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Executive Summary: 

Cooper completed an investigation into new tire technology using a novel approach to develop and 

demonstrate a new class of fuel efficient tires using innovative materials technology and tire design 

concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the 

“replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering 

the overall tire weight by 20%.  A further goal of this project was to accomplish the objectives while 

maintaining the traction and wear performance of the control tire.   

 

This program was designed to build on what has already been accomplished in 

the tire industry for rolling resistance based on the knowledge and general 

principles developed over the past decades.  Cooper’s CS4 (Figure #1) premium 

broadline tire was chosen as the control tire for this program.  For Cooper to 

achieve the goals of this project, the development of multiple technologies was 

necessary.  Six technologies were chosen that are not currently being used in the 

tire industry at any significant level, but that showed excellent prospects in 

preliminary research.  This development was divided into two phases.  Phase I 

investigated six different technologies as individual components.  Phase II then 

took a holistic approach by combining all the technologies that showed positive 

results during phase one development. 

 

The six technologies investigated as a part of phase I were: 

• Nano-fiber fillers 

• Aramid bead bundles 

• Aramid belt packages 

• Ultra-Long wearing and low hysteresis tread compound 

• Barrier film Innerliner 

• Low rolling resistance tire profile from FEA modeling 

 

1) Nano-fiber Filler Technology  
 

Phase I Development 

Multiple nano-fiber and macro-fiber fillers were explored during the DOE program.  Each filler gave 

different performance characteristics for reinforcement and hysteresis as replacements for silica and 

carbon black.  This development allowed Cooper to identify and characterize several different fiber filler 

materials and how these fillers could be used in tire compounds.  Many of these fillers are produced from 

renewable sources which provide more sustainable alternatives to carbon black.  Several of the fillers 

investigated would provide improved economics over silica and carbon black while several fillers are not 

economically feasible under current economic conditions.  Two of the more promising fillers were built 

into tires and showed improved hysteresis at equivalent reinforcement.  These two fillers also reduced the 

specific gravity of the compound which contributed to a lighter tire. 

 

Phase II Development 

Two fillers developed as part of this technology were used during the final tire build in Phase II and 

contributed to meeting the objectives of this project.  Alternative fiber filler technology contributes to 

both a weight savings and a hysteresis improvement. 

 

2) Aramid bead bundle 
 

Phase I Development 

Several materials were initially investigated to replace steel in the bead area but aramid was chosen as the 

only material that provided both the strength required as well as the desired weight savings.  This 

investigation provided insight into the amount of aramid required to replace current steel reinforcement in 

Figure #1 
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the bead area.  However, the aramid weight savings in the bead did not provide any improvement in the 

rolling resistance in the tire.  The benefits provided by the aramid in the bead did not produce an 

economically feasible tire component.  There were also some performance deficiencies observed that 

would need additional development before this technology would be ready for production products. 

 

Phase II Development 

Aramid beads were not used as a major part of the Phase II tire development.  A few tires were built using 

this technology along with the other five technologies for very limited testing.  This technology would 

only contribute to a small weight savings in the tire. 

 

3) Aramid belt package 
 

Phase I Development 

Aramid was chosen as the material to replace steel in the belt package.  It provides the strength needed 

along with a large weight savings.  The weight savings in the belt package also contributes to a rolling 

resistance improvement.  Aramid belts can provide a major contribution to a fuel efficiency improvement.  

There would be an increase cost associated with the use of aramid in the belts but the fuel savings over 

the life of the tire would more than pay for the increase in tire cost.  This makes aramid belts 

economically feasible.  There are still some performance issues with the use of aramid belts that need to 

be addressed.  Further development is necessary to make aramid belts ready for production applications. 

 

Phase II Development 

Aramid belts were used as part of the final tire build in Phase II and contributed to meeting the objectives 

of this project.  This technology contributes to both a weight savings and a rolling resistance 

improvement. 

 

4) Ultra- long wearing and low hysteresis tread compound 
 

Phase I Development 

 Tread compound development provided an opportunity to investigate some new materials that 

contributed to improved hysteresis or improved wear or improved traction or combinations of the three.  

The resulting studies yielded a compound that had 20% improved hysteresis and more than 30% 

improved wear while maintaining traction.  Materials used to accomplish these performance 

characteristics contributed to a more expensive compound.  However, the ability to use less tread 

compound along with the rolling resistance improvement would provide a savings for the consumer over 

the life of the tire.  This makes this technology economically feasible. 

 

Phase II Development 

The ultra- long wearing and low hysteresis tread compound was used by all the features that were built in 

the phase II program and had a large contribution to meeting the objectives of this project.  This 

technology contributed to both a weight savings and a rolling resistance improvement. 

 

5) Barrier film innerliner  
 

Phase I Development 

Barrier film has potential to provide a significant weight savings but the fatigue performance did not meet 

the requirements necessary for tire usage.  Because of the performance issues, the economic feasibility 

was never determined.  Building processes were established that could make this a production viable 

material.  Because of the low air permeability of the barrier film, the potential remains to reduce long 

term air loss in tires with barrier film compared to tires with conventional innerliner. 
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Phase II Development 

Barrier film was not used as a major part of the Phase II tire development because of the unsatisfactory 

fatigue performance.  A few tires were built using this technology along with the other five technologies 

for very limited testing.  This technology would contribute to a significant weight savings in the tire. 

 

6) Low RR tire profile  
 

Phase I Development 

A new FEA hysteresis model was developed and verified prior to using the model to optimize the tire 

profile for rolling resistance.  Several different profiles were investigated in both the model and in actual 

tires.  The low rolling resistance profile developed provided an improvement in both weight and rolling 

resistance.  The tire builds confirmed that tire profile could be used to contribute to rolling resistance 

improvements.  This development also allowed the investigation of how tread depth and tread void 

impacts hydroplaning and tread wear. 

 

Phase II Development 

The best profile for rolling resistance and weight that also met the other tire performance requirements 

was chosen for the Phase II development tire build and contributed to meeting the project objectives.  The 

tire profile contributed to both a weight savings and a rolling resistance improvement. 

 

7) Benefit of Development 
 

Cooper is already using two of the DOE technologies in the development of new product lines for the US 

replacement tire market; the ultra-long wearing and low hysteresis tread compound and the low RR tire 

profile from FEA modeling.  One aspect of the project work was the development and validation of an 

efficient rolling resistance analysis tool.  While used extensively within the context of this project, it has 

been extended for general use and now implemented and included on all of our current tire analysis 

projects.  Presently, there are several passenger tire programs in progress, that include rolling resistance 

reduction as one of the design conditions, which is facilitated by the analysis tool, but also enabled from 

the standpoint of introducing the aspects of the individual technologies developed within this project.  

Another aspect of the project work was the technology established from the development of the ultra-long 

wearing and low hysteresis tread.  This technology is also currently being used in different ways for 

performance gains in various target specific applications within our new products. 

 

In short, present tire development work is benefitting from the results of this project.  Additionally, from 

the standpoint of Commercial Truck Tires, there is an increased focus on reducing rolling resistance / 

energy loss, and improving fuel economy from both a regulatory and Smart Way Certification 

standpoints.  The new rolling resistance analysis tools and general new technology principles are also 

being applied on many current and new Commercial Truck Tire Products. 

