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EXECUTIVE SUMMARY 
To ensure the usefulness of simulation technologies in practice, their credibility needs to be 
established with Uncertainty Quantification (UQ) methods.  In this project smart proxy is 
introduced to significantly reduce the computational cost of conducting large number of 
multiphase CFD simulations. Smart proxy for CFD models are developed using pattern recognition 
capabilities of Artificial Intelligence (AI), Machine Learning (LM) and Data Mining (DM) 
technologies.  

Several CFD simulation runs with different inlet air velocities for a rectangular fluidized bed are 
used to create a smart CFD proxy that is capable of replicating the CFD results for a wide variety 
of inlet velocities. The smart CFD proxy is validated with blind CFD runs (CFD runs that have not 
played any role during the development [training, calibration and validation] of the smart CFD 
proxy).  In our earlier work [1], CFD data was used to train ANN at the cell level.  That is an ANN 
was trained for each computational cell used in the CFD simulations.  In the present work, the 
ANN is constructed and trained based on cross sectional area average of each variable, such as 
pressure, velocities and volume fraction (Layer Level).  This leads to improvements in the training 
time at the expense of less spatial resolution.  The resulting trained ANN provides spatially average 
value of parameters of interest, along the length of the fluidized bed.  Upon completion of this 
project, UQ studies that rely on hundreds or thousands of smart CFD proxy runs can be 
accomplished in minutes. Following figure demonstrates a validation example (blind CFD run) 
showing the results from the MFiX and the smart CFD proxy for pressure drop across a fluidized 
bed at time-step of 1400 (the layer number corresponds to the vertical location in the bed). 
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1. INTRODUCTION 
Fossil fuel continues to be a reliable source of energy for power generation in the United States 
and worldwide.  Technologies, such as chemical looping and gasification, aim to reduce the carbon 
emission of fossil fuel based power plants.  Simulation technologies can reduce the time and cost 
of the development and deployment of such advanced technologies and allow rapid scale-up of 
these technologies. Simulation can be used to test new designs to ensure reliable operation under 
a variety of operating conditions. However, to ensure their usefulness in practice, the credibility 
of the simulations needs to be established with Uncertainty Quantification (UQ) methods.  To this 
end, National Energy Technology Laboratory (NETL) has been applying non-intrusive UQ 
methodologies to identify, characterize, and quantify uncertainties in CFD simulations of gas-solid 
multiphase flows, which are encountered in fossil fuel based energy systems [2, 3, 4, 5].  Gas-solid 
flows are inherently highly unsteady and chaotic flows, where sharp discontinuity can exist at the 
interface between the phases.  The challenge in CFD simulation of gas-solid flows is to adequately 
resolve the structures that exist at different spatial and temporal scales in an inherently transient 
flow.  Additionally, in reacting gas-solid flow simulations, small time steps are needed in order to 
not only resolve the temporal scales of the flow, but also ensure numerical stability of the solution.  
A rule of thumb for adequate spatial resolution is for the grid spacing to be about 10 times the 
particle diameter [6].  The grid requirement for maintaining such a ratio of grid size to particle 
diameter for smaller size particles makes such simulations computationally costly and impractical 
[5].  Recent work at NETL [5] has shown the number of simulations, which is required for 
uncertainty quantification can easily exceed many tens of simulations.  The spatial and temporal 
resolution requirements for multiphase flows make CFD simulations computationally expensive 
and potentially beyond the reach of many design analysts. 

 

It is clear that a paradigm shift in simulation technology is needed in order to make reacting gas-
solid flow CFD simulations with appropriate grid resolution more practical for design and 
optimization purposes during design scale up.  To accelerate the design and analysis process, high 
fidelity surrogate models that can capture the flow behavior of the design under consideration can 
be utilized.  Surrogate models are increasingly used in design exploration, optimization and 
sensitivity analysis.  Advances in big data analytic and machine learning allow for creation of data-
fitted metamodels, which can faithfully duplicate the behavior of the data (CFD model results) that 
was used for their construction.  This new technology has been successfully applied in the upstream 
petroleum industry [7] [8] [9] [10].  Smart Proxy modeling takes advantage of pattern recognition 
capabilities of artificial intelligence and machine learning to build powerful tools to predict the 
behavior of a system with far less computational cost compared to traditional CFD simulators. 

 

The goal of this research project is to build a smart proxy model at the cell level, which is 
constructed from simulation data generated by high fidelity CFD models to, in effect, replace the 
use of computationally expensive CFD simulations for the design space under study for further 
analysis and optimization.  When compared to traditional proxy modeling technologies such as 
Reduced Order Models (ROM), the advantage of smart proxy is associated with its unique 
characteristics of (a) not simplifying the physics of the original CFD model, and (b) not reducing 
the resolution (in time and space) of the original CFD model. Hence, the smart proxy can be used 
instead of CFD simulations, when performing uncertainty quantification analysis in order to 
quantify errors and uncertainties that are inherent in any simulation and also perform 
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computationally inexpensive evaluations when propagating the uncertainties in the input variables.    
The uniqueness of this approach is in: 

 
1. Developing a unique engineering-based data preparation technology that optimizes the training of 

the neural networks. This innovative technique incorporates supervised fuzzy cluster analysis to: 

a. Identify the most influential parameters for the training process, and 

b. Identify the optimum partitioning of the data for training, calibration and validation.  

2. Unique, innovative, and optimum preparation of the raw data extracted from the CFD for the 
training, calibration and validation of a series of neural networks that together will form the final 
CFD smart proxy.  

3. Using an “ensemble-based” approach to building the smart proxy, taking advantage of multiple, 
inner-connected neural networks and intelligent agents to accomplish the objectives of the project. 

