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Presenter
Presentation Notes
New 5 year project to take the tools, modeling frameworks
Work with development projects through CRADA’s
Support users of Toolset
Commercialization


S
’\

Overview

Background

— Motivation | Objectives

— CCSI's APC Framework Toolset

— UKy-CAER CO, Capture Pilot-Plant Facility
Project Plan / Status
Past Accomplishments

— ldentify “most-influential” 1/O variables

— Develop dynamic reduced models

— Offline “simulation-based” control studies
Current Activity / Accomplishments

— Integration with pilot-plant DCS

— Implement real-time APC

Results
Summary
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Motivation / Contribution to CCSI?

Industrial APC Ain’t Easy
— Computational cost

— Need for accurate and fast real-time

prediction models

— APC / NMPC module costs - $$$
— Non-generic, embedded within DCS

New Contribution

— NMPC-based industrial control
» Optimal dynamic operation

— Exploit more-efficient third-party
solvers (MATLAB — sparse matrix

calculations, IPOPT, etc.)
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Focus on the Essentials

leNovember 2012 Cover By now, virtually every industrial process in the world is under automatic control, so

the logical next step is advanced process control (APC). APC has already been implemented in many facilities,

albeit with varying degrees of success. But when APC works, the results

Dr. James Ford, senior consultant at Maverick

bed catalytic reactors in which the reaction was highly
exothermic while the catalyst was very heat-sensitive,”
Ford explains (See Figure 1).

"The temperature had to be kept high enough to B EIET
promote the reaction. but iust a short hioh-temperature
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Technologies, says that Maverick engineers recently About the Author
implemented a set of model-based controls for BASF in Dan Hebert, PE is Senior
Geismar, La. "The application was on a series of fixed- l_Dan Hebert Technlcal Editor for CONTROL, Related Content

can be nothing short of spectacular.

Control Design, and Industrial
Advanced Process Control-
Complex Solution for Complex

Problems
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Background
CCSI's Advanced Process Control Framework

Why Advanced Process Control (APC) Framework ?
» Integrated framework for optimal control of CO, capture processes

« Efficient dynamic transition to desired set-point and mitigation of process = = =1
uncertainties

 Enables to protection of intellectual data by serving as a “black-box” surrogate

S
» Leverage “fast” D-RMs from CCSI’'s D-RM Builder as predictive models to | ’u |
"

dynamic-model
optimize control-moves towards cost-effective transient response in face of ’_;_
process constraints - B 2l a
a I
APC Framework Features o ' e
e Constrained Nonlinear Model Predictive Control (NMPC) using DAB-Net D-RM T T rrocess
model
» Constrained Multiple-Model Predictive Control (MMPC) based on multiple linear | 777~ e erocess Variables
state-space “model-bank” )
« Unscented Kalman Filter (UKF)-based state-estimation e o
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Background

 University of Kentucky’'s CCS Project
— Center for Applied Energy Research (CAER)
e Other Participants: LG&E/KU, Hitachi, EPRI, etc.
— 2 MWth (0.7 MWe) slip stream test facility
— At E. W. Brown Generating Station

* Louisville Gas & Electric (LG&E) and Kentucky Utilities (KU)
 In Harrodsburg, KY, 30 miles from UKy-CAER

— Sponsors
 DOE/NETL ($14.55 Million)
« Kentucky Department of Energy Development and Independence
o Carbon Management Research Group (Consortium)

— Catch and release program

 Opportunity: improve control responses time | residence time in
solvent/desiccant loops

-~

‘ NATIONAL Val ik
’ A M Lawrence Livermore: “ - o
C C S I N TECHNOLOGY "/hl \'"’ National Laboratory &;Qgﬁlgmg-‘g wpacific Y% WestViginiaUnivessity TEXAS

’ \ AR T by TL LABORATORY AT AUSTIN

N U.S. DEPARTMENT OF

ENERGY -




CAER’s CO, Capture Test Facility

Existing Control System

e Emerson’s DeltaV system

« All standard PID Controllers
(w/ 2-3 cascade loops)

 Currently uses 170 process
variables
— Maximum 250 variables from
the license
 Over 20 manipulated input
variables

e Solvent residence time: ~30
min through the loop; scope
for improvement

LG&E/KU Brown Station
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Project Status/Plan

e Assess control requirements
e Operability and controllability analysis

ldentify relevant 1/O process variables
*Design step-change sequence
*Run step-tests
— Keep low-level PID controllers unchanged

e Build D-RM for the system
*Validate approach on secondary-stripping column sub-section
*Develop D-RM for entire plant
— Testing data | Validation data

 Evaluate APC methodology for online real-time control
Validate APC approach using offline “plant” based on D-RM — demonstrated benefits
sIntegrate CCSI's APC Framework w/ pilot-plant’'s DCS

*Closed-loop identification based on historical data
 Implement real-time nonlinear MPC