 

Proof of concept has been established during the DOE program for nano-fiber fillers, aramid belt 

packages and barrier film innerliner.  Each of these technologies will require further development prior to 

using in a production product.  The potential benefit to the consumer has been identified and proven as a 

result of the DOE program.  Aramid bead is the only technology that Cooper does not plan any further 

development at this time, due to the limited benefit to the consumer and high development costs. 

 

As the American consumer is educated on the benefits of fuel efficient tires the demand for energy 

efficient tires will grow.  If the entire passenger replacement market, which is approximately 80% of the 

tire market, converted to fuel efficient tires with a 3% fuel savings, the US would save around 2 billion 

gallons of fuel per year (based on 2011 data).  With lower fuel costs now in effect, this new class of fuel 

efficient tires will put 3 to 4 billion dollars back into the household budgets of American consumers every 

year.  However, if the entire replacement market was able to reach the full 5% fuel efficiency 

improvement shown by this program, the savings would be closer to 3.3 billion gallons of gasoline. 
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Comparison of Project Goals and Objectives with Accomplishments: 

 
The objective of this project is to design, develop, and demonstrate a new class of federal safety 

regulation compliant tires that will improve overall passenger vehicle fuel efficiency by at least 3% while 

lowering the overall tire weight by at least 20%.  A further objective of this program was to not give up 

any of the tires traction or wear performance.  This program will develop and demonstrate a new class of 

fuel efficient tires using innovative materials technology and tire design concepts.  The goal by the end of 

the project is to have created and tested a prototype of a new fuel efficient tire and to have demonstrated 

the potential application of these technologies in a commercial product.    

 

The control tire chosen for this project was a Cooper premium broadline CS4.  All other performance 

characteristics were designated to be equivalent.  Figure #2 shows the average fuel savings measured 

from both dynometer and vehicle on the road testing was between 5% and 6%.  The vehicles used for fuel 

efficiency testing was a 2014 Nissan Altima.  The weight savings of feature 1 with steel belts did not meet 

the goal of 20 percent.  However, feature 2 with aramid belts did meet the goal of a 20% weight savings.  

Wear and traction for both features were equal or exceeded the control.  The features did show a slight 

loss of snow and ice performance but still had very good winter performance.  The tread pattern could be 

adjusted slightly to bring back the lost winter performance if desired. 

 

DOE Fuel Efficient Tire Development 

  

Ave. Fuel 

Savings ∆ 
RRc ∆ Weight ∆ Wear ∆ Traction 

CS4 --- --- --- --- --- 

Feature #1 5%-6% 32% 13% Improved Equal 

Feature #2  5%-6% 37% 23%  Improved Equal 

 Figure #2 
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Summary of Project Activities: 

Cooper completed an investigation into new tire technology using a novel approach to develop and 

demonstrate a new class of fuel efficient tires using innovative materials technology and tire design 

concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the 

“replacement market” that would improve overall passenger vehicle fuel efficiency by at least 3% while 

lowering the overall tire weight by a minimum of 20%.   

 

In addition to the stated DOE program objective, the goal of this program included maintaining the 

traction and tread wear of the control tire.  During normal tire development using standard materials and 

design, when one performance characteristic is improved, one or more performance characteristics are 

typically sacrificed as demonstrated in Figure #3.   

 

 
Figure #3 

 

A typical tradeoff for a rolling resistance improvement is in the area of traction.    A loss of traction will 

often also result in a loss in the area of handling.  Only with the development of new materials and 

technologies can the overall performance be improved without any sacrifices as seen in Figure #4.  This 

spider graph demonstrates what Cooper was able to accomplish during this DOE program.  The overall 

design space was expanded as a result of the new technologies investigated. 

 

 
Figure #4 

 

Cooper’s innovative approach was to develop a “new energy efficient tire profile” in combination with an 

“ultra-light weight” tire construction.  A rule of thumb is that a 10% reduction in rolling resistance 

provides a 1-2% improvement in fuel efficiency. Tire rolling resistance is the force required to make a 

loaded tire roll. When the tire deforms during rolling, a fraction of the deformation energy is stored 
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elastically and will be recovered after the source of the deformation is removed. However, due to the 

visco-elastic nature of rubber, a significant fraction of the deformation energy is dissipated as heat. This 

hysteretic energy loss is the main source of rolling resistance of a rubber tire. The deformation of the tire 

is controlled by the (i) tire construction, (ii) materials used, (iii) its profile, and (iv) the load and inflation 

conditions of the tire. Therefore, less material usage, results in less material to be deformed, which results 

in less energy loss as hysteresis.  Unfortunately, a significant reduction in tire weight with conventional 

materials affects the load bearing capacity of the tire. As a result, the only way to reduce tire weight 

substantially and solve the load bearing capacity issue is to use lighter weight materials that are super 

reinforcing and are less hysteretic than conventional materials currently being used. 

 

Cooper was able achieve the goals of this project, through the development of multiple technologies.  Six 

technologies were chosen that are not currently being used in the tire industry at any significant level, but 

that showed excellent prospects in preliminary research.  This development was divided into two phases.  

Phase I investigated six different technologies as individual components.  Phase II then took a holistic 

approach by combining all the technologies that showed positive results during phase one development. 

 

The six technologies investigated as a part of phase I were: 

 

• Nano-fiber fillers 

• Aramid bead bundles 

• Aramid belt packages 

• Ultra-Long wearing and low hysteresis tread compound 

• Barrier film innerliner 

• Low RR tire profile from FEA modeling 

 

With this approach, Cooper was successful in gaining insight in how to utilize these technologies to 

develop a new class of replacement tires that will improve passenger vehicle fuel efficiency by at least 

3% while lowering the overall tire weight by 20%. It is important to point out that Cooper is interested in 

using these technologies in our current and future line of products, so we understand that this technology 

needs to be cost competitive in relation to current technology.  Based on preliminary estimates, we 

believe this technology can be made cost effective due to: 

(i) less conventional material being used (20%) in the tire,  

(ii) a potential to significantly improve process & manufacturing efficiencies (examples: less mixing 

time, less material preparation, faster tire curing, etc.), 

(iii) a reduction in capital equipment needs for future tire capacity growth requirements, 

(iv) savings gained by the consumer in using a more fuel efficient product. 

 

In the replacement market, improving rolling resistance technology has not been an important priority for 

the tire producers until recently.  As consumers become more aware of tire fuel efficiency, it will be 

imperative for manufacturers of replacement tires to have competitive tire product offerings. Unlike new 

vehicle sales, it will be the consumers, not the automotive OEMs (Original Equipment Manufacturer), 

who are making the purchase decisions for replacement tires. Product offerings and marketing efforts 

need to keep the consumers’ needs at the center of strategy and decisions. Tire manufacturers face 

pressures to produce more and more fuel efficient tires, and these pressures influence their decisions and 

behaviors.  Tire rolling resistance is one factor that contributes to a vehicle’s inefficiency.  

