bulk density of the reacted Marcellus shale
increased, implying that porosity was destroyed or disconnected. In contrast, in Eagle Ford shale,
we showed that porosity increased by over 4%, indicating the porosity-generation out-stripped
the negative impacts of barite precipitation. These findings provide an explanation for the
previously reported permeability changes and provide valuable insights for designing
manipulation strategies.

In Task 3&4(c), a chemical model was built for our previous shale “sand” experiments
conducted in 2016 and 2017 to (1) refine the kinetic rate constant for bitumen-catalyzed Fe(II)
oxidation and to (2) better understand the chemical reaction mechanisms during shale-fluid
interactions. The modeling results reproduced the experimental data with the rate constant for
bitumen-catalyzed Fe(II)-oxidation reaction tuned to be 8×105 mol/kg/yr for Marcellus and 8×107

mol/kg/yr for Eagle Ford. This reaction pathway is shown to be critical for both Marcellus and
Eagle Ford systems in capturing Fe(II) oxidation trends measured in the experiments. Modeling
results also suggest that pyrite dissolution is limited by accessibility of fracture fluid to pyrite
grains inside the sand particles. In addition, the dissolved O2 in the initial fracture fluid can be
quickly consumed by pyrite dissolution, and further dissolution of pyrite and Fe(II) oxidation
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require continuous supply of O2 from the headspace of the reactor, or in real subsurface hydraulic
fracturing sites, from continuous injection of fracturing fluid from surface.
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APPENDIX A. Deliverables
Publications.
URTeC Extended Abstracts (2018)-

1. Barium Sources in Hydraulic Fracturing Systems and Chemical Controls on its Release into
Solution. Adam D. Jew, Qingyun Li, David Cercone, Kate Maher, Gordon E. Brown, Jr., John R.
Bargar

2. Imaging Pyrite Oxidation and Barite Precipitation in Gas and Oil Shales. Qingyun Li, Adam
D. Jew, Andrew M. Kiss, Arjun Kohli, Abdulgader Alalli, Anthony R. Kovscek, Mark D.
Zoback, David Cercone, Katharine Maher, Gordon E. Brown, Jr., John R. Bargar

3. Effects of hydraulic fracturing fluid on shale matrix permeability. Abdulgader Alalli, Qingyun
Li, Adam Jew, Arjun Kholi, John R. Bargar, Mark Zoback

Energy & Fuels (In Review)-

4. Shale Kerogen-Hydraulic Fracturing Fluid Interactions and Contaminant Release. Megan K.
Dustin, Adam D. Jew, Anna L. Harrison, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher,
Gordon E. Brown, Jr., John R. Bargar

5. Organic and Inorganic Controls on Barite Precipitation in Hydraulic Fracturing Systems.
Adam D. Jew, Qingyun Li, Kate Maher, Gordon E. Brown, Jr., John R. Bargar

Environmental Science & Technology (In Preparation)-

6. The Effect of Hydraulic Fracturing Fluid on the Stability of Uranium in Unconventional
Oil/Gas Shales. Adam D. Jew, Clemence J. Besancon, Scott J. Roycroft, Vincent S. Noel,
Gordon E. Brown, Jr., John R. Bargar

Presentations at National Meetings.
7. AIChE Annual Meeting, Oct. 29-Nov. 3, 2017, Minneapolis, MN. Adam D. Jew, David Cercone,

Qingyun Li, Megan K. Dustin, Anna L. Harrison, Claresta Joe-Wong, Dana L. Thomas, Kate Maher,
Gordon E. Brown, Jr., John R. Bargar. Chemical controls on secondary mineral precipitation of Fe
and Ba in hydraulic fracturing systems.

8. AGU Fall Meeting, Dec. 11-15, 2017, New Orleans, LA. Qingyun Li, Adam D. Jew, Gordon E. Brown,
Jr., John R. Bargar. Chemical reactivity of shale matrixes and the effects of barite scale formation

9. DOE Upstream Workshop, Feb. 14, 2018, Houston, TX. Alexandra Hakala, Joe Morris, John Bargar,
Jens Birkholzer. Fundamental Shale Interactions-DOE National Laboratory Research

URTeC Conference, July 23-25, 2018, Houston, TX:

9. Adam D. Jew, Qingyun Li, David Cercone, Kate Maher, Gordon E. Brown, Jr., John R.
Bargar. Barium Sources in Hydraulic Fracturing Systems and Chemical Controls on its
Release into Solution.

10. Qingyun Li, Adam D. Jew, Andrew M. Kiss, Arjun Kohli, Abdulgader Alalli, Anthony R.
Kovscek, Mark D. Zoback, David Cercone, Katharine Maher, Gordon E. Brown, Jr., John
R. Bargar. Imaging Pyrite Oxidation and Barite Precipitation in Gas and Oil Shales

11. Abdulgader Alalli, Qingyun Li, Adam Jew, Arjun Kholi, John R. Bargar, Mark Zoback.
Effects of hydraulic fracturing fluid on shale matrix permeability.
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Other activities.

· Participant in DOE-FE Oil and Natural Gas Knowledge Management adviser group (A. Jew)
· Participant in DOE-FE Oil and Natural Gas Science Leadership adviser group (J. Bargar)


