



# Development and Application of Advanced Process Control for UKy CO<sub>2</sub> Capture Pilot-Plant

Priyadarshi Mahapatra, Benjamin Omell National Energy Technology Laboratory, Pittsburgh, PA

2018 Capture Technology Project Review Meeting
Pittsburgh, PA
August 13, 2018

















# **Overview**

### Background

- Motivation | Objectives
- CCSI's APC Framework Toolset
- UKy-CAER CO<sub>2</sub> Capture Pilot-Plant Facility
- Project Plan / Status
- Past Accomplishments
  - Identify "most-influential" I/O variables
  - Develop dynamic reduced models
  - Offline "simulation-based" control studies
- Current Activity / Accomplishments
  - Integration with pilot-plant DCS
  - Implement real-time APC
- Results
- Summary

















# **Motivation / Contribution to CCSI<sup>2</sup>**

# Industrial APC Ain't Easy

- Computational cost
- Need for accurate and fast real-time prediction models
- APC / NMPC module costs \$\$\$
- Non-generic, embedded within DCS

### New Contribution

- NMPC-based industrial control
  - Optimal dynamic operation
- Exploit more-efficient third-party solvers (MATLAB – sparse matrix calculations, IPOPT, etc.)











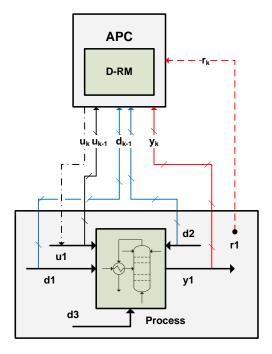


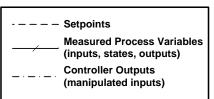






# **Background**


### CCSI's Advanced Process Control Framework


### Why Advanced Process Control (APC) Framework?

- Integrated framework for optimal control of CO<sub>2</sub> capture processes
- Efficient dynamic transition to desired set-point and mitigation of process uncertainties
- Enables to protection of intellectual data by serving as a "black-box" surrogate dynamic-model
- Leverage "fast" D-RMs from CCSI's D-RM Builder as predictive models to optimize control-moves towards cost-effective transient response in face of process constraints

### **APC Framework Features**

- Constrained Nonlinear Model Predictive Control (NMPC) using DAB-Net D-RM model
- Constrained Multiple-Model Predictive Control (MMPC) based on multiple linear state-space "model-bank"
- Unscented Kalman Filter (UKF)-based state-estimation





















# **Background**

# University of Kentucky's CCS Project

- Center for Applied Energy Research (CAER)
  - Other Participants: LG&E/KU, Hitachi, EPRI, etc.
- 2 MWth (0.7 MWe) slip stream test facility
- At E. W. Brown Generating Station
  - Louisville Gas & Electric (LG&E) and Kentucky Utilities (KU)
  - In Harrodsburg, KY, 30 miles from UKy-CAER
- Sponsors
  - DOE/NETL (\$14.55 Million)
  - Kentucky Department of Energy Development and Independence
  - Carbon Management Research Group (Consortium)
- Catch and release program
- Opportunity: improve control responses time | residence time in solvent/desiccant loops

















# CAER's CO<sub>2</sub> Capture Test Facility





LG&E/KU Brown Station

CO<sub>2</sub> Capture Facility

# **Existing Control System**

- Emerson's DeltaV system
- All standard PID Controllers (w/ 2-3 cascade loops)
- Currently uses 170 process variables
  - Maximum 250 variables from the license
- Over 20 manipulated input variables
- Solvent residence time: ~30
  min through the loop; scope
  for improvement

















# **Project Status/Plan**

- Assess control requirements
- Operability and controllability analysis
  - Identify relevant I/O process variables
  - Design step-change sequence
  - Run step-tests
    - Keep low-level PID controllers unchanged
- Build D-RM for the system
  - Validate approach on secondary-stripping column sub-section
  - Develop D-RM for entire plant
    - Testing data | Validation data
- Evaluate APC methodology for online real-time control
  - •Validate APC approach using offline "plant" based on D-RM demonstrated benefits
  - •Integrate CCSI's APC Framework w/ pilot-plant's DCS
  - Closed-loop identification based on historical data
- Implement real-time nonlinear MPC
  - Controller tuning and validation (preliminary)
  - Demonstrate operational improvement over existing methods

