 

Following is a summary the development process for each of the 6 technologies followed by a complete 

discussion of the Phase II process. 
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1) Nano-fiber Filler Technology  
 

Phase I Development 

The goal of this technology is to reduce the tire weight by reducing the specific gravity of tire compounds 

and to reduce the hysteresis of the tire by reducing the hysteresis of the tire compounds.  Fiber technology 

that is being investigated will replace the current fillers, carbon black and silica, at a ratio of between 1:1 

and 1:3 which results in a reduced specific gravity.  The overall reduction in filler should also result in a 

reduction in hysteresis.  Ideally, the properties of the compound with experimental fillers would match the 

properties of the standard compound such that no performance would be sacrificed. 

 

The initial strategy was to develop a masterbatch using nano-fiber.  At the beginning of this development, 

the masterbatch produced contained only 5-10 phr of nano-fiber.  After further trials, the masterbatch 

produced contained over 20 phr of nano-fiber.  This concept showed promising compound properties but 

would be very expensive to bring to the production trial phase.  Because the properties were not exact and 

the cost for a plant trial was so high, additional strategies were also explored.  

 

Macro-fibers were then investigated in non masterbatch applications using conventional mix strategies 

but the dispersion and compound properties would not meet requirements.  Research was then started to 

find coupling or compatiblizing agents for the nano-fiber material.  Coupling agents would provide 

improved compound properties by bonding the filler to the polymer.  As of the close of this program, a 

suitable coupling or compatiblizing agent had not been found.  This is an area that many institutions and 

many companies are working to develop.  Raw materials are relatively inexpensive and renewable.     

 

As a result of the issues involved with the first nano-fiber development, additional macro/nano-fibers and 

bio fillers were investigated in both masterbatch and non masterbatch strategies.  From this development, 

alternative fillers were found that could provide acceptable compound properties and be added to the 

compounds using conventional mixing.  These compounds lowered specific gravity and reduced 

hysteresis which contributed to both program goals. 

 

Development of this technology focused on development in three areas, one of which was tread 

compounds and two of which were non-tread compounds.  Using these macro/nano-fillers, however, 

always resulted in reduced tread wear.  Tread wear was reduced enough that tread was dropped from the 

research process and the focus was placed on two non-tread compounds.  Phase I research resulted in the 

development of two alternative fillers being used as carbon black replacements in these two non-tread 

compounds.  Figure #5 shows the hysteresis reduction accomplished in each of the two compounds using 

the two new experimental fillers.  Tire testing would then be used to see what impact lower compound 

hysteresis would have on the tire rolling resistance.      

 



9 

 

 
 Figure #5 
 

Tire projects were successfully completed where both fillers were investigated in both compounds.  

Figure #6 shows the results from a tire program where one project looked at alternate filler 1 in both 

compounds and the other project investigated alternate filler 2 in both compounds.  These tire projects 

verified that if hysteresis was lowered in these compounds then the overall tire rolling resistance would be 

improved.  The lowest hysteresis compound for each non-tread application was chosen for use in Phase II. 

 

Tire Weight and Rolling Resistance Results 

  Tire Wt Tire RRc ∆ Wt ∆ RRc 

 Tire w/Standard Compounds 23.33 9.34     

 Tire w/Filler 1 Compounds 22.77 8.68 2.4% 7.0% 

 Tire w/Filler 2 Compounds 22.87 8.81 2.0% 5.6% 

Figure #6 
 

Phase II Development 

The two alternate fillers developed in Phase I were used during the final Phase II tire build.  Two 

compounds were used, one with each alternate filler.  This provided the lowest hysteresis for each 

compound.  These compounds were used in all the features that were built in Phase II.  Alternative filler 

technology contributed to both a weight savings and an improved tire rolling resistance. (See section 7 

Phase II Summary for results)  Because experimental compound properties matched the standard 

compound properties, no other performance was sacrificed in the tire. 

 

2) Aramid bead bundle 
 

Phase I Development 

The goal of this technology is to reduce the weight of the tire by reducing the weight of the bead material.  

Current technology uses steel for the bead material while this project investigated aramid which has high 

strength but a lower specific gravity.  The bead plays a very important role in the design of the tire; it is 

what holds the tire on the rim.  There are established government standards that must be met to ensure 

that the tire is safe.  Aramid at equal strength to steel has a much lower weight and would provide a 
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weight savings without reducing the strength of the bead.  Two aramid bead strategies were investigated 

as part of this development. 

 

The first strategy investigated a bead that was manufactured outside Cooper.  The aramid bead was then 

painted with a rubber cement so the bead filler could be applied.  Once the bead filler was applied, it was 

built into a tire the same as a standard steel bead.  Initial testing was conducted to verify the strength of 

the bead was equivalent to the steel bead.  Hydro burst testing was used to verify the bead strength which 

is a test where the tire is pressurized with water until the tire fails.  Both the aramid bead and the steel 

bead testing resulted in a tire failure in the crown area of the tire.  Neither bead broke which confirmed 

the strength of the aramid bead. 

 

The second strategy investigated a stiff aramid cord that was processed through normal steel bead 

forming equipment.  During this process, the cord is coated with rubber which allows the direct 

application of the bead filler.  Once the bead filler was applied, it was built into tires using the normal tire 

building process.  The first trial with this approach resulted in a failed hydro burst test.  A second trial was 

conducted where the cord strength was increased and the number of wraps in the bead was increased.  

The second trial passed the hydro burst test which confirmed the strength of the aramid bead from this 

process. 

 

Once the beads where shown to have the necessary strength, additional tires were built for further testing.  

All wheel testing showed acceptable performance including lower sidewall endurance testing.  Track 

testing resulted in a slight drop in handling performance but overall results were very close to that with 

steel beads.  The biggest issue experienced was with bead push off testing (Figure #7).  This has a DOT 

requirement which is tested at 26 psi inflation pressure and was not acceptable.  The bead unseat testing 

was also conducted at other inflation pressures for comparison.  At each inflation pressure, the aramid 

bead was pushed off the rim at a lower pressure than the steel bead.  At this point, development on aramid 

beads was halted.  Rim slip was also a concern and testing provided mixed results.  Bead circumference 

may be able to be adjusted to eliminate this issue.       

 

 
Figure #7 
 

Tire testing showed no benefit in rolling resistance and only a moderate weight savings (Figure #8).  This 

technology was not chosen to be a major part of Phase II development.  It was determined that only a few 

tires would be built for rolling resistance testing and weight measurement.  
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Feature Weight Reduction RR Reduction 

Aramid Bead 2% - 4% Minimal 

Figure #8 
 

Another observation from the development work, unmounted tires with aramid beads are very flimsy in 

the bead area while tires with steel beads are very rigid in the bead area.  If this technology was developed 

to the point of introducing it into the market place, the dealers and consumers would have to be educated 

on the difference to the feel of the tire.  There might be a negative perception of tires with very little 

sidewall stiffness in an unmounted tire. 

 

Phase II Development 

Several tires were built with aramid beads combined with all the other technologies.  These tires were 

then tested for rolling resistance and measured for weight.  No other testing was performed.  (See section 

7 Phase II Summary for results) 

 

3) Aramid belt package 
 

Phase I Development 

The goal of this technology is to reduce the rolling resistance and weight of the tire by reducing the 

weight of the belts.  Current technology uses steel for the belts while this project developed aramid as the 

belt material which has a lower specific gravity than steel.  The belt package is responsible for serving as 

a support structure for the tread, but also to guard against puncture from road hazards. There are 

established government standards that must be passed.  Aramid at equal strength to steel has a much 

lower weight and provides a weight savings without reducing the strength of the belt.  Several aramid 

programs were completed to try and optimize the performance.  There are still some performance 

characteristics that need to be improved prior to using in a production product. 

