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Current Status of the Technology 

Summary of Existing Methods for Gas Hydrate Detection 
Gas hydrates are ice-like solids that include molecules of methane or higher 
hydrocarbons in a lattice of water molecules(Kvenvolden 2000).  They are abundant on 
the continental margins of the United States, but are most common as deeply buried and 
dispersed layers called bottom-simulating reflectors (Milkov 2004).  The Gulf of Mexico 
is one of several world regions where gas hydrate occurs as dense deposits exposed or in 
shallow burial at the seafloor (MacDonald et al. 1994).  The stability of gas hydrate is 
determined by the ambient temperature of the deposit and the hydrostatic pressure 
exerted by the overlying water and sediment mass (Sloan 1998).  Because these variables 
may be affected by global climate change (Kennett and Cannariato 2000), there is interest 
in the locations of hydrates that would be most effected by such changes.   

Current technology for localizing gas hydrate deposits relies heavily on 3-D 
seismic exploration (Dai et al. 2008; Frye 2008; Kleinberg and Brewer 2001; Trehu and 
Flueh 2001).  However, this approach may not fully constrain sites where migration of 
gas into bottom waters is on-going because the geophysical signature of ancient deposits 
that are no longer active may resemble more active sites (Roberts and Carney 1997).  
Acoustic methods can also be used to image bubbles from mud volcanoes and gas 
hydrate deposits as they rise through the water column (Greinert et al. 2006; von 
Deimling et al. 2007), but this method requires detailed and localized searching.  Satellite 
remote sensing offers the possibility to identify active oil seeps at a basin-wide scale 
(MacDonald et al. 1993). 

Various satellite sensors have been used for detecting layers of oil floating in the 
sea; SAR (synthetic aperture radar) images are widely available and are not obscured by 
cloud cover (Brekke and Solberg 2005; Hu et al. 2009).  Distinguishing accidental oil 
spills from natural seeps can be problematic, however detection of oil targets in repeated 
images over the same localized area is a robust indicator of a natural source on the 
seafloor (De Beukelaer et al. 2003).  Modeling data and seafloor observations indicate 
that oil flows that reach the ocean surface do so in conjunction with copious discharge of 
gas (Leifer and MacDonald 2003; MacDonald et al. 2002).  Methane release at depth is 
overwhelmingly coincident with shallow deposits of gas hydrate (Bohrmann et al. 2003; 
Dillon and Max 2000; Sassen et al. 1999).  Satellite SAR images are therefore a proven 
technology for the census of active oil seeps and probably gas hydrate locations, however 
it may fail to detect methane release that do not include oil (De Beukelaer et al. 2003; 
Joye et al. 2005).   
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Fluxes of methane to the water column and atmosphere resulting from natural 
seeps have been estimated by in several papers (Judd 2004; Kvenvolden and Rogers 
2005), generally on the basis of extrapolation from a very few well-constrained data 
points.  Measurements of methane concentrations in the ocean have been published much 
more widely (Reeburgh 2007; Yvon-Lewis et al. 2004).   Preliminary results from the 
Gulf of Mexico suggest that concentrations of methane in bubble plumes originating from 
natural oil seeps may be three to four orders of magnitude greater than ambient (Solomon 
et al. In Review).  However, the cross-section of these plume is as yet poorly constrained. 
Technology required for the HYFLUX project include the following methodologies and 
equipment: 

• Efficient methods for extracting natural oil layers from satellite data. 
• Methods for obtaining real-time measurements of methane in surface waters and 

at the air-sea interface. 
• Methods for measuring the concentration of CH4 within the bubble plume in 

oceanic seeps. 
• Methods for estimating the flux of gas in bubble streams at the seafloor. 

Satellite Data Extraction 
The HYFLUX project team has developed a neural net method of feature 

recognition that reliably detects oil layers in SAR images from RADARSAT, ERS-1 and 
similar satellite sensors.  The algorithm was "trained" based on a set of pixels extracted 
manually from SAR images covering the Gulf of Mexico.  The SAR images used for the 
training set were collected under a range of wind and sea-state conditions and a variety of 
SAR sensor settings.  Image data covered areas of the northern Gulf of Mexico known to 
contain abundant natural seeps and where environmental data from oceanographic buoys 
and other sources were available. This review demonstrates that SAR reliably detects 
natural oil slick, if they are present, under wind-speeds from 2 to 8 m/s.  The algorithm 
performs a binary classification of oil-covered water versus open sea on a pixel-by-pixel 
basis.  A comprehensive review of several hundred SAR images obtained from the 
Alaska Satellite Facility indicates that there is sufficient coverage to effectively inventory 
the locations of persistent natural oil seep and to examine their temporal variability.   