«Controller tuning and validation (preliminary)
sDemonstrate operational improvement over existing methods
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CAER’s CO, Capture Process

e Three loops
— Flue gas pretreatment loop
— Amine solvent loop
— Liquid desiccant loop
« Solvent loop design
— Single absorber with intercooler

— 2 strippers
* Primary stripper
e Secondary air stripper

e Cooling tower/liquid desiccant loop design
— Removing moisture in humid air by liquid desiccant
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Process Flow Diagram

Material Streams + 10O Variables

To Stack
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Process Flow Diagram

University of Kentucky
CAER CO, Capture Pilot Plant

Developed by:
Priyadarshi Mahapatra, NETL
Jinliang Ma, NETL

\ Date: 1/19/2017
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Relevant Process Variables

« Manipulated Inputs (MV)

— Solvent flow rate

— Primary stripper pressure

— Reboiler steam flowrate

— Flow rate of air to secondary stripper

— Cooling air flowrate

— Desiccant flowrate

— Rich-solvent heater steam flowrate

— CO, concentration of flue gas to absorber (disturbance)
e Output / Controlled Variables (CV)

— Percentage of CO, captured

— Temperatures of product streams of individual columns
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Industrial Implementation: D-RM development

* Reboiler Steam Flowrate

* RHR Steam Flowrate

» Desiccant Flowrate

» Cooling Tower Air Flowrate
e L/IG

 CO2 Capture

* Primary HX Overhead Temp
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Selection

&

Integrate D-RM
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Results — System Identification / D-RM Building
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Results — System Identification / D-RM Building
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Industrial APC Implementation
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Integration with pilot-plant DCS

e OPC (OLE for Process Control) Protocol
Ildentify existing Emerson Delta-V OPC server on pilot-plant DCS
*Create OPC client within CCSI APC Framework
*Establish connection from client to server
|ldentify process variables tags (r/'w permissions) available on server — PLC/charm names
Create read-only PV tags and writable remote setpoint (SP) tags on client

«Conduct step-tests on relevant remote SP and validate PV with DCS historian

 Develop event callbacks routines for solving real-time control optimization problem

« Establish real-time communication at each sampling “clock” time

S
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Control Variables
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Results — Real-time APC (preliminary study)
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Summary
Performance Improvement

UKyY/CAER existing control APC Framework

No automated control of CO, capture Optimal setpoint tracking of CO,, possible
using NMPC

Rely on overhead T high-alarm visual feeds to Overhead T monitored and predicted via

rectify solvent loss to stack. model. Take necessary steps before violating

constraints

Square /O system required for multiple single- One output may optimally be controlled by two
input-single-out controllers — e.g. CO, capture or more sensitive inputs — e.g. both reboiler

may only be paired with reboiler-steam flow and RHR steam contribute to controlling CO,
capture
Fixed control parameters leading to sub- NMPC with Kalman Filter updates the model

optimal performance when operating far from  based on extent of plant-model mismatch
“tuned” regime
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Summary

Demonstrated CCSI’'s APC Tools applicability and benefits in CO, capture
plant

— ldentified most-influential pilot plat’s PV
— Developed dynamic reduced-order model (D-RM)

— Demonstrated ability to interface with existing pilot-plant DCS using industry-
standard OPC

— Implement real-time APC for CO, capture SP tracking with temperature
constraint

Future Work
— Refine existing D-RM through closed-loop identification using historical data

— Implement plant-wide APC with economic optimization and demonstrate
benefits over existing control methods
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Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof.
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For more information
https://www.acceleratecarboncapture.orq/

Priyadarshi Mahapatra, NETL, Pittsburgh
Privadarshi.Mahapatra@netl.doe.gov

Benjamin Omell, NETL, Pittsburgh
Benjamin.Omell@netl.doe.gov
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Presentation Notes
New 5 year project to take the tools, modeling frameworks
Work with development projects through CRADA’s
Support users of Toolset
Commercialization

https://www.acceleratecarboncapture.org/
mailto:Priyadarshi.Mahapatra@netl.doe.gov
mailto:Priyadarshi.Mahapatra@netl.doe.gov

	Development and Application of Advanced Process Control for UKy CO2 Capture Pilot-Plant
	Overview
	Motivation / Contribution to CCSI2
	Background�CCSI’s Advanced Process Control Framework
	Background
	CAER’s CO2 Capture Test Facility
	Project Status/Plan
	CAER’s CO2 Capture Process
	Slide Number 9
	Relevant Process Variables
	Previous “offline” Control Studies
	Industrial Implementation: D-RM development
	Results – System Identification / D-RM Building
	Results – System Identification / D-RM Building
	Industrial APC Implementation
	Integration with pilot-plant DCS
	Results – Real-time APC (preliminary study)
	Summary�Performance Improvement
	Summary
	Acknowledgement
	Disclaimer
	Slide Number 22