 

The first program investigated the performance of the aramid in a belt application.  There was some 

thought that the aramid would cause a rounded tire profile in the crown of the tire.  This was not an issue 

for this test program.  The tire profile with aramid belts was actually less rounded than the steel belt 

profile.  Vehicle handling was equivalent or better when compared to the steel belts.  Limited testing was 

completed on tire from this program.  All the aramid belt projects passed DOT requirements for high 

speed but were still below the high speed results for the steel belted tires.  Testing also showed about a 

9% improvement in weight and about a 6% improvement in rolling resistance.   

 

The second program investigated varying the rubber gauge between the belts.  These changes were 

investigated to increase the high speed results.  All the aramid belt projects passed DOT requirements for 

high speed but were still below the high speed results for the steel belted tires.  Testing also showed about 

an 8% improvement in weight and about a 5% improvement in rolling resistance.  Vehicle handling 

testing showed slight differences in performance.  Extreme handling tests showed a slight decrease in 

performance for the aramid belt tires while the soft handling tests showed equivalent performance.  

 

The third test program investigated a change in belt angle to improve high speed and a change in over 

wrap construction to improve rolling resistance.  This program included the full range of tests that would 

be needed to approve a change in the belt area.  All the aramid belt projects, once again, passed DOT 

requirements.  However, high speed was still lower for the aramid belts compared to the steel belts.  The 

over wrap change did not improve the rolling resistance.  While aramid belts show promise, there are still 

gaps between aramid belt performance and steel belt performance in this program.  Vehicle handling was 

equivalent or slightly down depending on the test. 
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The average advantage in weight and rolling resistance observed in the first three programs was just over 

an 8% weight savings and almost a 6% improvement in rolling resistance (Figure #9).  Because all DOT 

requirements were passed and because an improvement in both weight and rolling resistance was 

obtained, aramid belts were used in two of the three phase II projects. 

 

 
Figure #9 
 

The fourth and final aramid belt program was conducted after the Phase II program.  This program was 

completed to try and further optimize all areas that still showed test results lower than steel belts.  A 

major part of this program was the development of a new belt coat compound.  The new belt coat 

compound was used on five out of the seven projects built.  This compound attempted to improve the 

fatigue properties without changing the other properties.  Other features included several belt angles and 

additional design changes.  One of the new angles and one of the design changes surpassed the high speed 

results of the steel belts.  Vehicle handling was equivalent for most of the projects.  

 

Further optimization is still needed to provide aramid belts that match all the performance characteristics 

of the steel belts.  Vehicle handling was very close to what is experienced with steel belts.  Wear testing 

showed equivalent wear or better than the steel belts.     

 

Phase II Development 

Aramid belt developed helped meet the goal of a 20% weight reduction in the Phase II program.  Tires 

containing aramid belts in Phase II passed all DOT requirements.  Future development will be necessary 

prior to using aramid belts in a production product. (See section 7 Phase II Summary for results) 

 

4) Ultra- long wearing and low hysteresis tread compound 
 

Phase I Development 

The goal of ultra- long wearing and low hysteresis tread compound is to reduce the rolling resistance of 

the tire by reducing the hysteresis of the tread compound and to reduce the rolling resistance and tread 

weight by reducing the tread depth.  (Figure #10)  Tread compound strategies targeted a lower hysteresis 

by 20% to 30% along with the 25% reduction in tread depth.  In order to maintain tread wear, the tread 

compound also needs to have its tread wear capabilities increased by 25-30%.  A common trade-off made 

when attempting to improve tread-life and rolling resistance is in the area of traction.  The tread is a major 

contributor to the tire traction and handling performance.  This program will also attempt to maintain all 

traction performance that is seen in the control tire. 
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               Reduced Tread Depth 

 
Figure #10 
 

The first program for improved tread compound investigated new silane technology and new polymer 

strategy to improve tread wear.  Tire wear testing revealed a 16% improvement in tread wear with the 

new silane and a 37% improvement in tread wear with the new polymer strategy. (Figure # 11)  This 

testing was completed using a typical tread compound as the control.  Vehicle braking results were 

equivalent or better for the experimental compounds while vehicle handling results were slightly lower. 

 

 
Figure #11 
 

The second program for improved tread compound investigated a new tread compound that would reduce 

hysteresis by 20% and increase wear by 25%.  Also investigated as part of this program was a new 

functionalized polymer that should have resulted in improved wear and/or improved hysteresis, neither 

improvement was observed.  Tire testing of these experimental tread compounds showed a rolling 

resistance improvement of 16% and a tread wear improvement of 25-35%. (Figure #12)  This program 

reached the tread wear improvement but missed the rolling resistance target.  Winter testing showed the 

new tread compound was equivalent for snow and ice traction.  Track testing resulted in mixed results for 

wet traction.   
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Figure #12 

 
The third tire test program investigated optimizing the tread compounds from the first two programs.  

Each of the experimental tread compounds was tested in a new low nonskid mold.  As part of this 

program, the new silane from program one was used but did not result in any wear improvement 

compared to standard silane.  However, a slight improvement in rolling resistance was observed with the 

new silane (Ex#2).  Also investigated was another polymer strategy (Ex #3) which resulted in poor wear 

and much improved wet traction.  Experimental feature 2 (EX #2) was chosen as the compound to use in 

the final Phase II tire build. (Figure #13)  Even with the reduced tread depth (9/32”) the experimental 

compound provided tread wear slightly higher than the control (12/32”).  All other performance 

characteristics matched the control tire. 

 

Compound Evaluation - 3rd Tire Program  

Mold Profile Compound RR Wet Traction Snow Traction Wear 

CS4 - 12/32" Control         

New Profile - 9/32" Ex #1 16% 2.5% -4.8% 7.3% 

New Profile - 9/32" Ex #2 20% 2.5% 4.0% 5.3% 

New Profile - 9/32" Ex #3 19% 4.0% 2.0% -6.8% 

New Profile - 9/32" Ex #4 16% 3.0% -9.5% 0.0% 
Figure #13 
 

Phase II Development 

The ultra- long wearing and low hysteresis tread compound (Ex #2) was used in all the features 

investigated in Phase II.  Experimental tread compound Ex #2 met all the goals targeted for the tread 

compound. When this technology is combined with the lower nonskid mold, it helps contribute to both a 

weight savings and a rolling resistance improvement. (See section 7 Phase II Summary for results) 

 

5) Barrier film innerliner  
 

Phase I Development 

The goal of this technology is to reduce the weight of the tire by reducing the amount of material used to 

maintain air pressure in the tire.  Historically, the air pressure in a tire is maintained using a layer of 

compound where the polymer system consists of Halobutyl or a blend of Halobutyl and NR.  The current 
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development is focused on a new material where the liner gauge could be reduced dramatically.  The 

gauge reduction would result in a significant weight reduction.  Once this technology was developed, 

there could be the ability to reduce air permeation through the tire to almost zero.  The gauge would have 

to be increased but it would still be substantially thinner than conventional innerliner. 

