Electrochemical Reduction of Carbon Dioxide to Useful Chemical Intermediates

Philip Cox (PI) and Vincent Storhaug

Background and Motivation

The recycling of captured CO₂ as a chemical feed stock is an attractive reuse and recovery strategy. The direct insertion of CO₂ is a route to an increased chain length and the production of valuable chemical intermediates.

- CO₂ reuse as an intermediate has been limited by its high thermodynamic stability.
 - High temperatures and pressures are necessary to activate the CO₂
- The use of complex reactive catalysts/organometallic reagents are also typically required

Precursor for acetylsalicylic acid (aspirin)

Na[¯]O

Kolde-Schmidt reaction can be

Electrochemical Measurements

CO₂ can effectively be electrochemically activated at room temperature and pressure in the presence of a wide range of organic precursors and solvents

Clear reduction electrochemical behavior shown for a range of catalyst and solvent systems

Mainstream's Approach

Electrocarboxylation provides an accessible, flexible low temperature, low energy path to CO₂ reuse

The main issue is CO₂ solubility limits the reaction rates Mainstream's approach maximizes CO₂ mass transport using highly optimized gas diffusion electrodes.

Bench-scale controlled-current electrosynthesis runs performed for a range of precursors using a 25 cm² electrode area batch reactor

Electrode Coating and Catalyst Selection

- Mainstream has optimized the liquid barrier layer coating – to prevent electrode flooding thus maximizing performance
- Stable catalyst coatings have been developed for maximum selectivity and current density (reaction rate)

Low porosity, hydrophobic gas diffusion electrodes scaled to 240 cm² active area

Solution Reservoir at Start

Solution Reservoir Clouded with Precipitating Product

High yield of reaction product obtained for model electrocarboxylation of benzyl chloride

Conclusions

- **Reproducibly fabricated high performance electrodes utilizing** catalyst-coated Mainstream optimized liquid barrier-gas diffusion layer substrates
- Scaled the optimized GDL substrates to 240 cm² active area
- Demonstrated CO₂ reduction and electrocarboxylation with a range of precursors using a 25 cm² active area bench scale cell
- Achieved unoptimized yields of 75% with a Faradaic efficiency of 80% for the electrocarboxylation of benzyl chloride to phenyl acetic acid.

Acknowledgements

DOE SBIR Phase II (June 2018 – June 2020)

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0017105.