In-situ bubble flux measurement 
The HYFLUX will develop instrument arrays to monitor bubble flow from gas 

hydrate deposits, which will be deployed at the Gulf of Mexico study sites during the 
research cruise.  These instruments will requrire calibration and deployment tests.  A 
suitable test bed is the Coal Oil Point seep field of southern California, which is located 
near the UCSB laboratory facilities of Dr. Ira Leifer. Two instruments will be are being 
considered for use:  A 360° scanning sonar (Imagenex 881A digital multi-frequency 
sonar) would be used to quantify individual bubble streams within a ~150m diameter 
surveillance region within the seep.  Sonar data should also document locations of 
individual vents and monitor their relative activity during water column and sea-surface 
sampling.  Actual flow rates from individual vents will be quantified using ROV video 
and imaging capabilities to make visual bubble-measurements (Leifer and MacDonald 
2003; Leifer and Patro 2002).  Additionally, a bubble-flow meter will be deployed over a 
representative vent for direct measurement of bubble volume.  The Imagenex sonar and 
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the bubble flow meter have been developed by Dr. Vernon Asper at the University of 
Southern Mississippi for use at the Gulf of Mexico gas hydrate observatory.   

 Real-time Measurement of CH4 Concentrations 
To determine the sea-to-air flux of methane, the saturation state of CH4 and C2-C4 

hydrocarbons in the surface ocean will be monitored continuously using a shipboard 
seawater pumping system, a Weiss-style Plexiglas equilibrator, and a fully automated 
GC/FID instrument (Fig. 1), which will draw samples from a Weiss-style Plexiglas 
equilibrator (Yvon-Lewis et al. 2004).  The instrument will cycle continuously between 
ambient air, seawater-equilibrated air, and a gas standard.  The system will have a 5-7 
minute cycle time from the start of one sample to the start of the next.  The saturation 
anomaly sequence is: calibration gas, air, equilibrator, air, equilibrator.  This sequence is 
repeated continuously while the ship is underway. 

 
Figure 1.  Schematic showing the connections between the CRDS, GC-FID, equilibrator 
and stream select valve. 
 

Measuring CH4 Concentrations in Bubble Plumes 
To sample the methane as it emerges from the sediment and travels through the 

water column, a CTD rosette will gather a total of 24 samples within each plume. The 
CTD will gather salinity and temperature profiles as well which will provide important 
physical parameters for equilibrium computations of methane concentrations as well as 
for flux calculations. In addition to the CTD sampling of the methane plumes, 3 
hydrocasts consisting of CTD measurements and water column samples will be 
performed in a series that transects from the center of each plume to ~ a kilometer away 
to determine the extent of methane-saturated waters around the plume and to collect 
background waters. As with the methane plume waters, these water samples will be 
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analyzed for C1-C4 hydrocarbon, DOC and DIC concentrations, as well as δ13C-CH4, 
δ13C-DOC, δ13C-DIC and 14C-DOC isotopic analyses.    

C1­C4 Hydrocarbon Concentrations and δ13C­CH4
Two sub-samples will be collected at each depth, one for ship-board analysis of 

hydrocarbon concentrations and one as back-up for analysis on-shore in case of 
equipment problems. Samples will be prepared for analysis by over-filling a 125ml serum 
bottle from the Niskin bottle. The bottle will be immediately capped with a gas-tight 
butyl stopper and crimp-sealed. All samples are poisoned with mercuric chloride to halt 
microbial metabolic activities such as methanogenesis and methane oxidation. Next, a 
headspace of 10cc of UHP N2 is added by displacing an equal volume of water sample. 
After the headspace addition, a small additional volume of UHP N2 is added as 
overpressure to insure that there is not a vacuum resulting when sampled for analysis. 
The samples are then shaken and allowed to equilibrate for at least 12 hours before being 
analyzed. Methane through butane analysis will be performed in triplicate on 3cc 
headspace aliquots, using a Shimadzu GC-14A gas chromatograph equipped with a flame 
ionization detector. C1-C4 compounds will be resolved on the GC-FID with 60oC 
isothermal runs using UHP N2 as carrier gas. Calibration curves will be constructed from 
certified hydrocarbon standards. 
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