 

Initial tire trials were completed using version one of the barrier film which reduced the gauge of the air 

perm layer by 95%.  Tires tested from this program showed a reduced weight by 8%.  However, the 

barrier film increased the rolling resistance by about 10%.  In order to overcome the increased rolling 

resistance caused by the barrier film, the hysteresis of the barrier film needs to be substantially reduced.  

Unfortunately, the barrier film cracked in the shoulder area during endurance testing from fatigue failure.  

Additional versions were tested in other tire test programs.  Endurance testing for each version showed 

fatigue crack issues in the shoulder area of the tire. (Figure #14)  Version 2 finished the endurance test but 

when the tires were inspected they also showed fatigue cracking in the shoulder.  Version 2 was improved 

over version 1 but version 3 regressed and was poorer than version 2.  

 

Barrier Film Summary 

  Endurance Test Liner Cracking Weight (lbs) 

Rubber Liner 100% None 2.1 

Version 1 53% Severe 0.6 

Version 2 100% Moderate 0.6 

Version 3 74% Severe 0.6 
Figure #14 
 

One of the issues that would have to be considered if this technology was adopted is how to repair a tire 

that used barrier film if it obtained a puncture.  Current tire patches are designed to adhere to the 

halobutyl innerliner.   This technology was not chosen to be a major part of Phase II development.  It was 

determined that only a few tires would be built for rolling resistance testing and weight measurement.  

 

Phase II Development 

Several tires were built with barrier film along with all the other technologies combined.  These tires were 

then tested for rolling resistance and measured for weight.   The Phase II tire build was completed with a 

4th version of the barrier film which also failed the endurance test for fatigue cracking. (See section 7 

Phase II Summary for results) 

 

6) Low RR tire profile  
 

Phase I Development 

The goal of this technology is to use FEA modeling to evaluate and develop a profile designed to provide 

the lowest rolling resistance while maintaining tire performance and reducing tire weight.  The FEA 

modeling will also be used to evaluate design and compound modifications to further reduce weight and 

rolling resistance.  

 

It is well known and understood that rubbery material experiences hysteresis losses in deformation cycles, 

as a result of its viscoelastic nature.  Minimization of the adverse deformation cycles reduces hysteresis 

loss. In the tire construction, deformation cycle reduction is accomplished through extensive 

computational analysis methods. This involves the use of substantial computing resources. 

 

The heaviest single component of a tire is its tread as verified with FEA modeling, and this component 

alone accounts for roughly 50% of a tire’s hysteretic losses.  The FEA model shows that utilizing reduced 

hysteresis tread that also improves wear resistance will allow a significant reduction in overall non-skid 
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depth which results in an overall tread mass reduction.  This will result in lower tire weight with the 

remaining tread mass having lower volumetric hysteresis, yielding a synergistic effect in reducing the 

tire’s overall rolling resistance. 

 

When the program began, the level of finite element analysis capability required for this project exceeded 

Cooper’s in house resources.  Cooper established a working relationship with the National Renewable 

Energy Laboratory (NREL), and began collaboration with NREL where they would support Cooper on 

this project.  This collaboration leveraged the analytical and computational resources of NREL, as well as 

provides access to the Red Mesa computing facility at Sandia National Laboratory. Red Mesa is one of 

the country's major computing installations with over 180 Teraflops of computing capacity.  

 

Over the course of the first year, Cooper increased our resources to the point that we no longer needed the 

collaboration with NREL to complete the FEA analysis.  Cooper soon had the ability to complete 

computational analysis on the proposed projects for construction characteristics for the fuel efficient tire 

and to also optimize the design of the profile for optimum fuel efficiency.   

 

Step one of the process involved developing a new model and then validating that model through tire 

testing.  This was completed prior to moving on to step two which was completing a design of 

experiments on seven different tire design parameters.  These parameters were then optimized for weight 

and rolling resistance and a new profile was identified.  

 

Prior to identifying an optimized profile, engineering judgment was used to develop a low rolling 

resistant profile which was then turned into a new best geometry mold (“BG” mold).  This mold was used 

as part of the second tread development program and yielded a 9% rolling resistance (Figure #15) 

improvement and an 8% reduction in weight. 

 

Rolling Resistance/Weight Results 

Mold Profile Compound RR % Improvement Wt. % Improvement 

CS4 - 12/32" Control --- --- 

“BG” Profile - 9/32” Control 9% 8% 
Figure #15 
 

After the first tire program was completed with the “BG” mold and the FEA design of experiments was 

completed, a new mold profile was identified and two new molds were produced.  One new mold (profile 

7) used a 9/32 inches tread depth and the second mold (profile 8) used an 8/32 inches tread depth.  Mold 

profile 8 at 8/32 inches also had the void volume increase in the circumferential grooves of the tread 

pattern to maintain water evacuation.  “BG” profile and profile 7 had similar wear results but profile 8 

resulted in about 30% lower wear (Figure #16) due to the increased void volume.  Hydroplaning results 

were similar for all three profiles indicating that the void volume increase was sufficient to maintain water 

evacuation.   
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Figure #16 
 

Weight results were similar between “BG” profile and profile 7 while the reduced tread depth used in 

profile 8 resulted in almost a 6% additional weight reduction (Figure #17).  Rolling resistance results 

showed that the “BG” profile was about 2.5% better than profile 7 while profile 8 was the lowest by 3%.  

Profile 8 had the lowest weight and rolling resistance but it also had the poorest wear.  Overall, the 

performance shown by the “BG” profile was the most balanced and was chosen for the Phase II tire build.  

Handling and traction for these molds was adjusted with experimental tread compounds. 

 

Rolling Resistance/Weight Results 

Mold Profile 
Tread 

Compound 

RR% 

Improvement 

Wt. % 

Improvement 

CS4 - 12/32" Control --- --- 

"BG" Profile - 9/32" Control 11.5% 9.4% 

Profile 7 - 9/32" Control 9.0% 9.4% 

Profile 8 - 8/32" Control 14.50% 14.0% 
Figure #17 

 
Phase II Development 

The BG profile was used in all the features investigated in Phase I and provided the best balance of 

rolling resistance, weight, traction and wear. When this technology is combined with the new tread 

compound it helps contribute to both a weight savings and a rolling resistance improvement without 

sacrificing any other performance. (See section 7 Phase II Summary for results) 

 

7) Phase II Summary. 

Once Phase I testing was completed, all six technologies had been investigated.  All of the tire 

components have direct and indirect influences on each other, and as a result, it is necessary to consider 

the tire assembly as a whole, and not just a collection of local interactions.  Phase I development allowed 

for the establishment of the underlying properties for the six technologies through the use of multiple tire 

programs.  Phase II then used this information to determine the optimal fashion in which to assemble the 

tire components, in order to achieve the stated objectives.  Phase II was broken down into three features 

(Figure #18), where each additional feature built on the previous feature.  The first feature (purple) 

102% 100%

71%

0%

20%

40%

60%

80%

100%

120%

Wear

Mold Wear Comparison

"BG" Profile

Profile 7

Profile 8



18 

 

investigated three of the technologies, the second feature (purple and gray) investigated the three 

technologies from the first project along with an additional technology and the final feature (purple, gray 

and orange) investigated all six technologies.  The first two features experienced extensive testing and the 

final feature experienced only limited testing.  

