the Energy to Lead

Nano-engineered catalyst for the utilization of CO₂ in dry reforming to produce syngas DOE Contract No. DE-FE0029760

Shiguang Li, *Gas Technology Institute (GTI)* Xinhua Liang, *Missouri University of Science and Technology (Missouri S&T)*

CO₂ Capture Technology Project Review Meeting

August 13 - 17, 2018, Pittsburgh, PA

Project overview

- **Performance period**: July 1, 2017 June 30, 2020
- **Funding**: \$799,807 DOE (\$200,000 co-funding)
- **Objectives**: Develop nano-engineered catalyst supported on highsurface-area ceramic hollow fibers for the utilization of CO_2 in dry reforming of methane ($CO_2 + CH_4 \rightarrow 2 H_2 + 2 CO$) to produce syngas

• <u>Team:</u>

Member	Roles
gti.	 Project management and planning Quality control, reactor design and testing Techno-economic analysis (TEA) and life cycle analysis (LCA)
MISSOURI	 Catalyst development and testing

Introduction to GTI and Missouri S&T

OFFICE

- Idea Market Analysis Technology Analysis Product Development Lab and Field Testing Demonstration Commercialization
 - Not-for-profit research company, providing energy and natural gas solutions to government and industry since 1941

- **Co-educational research university** located in Rolla, Missouri
- Prof. Liang Group: expertise in atomic layer deposition thin film coatings, catalyst synthesis and testing

Background of dry reforming of methane using captured CO₂

- CH₄ + CO₂ → 2H₂ + 2CO with H₂/CO ratio <1 due to the reverse watergas shift reaction (CO₂ + H₂ ≈ CO + H₂O)
 - Different from methane steam reforming $(CH_4 + H_2O \rightarrow CO + 3 H_2)$ where H_2/CO ratio >3 due to water-gas shift reaction $(CO + H_2O \rightleftharpoons CO_2 + H_2)$
- Syngas: feedstock for fuels and chemicals production
- H₂/CO ratio determines the resulting products
 - Dry reforming syngas (H₂/CO ratio = 0.7 1) can be used for producing high yield C₅₊ hydrocarbons
 - Higher H₂/CO ratio can be achieved by blending with products from steam reforming
- Typical catalysts:
 - **<u>Precious metals</u>** (Pt, Rh, Ru): expensive
 - Low-cost Ni: issue of sintering of the Ni particles

Nano-engineered Ni catalyst prepared by atomic layer deposition (ALD) may resolve sintering issue

- ALD is a commercial process in semiconductor industry
- Advantages over traditional catalysts prepared by incipient wetness (IW)
 120
 - Higher activity
 - Better stability
 - Ni/γ-Al₂O₃particle
 - CO₂ and CH₄
 cylinder gases
 used in testing

Integration of the technology with coalfired power plants

Two conceptual process designs: 1) packed bed reactor, and 2) tube-shell transport reactor

 Packed bed reactor: the reactor is filled with nano-engineered catalyst supported on 1-2 cm long hollow fibers

Nano-engineered Ni catalyst prepared by ALD

8

C Catalysts are calcined in air at 550 °C

X-ray photoelectron spectroscopy analysis of α -Al₂O₃ nanoparticles supported Ni catalysts

TEM image of α -Al₂O₃ nanoparticle-supported Ni catalysts

- Particle size: 2-6 nm, average 3.1 nm
 - Particles prepared by traditional methods are ~10-20 nm

Novel α -Al₂O₃ hollow fiber with high packing density is being used as catalyst substrate in current project

Commercial substrates

Catalyst Geometry	SA/V (m²/m³)
1-hole	1,151
1-hole-6-grooves	1,733
4-hole	1,703
10-hole	2,013
Monolith	1,300
4-channel ceramic hollow fibers	3,000

Novel α -Al₂O₃ hollow fibers

- Four channels, 35 cm long
- OD of 3.2 mm and a channel inner diameter of 1.1 mm
- Geometric surface area to volume as high as 3,000 m²/m³

Dry reforming performance of the α -Al₂O₃ hollow fiber supported Ni catalysts (Ni/ α -Al₂O₃-HF)

- Higher activity due to highly dispersed nanoparticles: ~3.6 nm Ni particles compared to ~10-20 nm particles prepared by traditional method
- Better stability due to strong bonding between nanoparticles and substrates since the particles are chemically bonded to the substrate during ALD

Al₂O₃ ALD film increases Ni-support interaction, and thus improves catalytic performance

Dry reforming performance of the AI_2O_3 promoted Ni/α - AI_2O_3 -HF catalysts

800 °C, 15 psia, CO₂ and CH₄ cylinder gases used in testing

Catalyst	Conversion (%)	H ₂ /CO ratio	Methane reforming rate (Lh ⁻¹ g _{Ni} ⁻¹)
Ni/α - Al_2O_3 -HF	88	0.85	2,500
$2AI_2O_3$ -Ni/ α -AI $_2O_3$ -HF	91	0.85	2,600
$5AI_2O_3$ -Ni/ α -AI $_2O_3$ -HF	90	0.84	2,600
$10AI_2O_3$ -Ni/ α -AI_2O_3-HF	88	0.85	2,500

CeO₂ promoted Ni/α-Al₂O₃-HF catalysts

- CeO₂ can potentially increase Ni-support interaction, and provide highly mobile oxygen to inhibit coking of the catalyst
- We improved the catalyst performance by CeO₂ coating prepared by impregnation method

ALD reactor modified for depositing catalysts onto 20-cm-long hollow fibers

Ni nanoparticles successfully deposited on 20-cm-long hollow fibers by ALD

Before Ni ALD

After Ni ALD

Dry reforming performance of the Ni ALD coated 20-cm-long hollow fibers

20-cm-long fibers were broken up into 1-cm-long fibers and tested in a packed bed reactor (CO_2 and CH_4 cylinder gases used in testing)

Tube-shell transport reactor designed, Ni coated 20-cm-long hollow fibers to be tested

Future plans

In this project

After the current project

Test the technology at a larger scale with captured CO₂

- Novel α-Al₂O₃ hollow fiber increases surface area, and enables tube-shell transport reactor configuration.
- ALD nano-engineered catalyst improves activity and stability for utilization of CO₂ in dry reforming of methane to produce syngas (compared to catalysts prepared by conventional incipient wetness method).
- Coating of Al₂O₃ or CeO₂ on Ni/α-Al₂O₃-HF catalysts further improves dry reforming performance.
- Uniform Ni was successfully coated on 20-cm-long hollow fibers using a modified ALD reactor.

Acknowledgements

Financial and technical support

- DOE NETL: Bruce Lani and Lynn Brickett
- Professor Liang Group
 - Dr. Zeyu Shang
 - Dr. Xiaofeng Wang
 - Mr. Baitang Jin

Disclaimer

This presentation was prepared by Gas Technology Institute (GTI) as an account of work sponsored by an agency of the United States Government. Neither GTI, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.