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High Energy Systems for Transforming CO2 to Valuable Products 

 Sponsor 

 Funding: Federal: $799,997, Cost-share: $206,000, Total: $1,005,997

 Objective: Develop a direct electron beam (E-Beam) synthesis (DEBS) process to produce 
valuable chemicals such as acetic acid, methanol, and carbon monoxide using carbon dioxide 
(CO2) captured from a coal-fired power plant and methane (natural gas).

 Team: Member Roles
• Overall project integration and management
• Design, construct the E-Beam reactor and the testing unit
• Conceptual design for coal-fired power plants with  DEBS 

• Provide guidance in E-Beam reactor design and E-Beam 
accelerator for testing

• Develop a kinetic model for the E-Beam reactor

DE-FE0029787
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Project Description – Performance Dates

• Develop the DEBS process that uses high-energy e-beam to break chemical bonds. 

• Produce valuable chemicals, such as acetic acid, methanol, and carbon monoxide, at relatively 
low severity (pressure near one atmosphere and temperatures <150°C) from near-pure CO2 

captured from a pulverized coal-fired power plant and methane, imported as natural gas. 

• Creating such valuable products will offset the cost of carbon capture and storage. 

Period of Performance Budget Period 1 Budget Period 2
05/17-04/19 05/17-01/18 02/18-04/19
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DEBS Process Flow Diagram
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 A kinetic model will be developed by 
SUNY based on the collected data and 
will be used to predict the chemical 
performance of the DEBS process. 

 A conceptual design for coupling the 
DEBS process to a coal-fired power 
plant will be developed. 

This project will expand on the concept of DEBS to:
 Develop a commercially viable process
 Minimize E-Beam energy requirements
 Maximize CO2 conversion
 Selectively control the yield of more valuable products using 

catalysts

DEBS: non-equilibrium process that breaks bonds directly unlike 
conventional chemistry that requires heating the entire molecule

DEBS Integration in an IGCC Plant
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 Current technology for the commercial production of acetic acid, methanol, and carbon 
monoxide requires:
 High temperatures and pressures
 Expensive catalysts in multiple process steps
 High capital and operating costs

 The DEBS process uses high-energy electron beams to break chemical bonds, allowing 
production of the desired chemicals at near-ambient pressure and temperatures.

 Successfully combining DEBS technology with CO2 captured from coal-fired power plant flue 
gas provides a low-cost, energy-efficient process to produce valuable chemicals and reduce 
emissions.

Advantages Over Traditional Processes



7

Electron Beam Deposition into Gas

Instructables.com
DIY Electron Accelerator:
a Cathode Ray Tube in a 
Wine Bottle
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Industrial E-Beam Accelerator

Dynamitron
0.5 -> 5 MeV | 160 mA

Electron beam

Main application : E-beam Crosslinking
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Industrial E-Beam Processes
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Electron Beam Primer

V = Voltage (eV)
I = Current (amp)
V x I = Power (watt)

Current = Charge/Time
1 amp = 1 coulomb / 1 sec

Charge of an electron = 1.602 x 10-19 coulombs
1 coulomb = 6.25 x 1018 electrons

1 eV x 1 amp= 1 watt = 1 J/sec
1 eV = 1.602 x 10-19 J

1eV = Kinetic energy of an electron accelerated to 1 volt

1 amp = 6.25 x 1018 electrons / sec
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Electron Beam Primer

500keV & 15mA E-Beam:
Each electron will have:
8 x 10-14 J of energy

E-Beam will have:
9.3633 x 1016 electrons per second

E-Beam power = 7500 watt or 7500 J/sec

Each electron has the potential to achieve ~100,000 interactions

V = Voltage (eV)
I = Current (amp)
V x I = Power (watt)
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Electron Beam Primer

C-H bond energy ~5eV

One 500keV electron can break 
approximately 100,000 x (5 eV) bonds

Bond Dissociation Energies

Bond ΔHƒ298 (kJ/mol)

C-C 607

C-H 337.2

C-O 1076.5

C=O 749

C≡O 1075

Dehydrogenation of CHx

ΔH (kJ/mol)

CH4 → CH3∙ + H∙    405

CH3∙ → CH2∙ + H∙    439

CH2∙ → CH∙ + H∙    488

CH∙ → C + H∙    685

CH4 → CH2∙ + 2H∙    808

CH4 → C + 4H∙    1266

CH2∙ → C + 2H∙    857
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Industrial Accelerator Design (linear)

Typical Numbers in range of interest;
450 to 1000 keV
25 to 250 mA
11 - 100 kW
Efficiency: 45 – 60%

Source of 
Electrons

Acceleration Modules 

Electron beam
Vacuum

Foil

Target

Voltage – Controls how FAR the electrons will go
Current  - Controls how MANY electrons will be
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Electron Beam Deposition

Maximum efficiency occurs when 
electron beam deposition depth is 
equal to reactor depth.

Electron
Beam

e-beam window area = a

Flow, velocity v Mass M
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Monte Carlo Simulation

Monte Carlo simulations are used to model the probability of different 
outcomes in a process that cannot easily be predicted due to the 
intervention of random variables.

• The electron trajectories are simulated by using a Monte Carlo method. 

• Each electron enters the reactor with a given energy, and its trajectory is followed 

until it comes to rest or exits the reactor.

• To simulate a beam, the process is repeated for a large number of electrons.