 

 

Phase II Design & Projected Results 

RRC* 

Weight 

Reduction 

Tire 

Weight ∆ WT % ∆ RR % * 

Commercial 

Risk 

Performance 

Risk 

Control CS4 10.8   26.0         

Mold Profile/Tread Compound 7.85 * 2.5 23.5 9.62% 27.31% Low Low 

Fiber Reinforced Compounds 7.35 * 0.5 23.0 11.54% 31.48% Low Low 

Aramid/Monoply 6.90 * 3.2 19.8 23.85% 34.26% Med Low 

Barrier Film 7.25 * 1.5 18.3 29.62% 32.87% High High 

Aramid Bead 7.25 * 0.4 17.9 31.15% 32.87% High High 

* Estimated Results 

Figure #18 

Once the Phase II program was built, extensive testing was conducted to evaluate the overall performance 

of the technologies when used in combination with each other.  Figure #19 shows the estimated results 

that are expected when building multiple technologies together.  The rolling resistance goal was expected 

to be met by all three features while the weight goal was expected to be met by the second and third 

features.  Final testing (Figure #18) showed the estimated rolling resistance and weight results were close 

to actual test data. 

 

DOE Fuel Efficient Phase II Tire Development 

  

RRc ∆ 

Estimated 

RRc ∆ 

Actual 

Weight ∆ 

Estimated 

Weight ∆ 

Actual 

Fuel 

Improvement 

CS4 --- --- --- --- --- 

Feature #1 31.50% 31% 11.50% 13% 5 % - 6% 

Feature #2  34.30% 36% 23.90% 24% 5 % - 6% 

Feature #3 32.90% 34.50% 31.20% 37% N/A 

Figure #19 

 
As part of the final program testing, fuel economy testing was completed at an independent lab 

(Transportation Research Center or TRC).  Test procedures SAE J2263 and SAE J2263 were completed 

to establish the test conditions for dynamometer fuel economy testing.  Both city and highway test 

procedures were evaluated for fuel economy on the indoor dynamometer.  The city test procedure showed 

3.8% improvement for feature #1 and 3.2% improvement for feature #2.  These results were opposite of 

what was expected because it showed feature #1 was better than feature #2.  This could be explained by 

the curve fitting TRC used to set up the dynamometer.  The coast down curve used by TRC for feature #2 

did not appear to represent the overall coast down data.  It was established using TRC curve fitting 

software.  All of our testing showed feature #2 was better than feature #1.  The highway test procedure 

resulted in a fuel savings of 7.1% for feature #1 and 5.6% for feature #2.  Once again the results indicated 

that feature #1 was better than feature #2. 
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Cooper also completed highway fuel economy testing using actual vehicle road testing.  This test 

procedure was developed to try and maintain environmental conditions as close as possible for the two 

test vehicles.  Tires were rotated between vehicles to try and remove vehicle differences.  This actual road 

testing indicated that feature #1 would be slightly better than feature #2 with both having an average fuel 

efficiency improvement of between 5 and 6 percent. 

 

Phase II testing resulted in two features that exceeded the passenger vehicle fuel efficiency improvement 

target of 3% and one feature that exceeded the weight reduction target of 20%.  This testing showed that 

Cooper was able to meet and exceed the overall goals for this program.   

 

Products Developed: 

Conference papers: 

 

Presentations presented by Teijin that included DOE work on Aramid Belts and Beads: 

 

Future Tire Conference, in Brussels, Belgium 4 & 5 June 2013 – “Future tires with Twaron: A raw 

material’s perspective on the tire industry’s trends and developments” 

The Future of Tire Technology, Charlotte, NC 28 & 30 October 2013 – “Future Tires with Twaron p-

aramid: A raw material’s perspective”   

 
Presentations presented by Cooper that included DOE work: 

 
SAE 2015 Government/ Industry Meeting, Future Vehicles: Integrating Safety, Environment and the 

Technology, January 21-23, 2015 – “Developing and Introducing Fuel Efficient Tire Technology in 

the Replacement Market – A Manufacturer’s Perspective” 
 

There are no Web sites or internet sites that reflect results from this Program. 

 

Collaborations fostered: 

NREL 

Teijin 

 

Inventions/Patent Applications: 

Applied for Aramid Bead application patent. 
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Modeling: 

Introduction: 

To produce the "best" result for this project, the evaluation of many dimensions and combinations of the 

design variable space is required.  Historic, traditional methods of build and test are very time consuming 

and expensive, and would not have been tractable within the time constraint of this project.   

Therefore, computational analysis methods, in this case non-linear FEA, were used in this project to sort 

through all of these variations. This enabled Cooper to narrow the field of consideration from several 

hundred at the very beginning, to about 3 or 4 final shapes/constructions, in a fairly short amount of time 

and cost effective manner.   

It should be noted that the modeling employed for this project, was not modeling associated with the 

development of statistical, phenomenological, correlation based, or other types of generalized 

mathematical modeling requiring extensive research, and subsequent validation.  The mathematical 

modeling for this work was based on the well-developed science, math and physics of finite element 

analysis principles. A few comments relative to approximations and assumptions will be made for 

background purposes. 

Project Objective(s) with respect to Modeling: 

The primary objectives of the project were to develop a tire which was light weight and improved vehicle 

fuel economy by a specific percentage.  One assumption involved at the outset was, from "conventional 

wisdom", there is a generally accepted rule of thumb relationship that states that for every 1% change in 

fuel economy, about 10% change in energy loss from rolling resistance is required to achieve that result.  

This is somewhat arbitrary, and does not define a consistent basis from which percentages are measured.  

However for the present work, the baselines for each were established, with respect to a specific baseline 

tire, and subsequently a baseline vehicle for fuel economy measurement.  

Other objectives required that other general measures of tire performance, e.g. handling, traction, wear, 

etc, for the new tire design would be equal to or better than the selected baseline. 

Modeling Background: 

FEA Theory and Application: 

With most all types of mathematical analysis, assumptions and approximations, along with the 

mathematical representations of the specific sciences are invoked along the way, to affect final solutions.   

In this particular case, the physics of solid mechanics and fundamental principles such as potential energy 

and minimization of potential energy leads to the underlying mathematics of the finite element method.  

The solution of the equilibrium equations are the necessary and sufficient conditions to guarantee a 

minimum potential energy solution.  

 

Within the context of the "continuous" mathematics definitions, approximations are made to convert the 

continuous domain to a discretized domain of many small pieces, in a piecewise continuous fashion, 

generally called elements.  In turn the solution variables within the element domains are approximated 

using various orthogonal interpolation function classes, i.e. Hilbert Space Methods. 

This generally leads to a system of algebraic equations, (non-linear in this case), with displacements as 

the primary solution variable, of the force / displacement equilibrium equations. This final system of 

equations is an appropriate assembly of all of the element systems, which have also now included 

equations for material constitutive relationships and appropriate derivatives of the interpolation functions 

of the independent displacement degrees of freedom to get stress and strain information within each 

element. 
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The above incorporates a number of approximations and assumptions that are an integral, and well 

understood part of the FEA system. 

 

From a different perspective, the solution of the force / displacement equilibrium equations is the 

minimization of the error of the approximating functions of the independent variable interpolation 

functions as operated on by the functional requirements of the minimizing principle. Thus, while 

displacements are generally the independent solution variable, stress, strain (appropriate derivatives of 

displacements) and strain energy within each element which is required to satisfy the minimum potential 

energy criteria. 