# CAER's CO<sub>2</sub> Capture Process

# Three loops

- Flue gas pretreatment loop
- Amine solvent loop
- Liquid desiccant loop

### Solvent loop design

- Single absorber with intercooler
- 2 strippers
  - Primary stripper
  - Secondary air stripper

# Cooling tower/liquid desiccant loop design

Removing moisture in humid air by liquid desiccant

















# Process Flow Diagram Material Streams + 10 Variables

### NATIONAL ENERGY To Stack TECHNOLOGY LABORATORY Process Flow Diagram Stripper Pri. Heat Recovery HX E-105 Pressure University of Kentucky CAER CO<sub>2</sub> Capture Pilot Plant CO<sub>2</sub> Capture Developed by: Priyadarshi Mahapatra, NETL Jinliang Ma, NETL Solvent P-113 Flowrate Date: 1/19/2017 C-102 C-104 Primary Heat Recovery HX Temperature P-112 Fluegas Composition Reboiler Rich Heat Recover HX E-106 Lean/Rich HX E-113 Sec. Heat Recovery HX Rich Polishing SS Overhead Temperature or CO<sub>2</sub> Comp. C-105 Flue Gas Fluegas Flowrate Secondary Stripper E-104 cws Evaporator Polishing Steam Desiccant Make-Up Tank C-106 Cooling Air Flowrate C-108 Desiccant Flowrate Secondary Stripper Air Color Legend Flowrate Flue Gas Evaporator CO2 + Air Ambient Humidity Liq. Desiccant E-109 Temperature Liquid Desiccant Chiller Liquid Desiccant Cooler

### **Relevant Process Variables**

### Manipulated Inputs (MV)

- Solvent flow rate
- Primary stripper pressure
- Reboiler steam flowrate
- Flow rate of air to secondary stripper
- Cooling air flowrate
- Desiccant flowrate
- Rich-solvent heater steam flowrate
- CO<sub>2</sub> concentration of flue gas to absorber (disturbance)

### Output / Controlled Variables (CV)

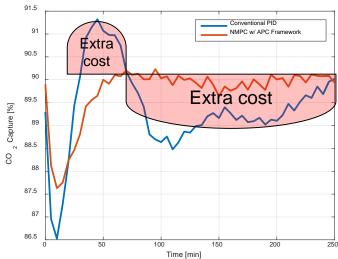
- Percentage of CO<sub>2</sub> captured
- Temperatures of product streams of individual columns
- Compositions of product streams

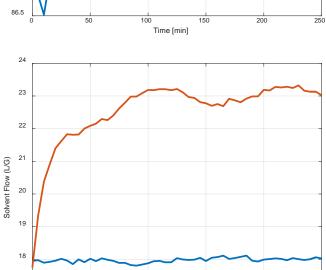















# **Previous "offline" Control Studies**







 $CO_2$  concentration disturbance in inlet flue gas (14% to 16%) at t = 0

### **NMPC** Objective function

$$\min_{\boldsymbol{\Delta \mathbf{u}_{1}...\Delta \mathbf{u}_{M}}} J = \sum_{p=1}^{P} \left( CO_{2p}^{SP} - CO_{2p} \right)^{T} \mathbf{w}_{y} \left( CO_{2p}^{SP} - CO_{2p} \right)$$
$$+ \left( Stm_{M}^{Reb} + Stm_{M}^{RHR} \right) + \sum_{m=1}^{M} \boldsymbol{\Delta \mathbf{u}_{m}^{T} \mathbf{w}_{u} \boldsymbol{\Delta \mathbf{u}_{m}}}$$