• Secondary electrons are generated and tracked within the "fast secondary" model.
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Initial electrons energy:   800 keV
Energy cut-off:                     1 keV

Y crossection of reactor vessel X crossection of reactor vessel

Estimation of Electron Paths in Flue Gas Treatment

Ref. : Presentation by Sylwester Bułka et al. International Atomic Energy Agency Meeting on Electron Beam Flue Gas Treatment, Warsaw, Poland  14 – 18 May 2007
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Electron Beam Flue Gas Treatment

Schematic diagram of the EBFGT technology

“Due to very high 
concentrations of ions, 
radicals, ion-radicals and 
other reactive particles in 
E-Beam plasma, 
chemical reactions take 
place at extremely high 
rates of ~0.01-10 
milliseconds”

10-8 sec 10-5 sec 10-1 secRef. : Kim et al., “Electron-beam 
Flue-gas Treatment Plant for 
Thermal Power Station “Sviloza” 
AD in Bulgaria”, J. of the Korean 
Physical Society, Vol. 59, No. 6, 
December 2011

Ref. : Vinokurov et al., “Plasma-Chemical Processing of Natural 
Gas”, Chem & Tech. of Fuels and Oils, Vol. 41, No. 2, 2005



18

Target Range of E-Beam Dose and Residence Time

Experimental data in 
literature indicate ~ 4-7 
kJ/gm methane (as 
electrical energy) for E-
Beam based pure 
methane conversion to 
H2, C2-C4 gases & C5+ 
liquid fuels

For E-Beam based H2 production from methane, literature data 
indicates  average gas residence time  of about 2  milliseconds.

Ref. : Vinokurov et al., Chemistry & Technology 
of Fuels and Oils, V-41, #2, 2005Ref. : “H2 Production from Methane in E-Beam Plasma” ; 

Sharafutdinov et al., Technical Physics Letter,  Vol. 31, 2005
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Experimental Design & Key Experimental Parameters

• E-Beam dose, (kJ/gm)
• Gas residence time in beam 
and off beam (ms)
• E-Beam energy : 300-500 keV
• Use of a promoter, such as, 
carbon monoxide
• Use of catalyst(s) Schematic drawing of the DEBS reactor
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Project Task Plan

BP 1:
• Design and construct a DEBS reactor and a testing unit
• Shakedown DEBS testing unit and calibrate analytical diagnostic 

equipment
• Transport the testing unit to IBA
BP2:
• Run parametric testing
• Develop a kinetic model based on the collected data
• Perform life cycle analysis, technology gap analysis, and economic 

analysis
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Project Scope and Timeline

Task Description Duration

1 Project Management and Planning 5/17-4/19

2 Design and Construction of Experimental System 5/17-9/17

3 Start-Up and System Checks at GTI 10/17-11/17

4 System Commissioning at IBA 12/17-1/18

7.1 Develop Preliminary Kinetic Model 6/17-1/18

BP2

5 Conduct Parametric Testing 2/18-4/18

6 Conduct Parametric Testing with Catalyst 7/18-10/18

7.2 Develop Kinetic Model 9/18-4/19

8 Data Analysis, Life Cycle Analysis and Economics 10/18-4/19
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Risk Management and Mitigation

Description of Risk

Pr
ob

. 

Im
pa

ct Risk Management 
Mitigation and Response Strategies

Technical Risks:
Reactor size too small for practical use in 

testing unit Lo
w

M
od

. • Reduce E-Beam power and increase reactor size

Recombination reactions occur too quickly Lo
w

M
od

.

• Decrease residence time in reactor
• Include a “recombination chamber” to allow reactions to take 

place.
• Change location of catalyst to accommodate recombination 

reactions

Reactions produce unidentified products

M
od

.

Lo
w

• Increase analytical diagnostic capability to identify reaction 
products

• Change catalyst to work with newly identified reaction products

Not high enough conversion Lo
w

M
od

. • Increase E-Beam accelerator power
• Introduce recycle to the process
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Milestones and Success Criteria

Decision 
Point Date Success Criteria

Go/no-Go 
decision 
points

01/31/2018

• Successful commissioning of a viable reactor system and testing unit:
o Verify gas flow meter control by measuring the vent using a dry test meter
o Operate chiller for condenser to achieve less than -20°C in the condenser
o Verify detection limit of acetic acid and methane using RGA at 100ppmv

• Identify at least two catalysts to control the recombination and increase the yields for 
more valuable products

Budget 
Period Task Number Milestone Description Planned 

Completion
1 1 Update Project Management Plan 6/27/17
1 1 Kickoff Meeting 7/13/17
1 2 Complete Final Design 9/1/17
1 1 Submit Continuation Application 11/1/17
1 7 Develop Preliminary Kinetic Model 12/31/17
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Progress and Current Status

Technology Challenge: Delivering maximum e-beam dose while maintaining very short residence time

• Prepared 3 different reactor geometries
• IBA currently running Monte Carlo calculations
• Preparing reactor design to maximize e-beam utilization inside the reactor

Technology Challenge: Determining which of the many compounds formed are more probable

• SUNY is setting up the model reactions
• Thermodynamic properties for over 300 compounds (ions and radicals) are listed
• Preparing database containing reactions of these compounds
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Experimental Equipment

Cooling Fins

Titanium Window
Beam Horn

Beam Tube
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Plans for future testing/development

• Reactor and testing skid fabrication
• Analytical equipment setup

• BP2 Scope
• Testing at IBA
• Kinetic model verification
• Techno-economic analysis



27

Summary

 Develop a commercially viable non-equilibrium 
process that breaks bonds directly unlike 
conventional chemistry that requires heating the 
entire molecule

 Each electron has the potential to achieve ~100,000 
interactions

 Extremely high reaction rates (~10 milliseconds)

 Monte Carlo calculations to maximize e-beam 
utilization inside the reactor

 Thermodynamic properties database of reactions 
for over 300 compounds (ions and radicals)

BP1: Reactor fabrication and 
preliminary model setup

BP2: Testing and techno-
economic analysis
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