 

The above theory and process is long established in advanced literature and journals, and embodied in 

many different commercial and public domain FEA Codes. 

 

FEA Codes - ABAQUS - Commercial FEA: 

 
The code used by Cooper for this purpose is ABAQUS, which is a proprietary commercial FEA program, 

from Dassault Systemes.  Complete user, theory, validation, etc, documents are available from Dassault 

Systemes Simulia Corp.  ABAQUS has many different classes of analysis.  The class of analysis used for 

this project was standard, implicit, static, geometric non-linear analysis. The justification for using this 

approach is outlined in the following discussions. 

FEA Tire Models – Generic: 

 
The above discussion addressed the general characteristics of the assumptions and approximation built 

into the fundamental method of analysis.  Additionally, there are assumptions of the application of the 

above to the general subject of tire analysis, as well as the assumptions used to quickly characterize and 

sort the tire constructions / models for the present project. 

 

From a general perspective, the finite element process permits the modeling of a substantial amount of 

detail relative to tires.  This ranges from the details of the external, for example a fully treaded tire, to 

specific details of reinforcement / compound interaction. The challenge is to determine the balance 

between deep computational detail and practical sufficiency.   

 

Recognizing that the purpose of this project, as defined earlier, requires primarily a good tool that is 

sufficiently sensitive to differentiate between the design variable space, in terms of weight and rolling 

resistance estimates, for the design space in consideration, this enabled a number of modeling 

simplifications of idealized constructions, such as working with ribbed tires as opposed to fully treaded 

tire details; working with statically inflated and loaded tires as opposed to at speed rolling tire analysis; 

making use of reinforcement model constructs built into ABAQUS, as opposed to detailed models of 

reinforcing component / compound interaction. 

 

With the simplifications outlined, in the general case, the models that were used for this project involved 

on the order of millions of degrees of freedom that required a non-linear solution procedure. 

 

Rolling Resistance Theory: 

 
Within the context of the project objectives and general computational requirements of the modeling 

aspects of the present work, a key piece of work for this project required the development of a new rolling 

resistance theory.   This theory had the requirements of being  stand alone, physics based, sensitive to the 

variations to be introduced in the model, and computationally highly efficient, such that it could be used 

as a fast grading / ranking tool for the entire scope of the design variable space involving shape, 

construction, materials, and more.  
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The underlying key assumptions involved working entirely in a path integrated cyclic energy variation 

and energy loss space, as opposed to classical methods derived from specific stress and strain cycle path 

integrals. The details of the theory and development are outlined in a following section.   

 

The performance criteria for the model, was, that all taken together, the variation from experimental 

measurements should be “consistent” and tracking the rolling resistance experimental data within about 

10% variation, in order to establish sufficient confidence to be able to use the tool for the intended 

purpose. 

 

RR Theory Formal Validation: 
 

The rolling resistance theory, outlined the next section, was validated informally on different tires, where 

experimental data existed, for both passenger and truck tires.  Additionally, a project was run to formally 

validate the theory for use in this project.  The validation project included several passenger tires, of 

varying diameters, widths, aspect ratios and compounds. Specifically, the diameter range was from 14 to 

18 in diameter, the aspect ratio range was 45 to 65 series tires, the widths ranged from 185 to 275 mm, 

and one tire included was the GFE, current Cooper fuel economy tire. 

 

Standard production tires were tested using the current rolling resistance test protocol.  Independently, the 

set of tire constructions were modeled using the standard modeling methods at Cooper which correspond 

to the nominal / idealized, as designed tire.  Since the objective was to compare to experimental data, it is 

always important to construct the model and test conditions that are as close to what was actually tested as 

possible. The reason for this is to remove the effects of assumptions that may be implied, if only nominal 

/ idealized, as designed tires are used for the models.  That procedure was done for this project. That is, 

some of the tested tires were subsequently cut in order to produce models whose tire section gauges 

corresponded to the cut tire sections, for all of the tire sizes included in this project.  Both set of models 

were run through the analysis and rolling resistance calculations and subsequently, independently 

compared to the experimental data. 

 

The rolling resistance theory, as developed, is sufficiently sensitive to identify proper correlations to 

changes in loading conditions such as pressure, load, rim, flat/drum surface, etc.  Additionally, the theory 

is sufficiently sensitive to correctly identify changes in the model, construction, material properties, etc. 

The "as designed" and "as manufactured" models did exhibit differences, as expected.  Further, the 

comparisons to the respective experimental data results were very good.  The correlation can be seen in 

Figure #20.  This provided sufficient validation to proceed using this theory for the rest of the project.  As 

a side note, this theory has been implemented as a standard tool for rolling resistance computational 

calculation from FEA results. 
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Figure #20 - FEA Rolling Resistance Theory Validation Project Result  

RR Theory Development: 
 

There are a number of ways to develop the theory of rolling resistance for tires.  One method involves the 

tracking of the actual strain tensor component through its history and proceeds to develop a stress / strain 

history and graph through which losses are determined. In the most rigorous form, this requires the 

introduction of material properties and analysis classes that can account for loading and unloading 

behavior with associated energy loss. For example, one approach would require a full time accurate 

transient rolling tire model with visco based materials that can exhibit energy dissipation, and that 

dissipation would need to be accumulated over the rolling cycle.  This is generally done in the context of 

an explicit, time integrated analysis.  One short coming of this approach is that it is difficult to separate 

frame invariance, from the specific tracking of strain and stress history components.  Therefore, an 

alternate formulation was developed, that is both highly efficient relative to the analysis required to 

characterize rolling resistance, and is frame invariant, by definition. 

 

The present approach developed for this DOE project involved applying a spatial integration over the 

loading cycle of a tire using a static inflated and deflected solution using non-linear elastic material 

properties, rather than a temporal integration. Further, it was developed using strain energy and strain 

energy density as the primary field variable, which is frame invariant by definition.  One of the 

underlying approximations, was, that what is observed for energy loss in tires generally runs in a specific 

frequency range, e.g. highway speeds, which is fairly consistent and reasonably independent of frequency.  

One indication that hysteresis can be observed without high frequency viscous effects is that when stress / 

strain loading cycle tests are conducted at even a low rate, hysteresis is exhibited. Therefore, if frequency 

is not a large contribution, this work can be transformed to a spatial integration over a static inflated and 

deflected solution, as an approximation, and subsequently be sufficient for a quick relative ranking tool.  

What is necessary is that the proper field variable quantities of interest be integrated, which in this case 

was strain energy, and strain energy density as noted. 

 

The fundamental underlying principle of this approach is that in the consideration of a typical rubber 

compound going through a loading / unloading cycle of specific magnitudes, the "stress / strain" curve 

exhibits very definite characteristics for loading and unloading. By definition, the integrated area under 

the curve for the loading cycle can be considered as the loading energy. Similarly, the integrated area 
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under the curve for the unloading curve can be considered the unloading energy, or the recovered energy.  

The difference between the two areas is directly lost energy, or hysteresis.  The manner in which this 

translated to extracting and summarizing information from the tire solutions was as follows: 

 

1. Integrate the element strain energy density over the volume of the "ring of elements" in the 

circumferential direction, and subsequently, determine a volume weighted mean strain energy 

density (VWMSED). 