80% reduction in settling time

Less (~5%) steam duty



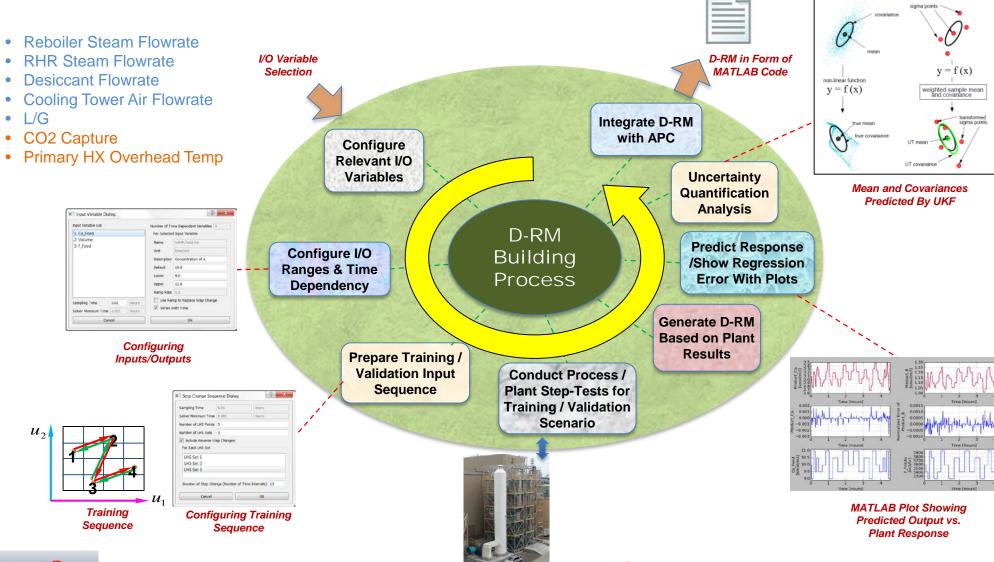
17



Time [min]














