the Energy to Lead

Bench-scale Development of a Transformational Graphene Oxide-based Membrane Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE0031598

Shiguang Li, *Gas Technology Institute (GTI)* Miao Yu, *Rensselaer Polytechnic Institute (RPI)*

CO₂ Capture Technology Project Review Meeting August 13 - 17, 2018, Pittsburgh, PA

Project overview

- **Performance period**: June 1, 2018 Sep. 30, 2021
- **Funding**: \$2,914,074 from DOE; \$728,738 cost share
- Objective: Develop a transformational graphene oxide (GO)-based membrane process (GO²) for CO₂ capture with 95% CO₂ purity and a cost of electricity (COE) at least 30% lower than DOE amine reference baseline SC PC plant case

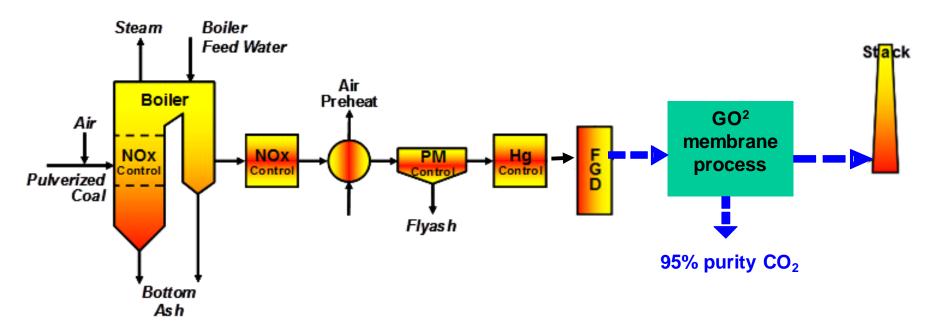
<u>Team:</u>	Member	Roles
	ati	Project management and planningQuality control
	gu	 CO₂ capture performance tests
	Rensselaer	GO membrane development and scale-up
	T + H + E OHIO SIAIE UNIVERSITY	Scale-up of flat sheet GO membrane modulesProcess design and optimization
	TRIMERIC CORPORATION	Technical & economic study

GO membrane technology based on our work published in *Science* and *Nature Communications*

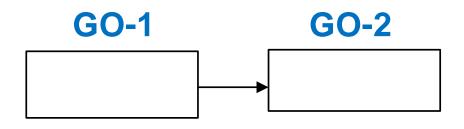
Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation Hang Li et al. Science 342, 95 (2013); DOI: 10.1126/science.1236686