 

2. Use the VWMSED quantity to subtract from the element strain energy densities of the same 

ring and integrate the absolute value over the volume of the ring to produce a volume 

weighted variance of the strain energy. Abaqus was used in this case with non-linear elastic 

material properties, so this quantity represents an elastic energy variation for each element 

ring of the tire cross section. 

 

3. At this point, the appropriate energy loss characteristics for each compound is incorporated to 

determine the energy loss associated with the given elastic energy cycle variation for the 

rolling direction cycle.   

 

4. This information is summed up over the components of the tire cross section for the entire 

tire model, and directly related to the test conditions to determine a rolling resistance force, 

that relates to force data that is derived from the standard tests. 

 

Since this approach is highly dependent on strain energy information, it is imperative that the 

discretizations of the FEA models are sufficiently refined to capture important strain gradients in the cross 

section as well as around the circumference. The motivation for this was outlined in the section regarding 

general theory and approximations in the finite element method. 

 

This application and development of the theory is cognizant of the levels of approximation, or limitations, 

that are included.  For example, presently the theory only is applied in the context of a static inflated and 

deflected tire.  Additional effects such as at speed rolling with the associated strain energy stiffening from 

centrifugal loading and thermal / heat transfer effects relative to material / hysteresis properties represent 

direct extensions to the present theory, and can be introduced at appropriate times, as warranted.  The 

initial development was consistent with the level of approximation required for the exercise of the present 

project. 

 

As noted above, The Fundamental Rolling Resistance Theory has been developed on an energy variable 

basis. It considers the total strain energy cycle and variation from the mean Elastic energy cycle for each 

circumferential ring of elements on the tire cross section.  The variation from the mean  represents the 

variation of  the strain energy cycle as integrated for each ring of elements. 

 

Consider that for “rubber compounds” in general, the stress-strain curve for a specific loading and 

unloading cycle generically appears as follows: 
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This indicates that from a general perspective, the hysteresis / energy loss is directly determined by the 

difference between the area under the loading curve, and the area under the unloading  curve. 

 

From a mathematical perspective, the basic principles of the newly developed Rolling Resistance Theory 

can be summarized in the following: 

 

  
Element Elastic energy cycle: 
 
Total Strain Energy

 element ring 
= TSE

element ring
 = ∫

circ 
∫
elem vol 

(SED) dv 

Vol 
element ring 

= ∫
circ 
∫
elem vol 

 dv 

 
Volume Weighted Mean of Total Elastic Strain Energy per element ring 

VWMSED 
element ring

 = TSE
element ring

 / Vol 
element ring

 

 
Variation of Elastic energy cycle: 
Cycle of Total Elastic Strain Energy Variation per element ring 

VTSE
 element ring

 =  (∫
circ 
∫
elem vol 

(SED - VWMSED)
2

 dv )
1/2

 

 
Energy Loss: 
Hysteresis = f(material loss prop, VTSE)  
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The above is integrated over all of the components in the tire, and summed to arrive at the total cyclic 

energy variance in the tire, for the non-linear elastic materials. Taken together with the material hysteresis 

properties, directly yields the energy loss for the tire. The value is then re-cast in terms of the test rig 

structure, which measures a force at a distance from the center of rotation, from which we arrive at a force 

which produces a torque, which relates to the energy loss in the tire with respect to the finite element 

model and the loading conditions. 

 

The theory and mathematics were informally, internally, reviewed and discussed with colleagues, but not 

formally and/or externally peer reviewed. The approach outlined the levels of approximation available 

and what level of approximation was necessary and included / required in the context of the project, and 

how the present theory is directly extended to accommodate additional physics. 

 

The theory was further supported by the results of the formal validation project, thus providing the 

confidence to proceed for the present DOE Project. 

 

There are a variety of computational platforms that can accomplish the necessary computing to various 

levels.  The system  available within Cooper that was used for this project was an HP DL585 cluster, with 

4 compute nodes each of which contained QUAD AMD Magny-Cours (12 cores) processors for a total of 

48 cores, and 256 GB memory per node.  The cluster was configured with an internal Infiniband network 

for parallel MPI process communications, and an internal Gigabit network for general network traffic 

within the cluster. 

 

Documentation for the finite element software, ABAQUS, can be obtained via Dassault Systemes Simulia 

Corp. 

 

Specific Project Approach: 

 
While not specifically addressed in the requirements outline, this section discusses what, how, when the 

computational technologies were applied within the scope of the overall project. 

 

The overriding principle here was to develop and validate a technology that could then be used as a 

sorting tool for tire variation studies, and then proceed to work on the various aspects of the project as 

required.  The following section discussions represent the different phases of the various technologies, 

and what / how the subject was studied using the computational tools. 

 

Low RR Mold Shape Study: 
 

One premise of the DOE Project Proposal was that the rolling resistance could be influenced by 

modifying only various parameters of the mold shape only. After a detailed review, the number of 

parameters of the design space along with the interactions lead to a consideration of approximately 35 

different theoretical mold shapes.  In this case, the tire construction details / materials were held constant.  

The results indicated that there was a non-trivial difference in rolling resistance with respect to variations 

in the mold shapes.  The results for the initial study were not in terms of continuous variables, such that 

an optimal solution could be inferred or interpolated from a response surface of the design space. This 

information allowed the field to be narrowed to about 5 basic shapes which translated to a final set of 3 

mold shape variations for which molds were made to begin physical testing and validation of this aspect 

of the work. 

 

It should be noted that the tires produced from this process were tested for rolling resistance, and the 

results agreed very well with the "predictions" made, before tires were built. 
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Material Parameter Sensitivity Study: 

 
One characteristic of the rolling resistance analysis is that it can report, on a component basis, where 

rolling resistance is concentrated.  Given that information, a study was made to postulate the effects of 

different combinations of stiffness and hysteresis parameters for the "more important" components.  For 

this work the components varied were the tread, sidewall, and rim cushion.  The result of this work 

pointed to work that needed to be done with these compounds.  The physical studies and physical 

compound development was a subject for a different phase of the project. 

 

Tire Construction Variation Study: 
 

Once the mold shape parameters were known, along with the weight and rolling resistance considerations, 

additional work was done to study selected carcass, specific compound, and reinforcing material variation 

studies. Subjects included mono-ply, multi-ply, ply configurations, ply endings, belt widths, belt angles, 

belt materials, i.e. steel vs. aramid, etc, where the objectives now include, a measure of endurance, 

handling, etc.  Cooper’s standard FEA analysis tools were applied for this purpose. These tools are used 

only for the purpose of making directional design decisions rather than for ultimate product qualification. 

The end result of the study was that the mono-ply with particular ending locations, along with aramid 

belts, with widths, separations, and angles chosen to satisfy the multiple objectives.  The end product is 

then qualified by rigorous testing to DOE and internal Cooper standards for product release. 

 

Final Validation / Correlation / Actual Materials / final design data: 
 

With "final" selections made for mold shape, construction, actual as manufactured material gauges, 

reinforcing, along with material properties for the actual new compounds were determined from 

experimental characterizations.  The computational result using actual tire construction and material 

characterizations agreed within 5% of the experimental data.  This is yet a final test and yet another 

validation of the overall computational rolling resistance model. 

 

 