# Industrial Implementation: D-RM development

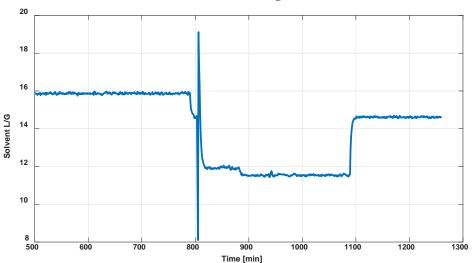


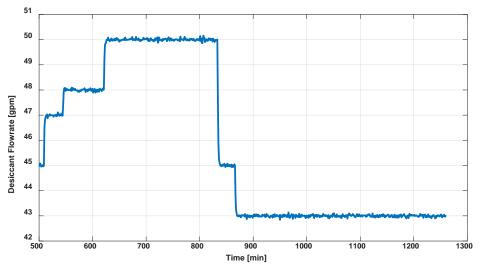




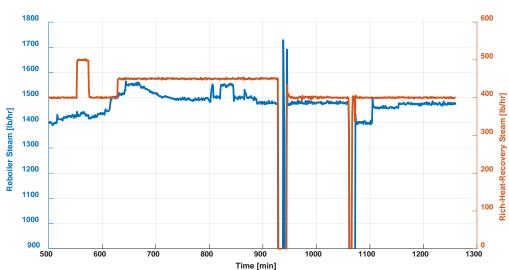


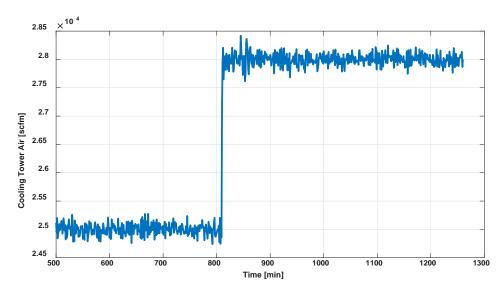








# Results – System Identification / D-RM Building





### **5 Input Variables**



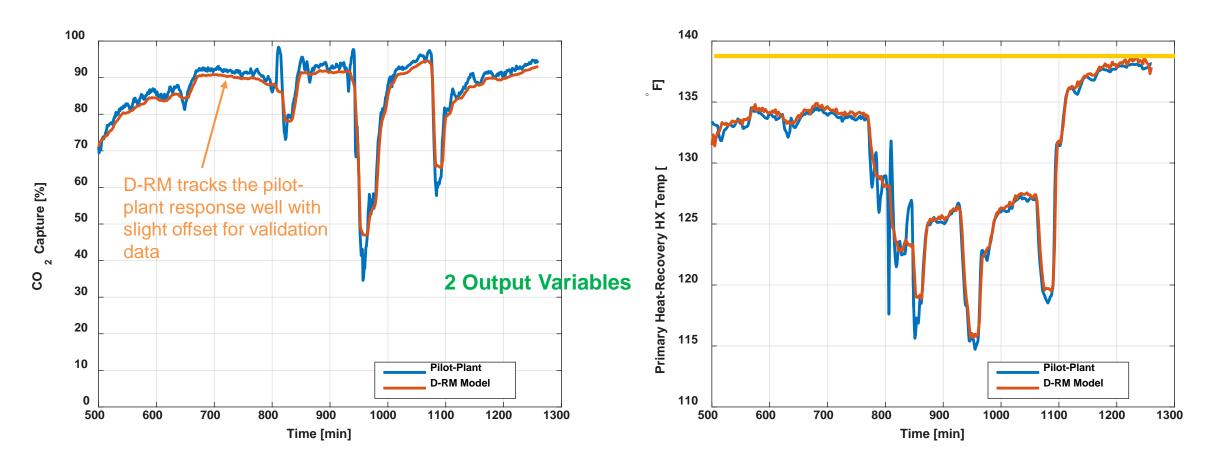



















# Results – System Identification / D-RM Building



Primary Control Variable – Minimize settling times

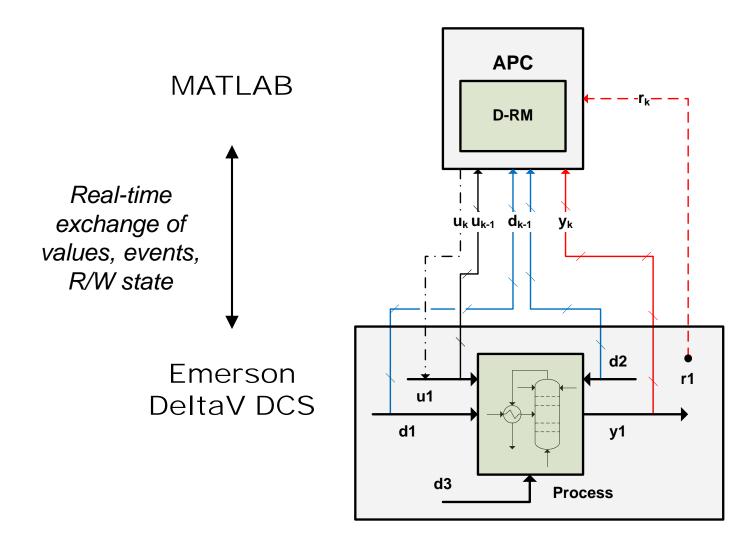
Critical Constraint Variable – Values above 139F leads to solvent leakage from stack (closely monitored)


















# **Industrial APC Implementation**



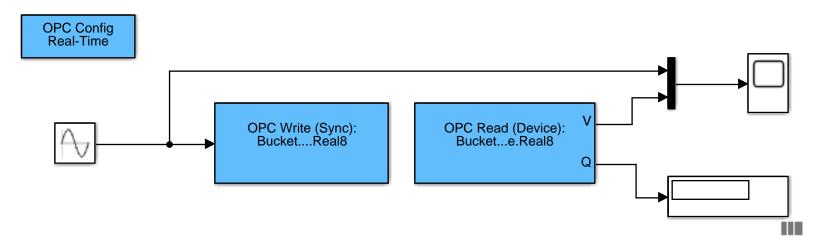

















# Integration with pilot-plant DCS

- OPC (OLE for Process Control) Protocol
  - •Identify existing Emerson Delta-V OPC server on pilot-plant DCS
  - •Create OPC client within CCSI APC Framework
  - Establish connection from client to server
  - •Identify process variables tags (r/w permissions) available on server PLC/charm names
  - •Create read-only PV tags and writable remote setpoint (SP) tags on client
  - Conduct step-tests on relevant remote SP and validate PV with DCS historian
- Develop event callbacks routines for solving real-time control optimization problem
- Establish real-time communication at each sampling "clock" time