ARTICLE

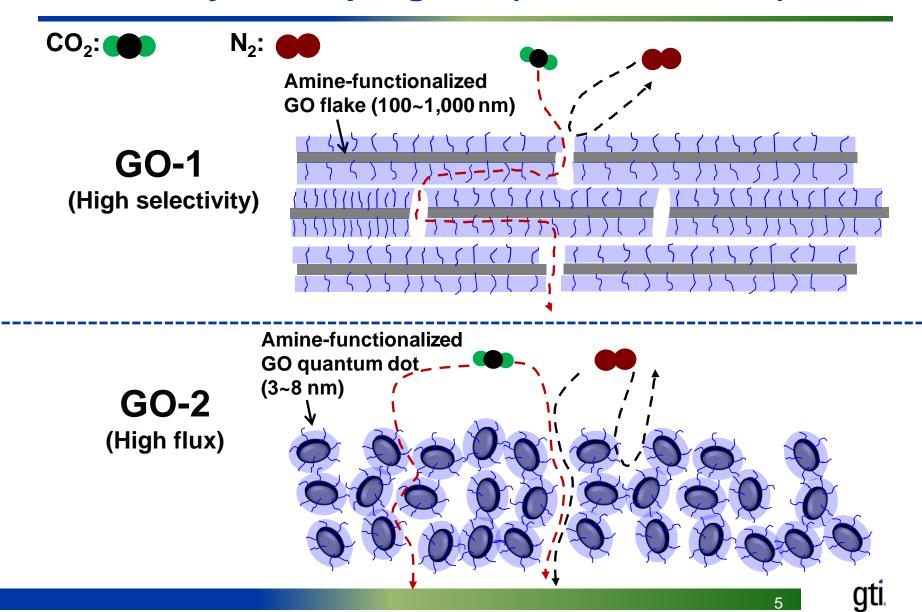
DOI: 10.1038/s41467-017-02318-1


OPEN

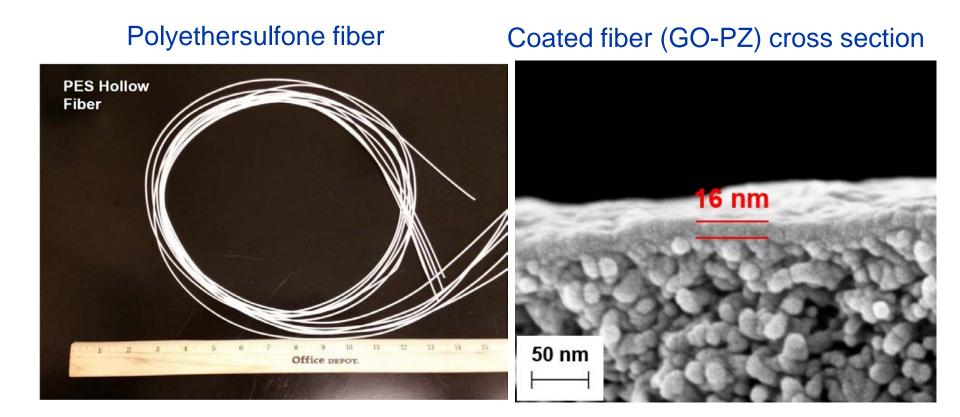
Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO₂-philic agent for highly efficient CO₂ capture


Fanglei Zhou¹, Huynh Ngoc Tien², Weiwei L Xu², Jung-Tsai Chen², Qiuli Liu², Ethan Hicks ⁰/₂, Mahdi Fathizadeh ⁰/₂, Shiguang Li³ & Miao Yu¹

GO² process description

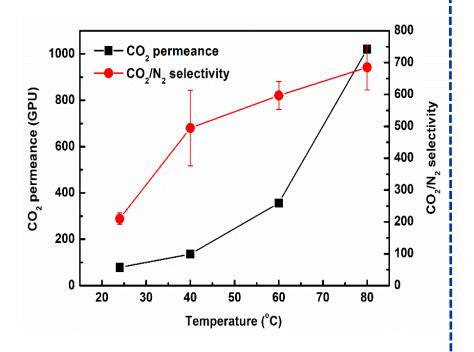


GO² process integrates a high-selectivity GO-1 membrane and a high-flux GO-2 membrane for optimal performance



GO-1 and GO-2 membranes developed under laboratory-scale program (DE-FE0026383)

Procedure developed for coating GO membranes on hollow fibers under lab-scale program (DE-FE0026383)

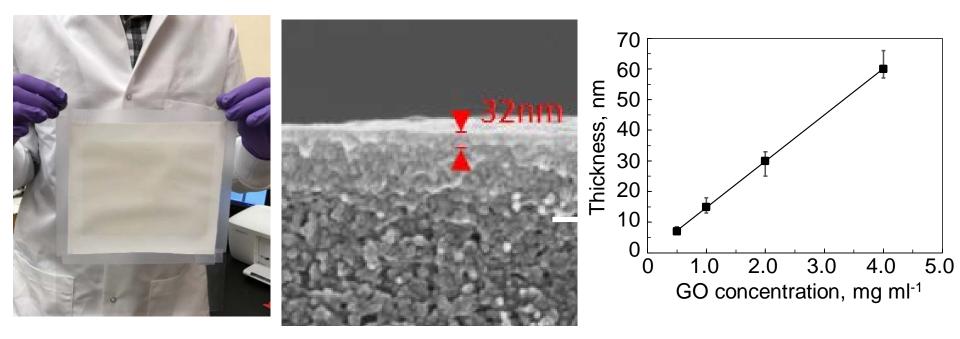


gti

1,000 GPU CO₂ permeance achieved in both sweep gas and vacuum permeation modes with selectivity >200