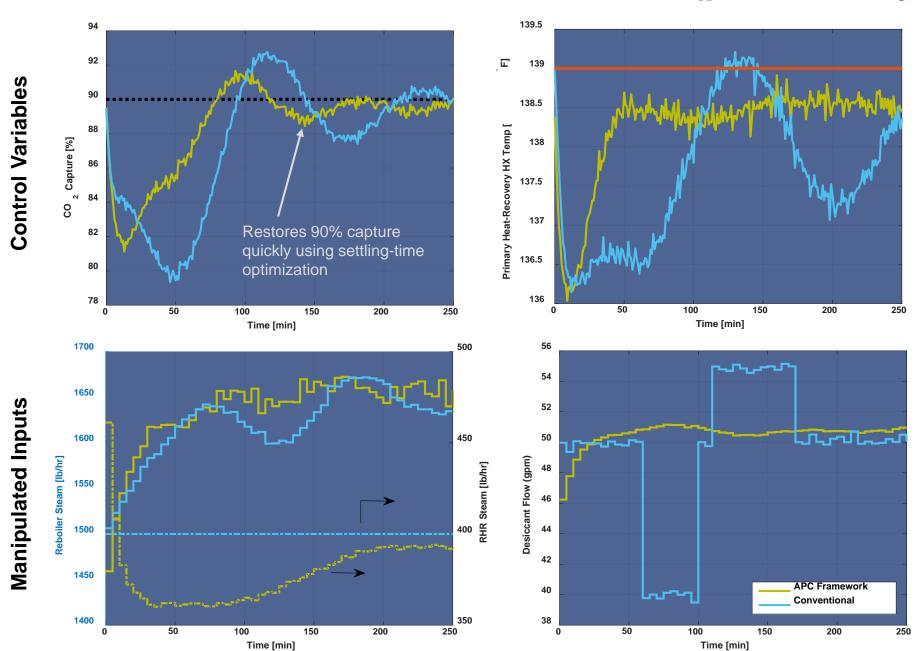



















# Results – Real-time APC (preliminary study)



### **Study Details**

- 3 input 2 output
- CO<sub>2</sub> concentration disturbance in inlet flue gas (14% to 16%) at t = 600 min
- Control objective

$$\min_{\Delta \mathbf{u}_{1}...\Delta \mathbf{u}_{M}} J = \sum_{p=1}^{P} \left( CO_{2p}^{SP} - CO_{2p} \right)^{T} \mathbf{w}_{y} \left( CO_{2p}^{SP} - CO_{2p} \right)$$
$$+ \sum_{m=1}^{M} \Delta \mathbf{u}_{m}^{T} \mathbf{w}_{u} \Delta \mathbf{u}_{m}$$

- Sampling-time = 1 min
- Prediction Horizon = 2 hr
- Control Horizon = 10 steps

# **Summary**

# Performance Improvement

| UKy/CAER existing control                                                                                                                              | APC Framework                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No automated control of CO <sub>2</sub> capture                                                                                                        | Optimal setpoint tracking of CO <sub>2</sub> possible using NMPC                                                                                            |
| Rely on overhead T high-alarm visual feeds to rectify solvent loss to stack.                                                                           | Overhead T monitored and predicted via model. Take necessary steps before violating constraints                                                             |
| Square I/O system required for multiple single-input-single-out controllers – e.g. CO <sub>2</sub> capture may only be paired with reboiler-steam flow | One output may optimally be controlled by two or more sensitive inputs – e.g. both reboiler and RHR steam contribute to controlling CO <sub>2</sub> capture |
| Fixed control parameters leading to sub-<br>optimal performance when operating far from<br>"tuned" regime                                              | NMPC with Kalman Filter updates the model based on extent of plant-model mismatch                                                                           |

















# **Summary**

# Demonstrated CCSI's APC Tools applicability and benefits in CO<sub>2</sub> capture plant

- Identified most-influential pilot plat's PV
- Developed dynamic reduced-order model (D-RM)
- Demonstrated ability to interface with existing pilot-plant DCS using industrystandard OPC
- Implement real-time APC for CO<sub>2</sub> capture SP tracking with temperature constraint

### **Future Work**

- Refine existing D-RM through closed-loop identification using historical data
- Implement plant-wide APC with economic optimization and demonstrate benefits over existing control methods

















# Acknowledgement

# University of Kentucky's CAER Team

- Kunlei Liu, Jonathan Pelgen, Heather Nikolic, Zhen Fan
- Control Room Operators: Len, Marshall, Otto

### OPC Foundation

Provide educational material for efficient OPC implementation

### Matrikon OPC Team

Provide test-bench for OPC communication offline

### MATLAB OPC Toolbox

Provide OPC client interface for APC-DeltaV communication

















### **Disclaimer**

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



















### For more information

https://www.acceleratecarboncapture.org/

Priyadarshi Mahapatra, NETL, Pittsburgh Priyadarshi.Mahapatra@netl.doe.gov

Benjamin Omell, NETL, Pittsburgh Benjamin.Omell@netl.doe.gov