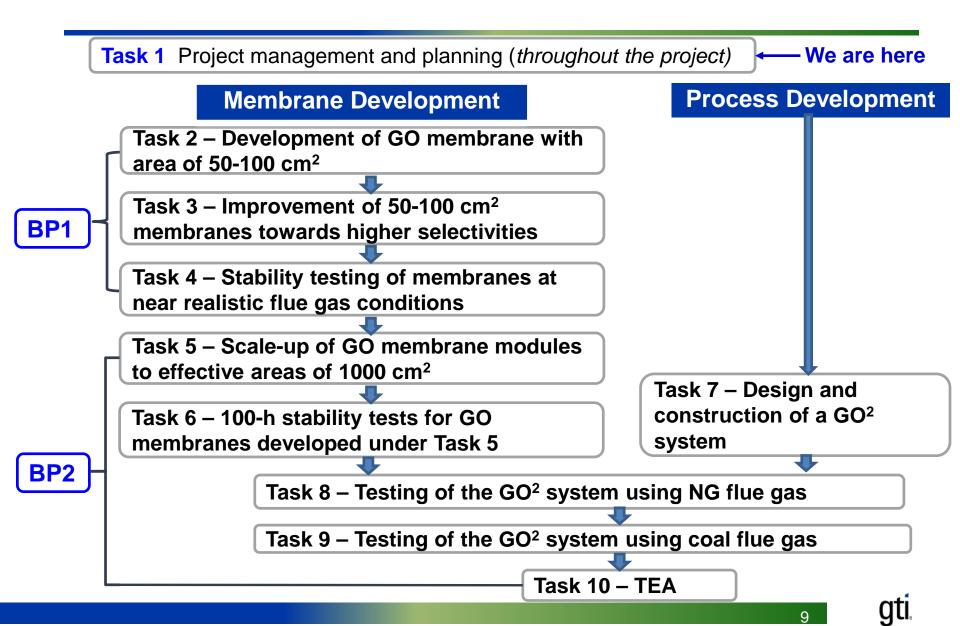
Sweep gas mode

- GO-PZ membrane
- Feed gas:15% CO₂/85%N₂ with saturated water vapor



Vacuum mode

Membrane	Improved GO-PZ membrane
Temperature	75°C
Humidity	85%
Feed gas	15% CO ₂ /85% N ₂
CO ₂ permeance, GPU	1080 ± 55
CO ₂ /N ₂ selectivity	650 ± 31



In addition to hollow fiber membranes, flat sheet membranes were successfully prepared by printing

Overview/roadmap

Success criteria and key milestones

Success criteria:

	Decision Point	Date	Success Criteria
	Go/no-go decision points	3/31/20	 Production of 50-100 cm² area membranes with CO₂/N₂ selectivity ≥200 and CO₂ permeance ≥1,000 GPU for the GO-1, and with CO₂/N₂ selectivity ≥20 and CO₂ permeance ≥2,500 GPU for the GO-2
			2) Stability testing shows the CO_2 permeances and CO_2/N_2 selectivities decreased by less than 10% in the presence of flue gas contaminants
	Completion of the project	9/30/21	1) Production of 1,000 cm ² area membranes with CO_2/N_2 selectivity ≥200 and CO_2 permeance ≥1,000 GPU for the GO-1, and with CO_2/N_2 selectivity ≥20 and CO_2 permeance ≥2,500 GPU for the GO-2
			 2) Testing with flue gas complete, 95% CO₂ purity validated 3) Final TEA report issued; final report submitted

Key milestones set to effectively measure progress

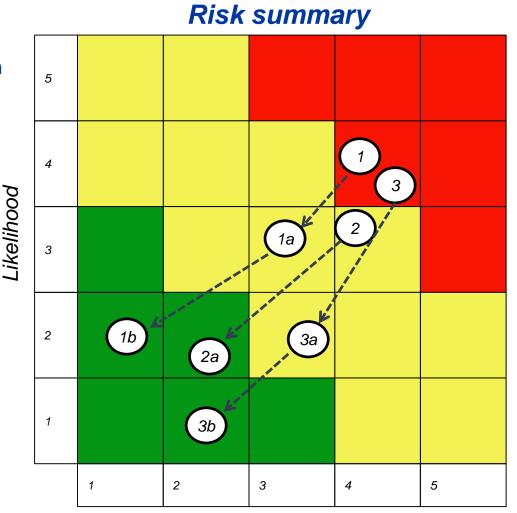
Each task has at least one milestone

Preliminary risk assessment: technical challenges and mitigation strategies

Challenges/Risks

1) Scaled membrane CO₂/N₂ separation performance not sufficiently high Mitigation:

- 1a: Improve PES substrate quality
- 1b: Identify new approaches to improve separation performance


2) 95% CO₂ purity not achieved <u>Mitigation</u>:

• 2a: Improve process design

3) Cost of the process not in line with expected outcome

Mitigation:

- 3a: Increase CO₂ permeance for the membranes
- 3b: Improve manufacturing process to lower membrane costs

Consequence

Summary

- In a laboratory-scale program (DE-FE0026383), we have developed high-selectivity (GO-1) and high-flux (GO-2) graphene oxide-based membranes
- In the current program, we will scale up the membranes for benchscale development
- The GO² process integrates the GO-1 and GO-2 membranes offering a new opportunity to explore further reductions in the cost of CO₂ capture
- The GO² process will be tested at the NCCC with actual flue gas for CO₂ capture with 95% CO₂ purity

Acknowledgements

Financial and technical support

CO₂ Capture Project - Phase 4

- DOE NETL Steven Mascaro, José Figueroa and Lynn Brickett
- The CCP4 Betty Pun and Mark Crombie
- W.S. Winston Ho, The Ohio State University (OSU)
- Andrew Sexton, Trimeric Corporation (Trimeric)

Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.