 

Proof of concept for the application of this technology to Computational Fluid Dynamics has been 
established in our first report [11].  Our second report [1] documents the various techniques, which 
were used for constructing a smart proxy model at the cell level.  The goal of the present report is 
to outline steps employed in constructing a smart proxy at the Layer Level1, (the term Layer Level 
compared to Cell Level [1], refers to how CFD data is used for the training.  A detailed explanation 
is provided in section 3.3.2 ). 

1.1 STRUCTURE OF THE WORK 

The research and development concentrating on the CFD smart proxy modeling have been 
presented in multiple reports. Each report concentrates on a major portion of the research work 
and accomplishments that are useful to the general research community. First report established 
the background to prove the concept of using smart proxy as a replicate for CFD [11]. In the second 
report [1], CFD simulations were replicated by smart proxies at the Cell Level. This report 
summarizes the building of the data driven predictive models at the Layer Level for replicating the 
CFD simulation model.  The report consists of five chapters. In chapter one (this chapter), the 
problem is defined, and the final objective of the research is articulated.  In chapter two, a brief 
definition of multiphase flow and its governing equations are provided to lay the groundwork for 
understanding the engineering and scientific details associate with the CFD model being studied. 
Also, a literature review about the use of AI and Machine Learning related to fluid dynamics 
problems is provided. 

Chapter three discusses the methodology and the machine learning method which is used in this 
research, specifically for the Layer Level smart proxy modeling (section 3.3.2).  Results and 
discussions are presented in chapter four, and finally, the conclusions and recommendations for 
the next phase of the research are presented in chapter five.  

                                                 

 

1 The CFD data are averaged in each layer (XZ plane) and the ANN is trained using the layer averaged data. 
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2. BACKGROUND 
This section of the report is dedicated to providing some basic, but necessary background on three 
major components of this research work.  

 

2.1 MFIX 
Multiphase flows, both reacting and non-reacting, are part of many processes in power generation 
and chemical processing industries.  As expressed earlier, CFD is a valuable tool in design and 
optimization of processes and reactors used in these industries.  NETL has been in the forefront of 
developing CFD modeling tools that can help engineers and designers in improving the 
performance of processes such as gasification, chemical looping.  The MFiX (Multiphase Flow 
with Interphase eXchanges) suite of CFD software [12] is an open-source, general purpose 
multiphase CFD software suitable for modeling the hydrodynamics, along with heat transfer and 
chemical reaction for a wide spectrum of flow conditions (dilute to dense).  Multiphase flows can 
be modeled either in a continuum (Eulerian) framework or a discrete (Lagrangian) framework.  
The two frameworks can be summarized as follow:    

• Continuum (Eulerian): Both solid phase and gas phase are treated as interpenetrating 
continuum (Two-Fluid Model, TFM).  Multiple solid phases can be used to describe 
multiple solid particles of different sizes and properties (Multi Fluid Model, MFM). 
Continuum approach is computationally less intensive but it cannot capture all the flow 
complexities, especially in multiphase flow where interaction between particles plays a 
major role [13].  

• Discrete Particle (Lagrangian): Track each particle in the fluid individually by using 
Newton’s Law of motion. This method is more straightforward to apply, even in multiphase 
flow, but the computational cost is high [13].  

There are several approaches to modeling multiphase gas-solid flows. Depending on the 
application, either the gas phase or the solid phase or both phases can be modeled in Eulerian or 
Lagrangian framework [13] [14] [15].  Table 2-1 shows the different modeling approaches to gas-
solid multiphase flow modeling. 

In the present work, the MFiX-TFM is used to model a rectangular 3D fluidized bed.  MFIX-TFM, 
which is based on kinetic theory of granular flow (KTGF) models both the gas phase and 
particulate phase as interpenetrating continuous phases.  The governing equations employed for 
the conservation of mass and momentum for each phase (m, n = g for gas phase and m, n = s for 
solid phase) are 

 

𝝏𝝏
𝝏𝝏𝝏𝝏

(𝜺𝜺𝒎𝒎𝝆𝝆𝒎𝒎) + 𝜵𝜵. (𝜺𝜺𝒎𝒎𝝆𝝆𝒎𝒎𝒗𝒗��⃗ 𝒎𝒎) = � 𝑹𝑹𝒎𝒎𝒎𝒎

𝑵𝑵𝒎𝒎

𝒏𝒏=𝟏𝟏
𝒏𝒏≠𝒎𝒎
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           2-2 
Where  

𝜀𝜀𝑚𝑚 is the phase volume fraction  

𝜌𝜌𝑚𝑚 is the phase density 

𝑣⃗𝑣𝑚𝑚 is the phase velocity vector  

𝑅𝑅𝑚𝑚𝑚𝑚 is mass transfer between phases  

𝑆𝑆𝑔̿𝑔 is the phase stress tensor  

𝐼𝐼𝑚𝑚𝑚𝑚 is the interaction force representing the momentum transfer between the phases 

 

The closure terms for the solid phases are obtained through kinetic theory of granular flow.  
Detailed information on the constitutive relationships used to model momentum exchange between 
the phases along with the solid stress model incorporated in MFiX-TFM can be obtained from 
MFiX online documentations [16] [17].   

 

Equations 2-1 and 2-2 form a system of nonlinear partial differential equations. An iterative 
algorithm is used in MFiX to solve this system of PDEs. Figure 2-1 illustrates the solution 
sequences used in MFiX for solving the equations 2-1 and 2-2.  As it is discussed in the next 
section, it is crucial to follow the same sequence in constructing the smart proxy.  

 

Table 2-1 Multiphase Flow Modeling Approaches [13] 

 Name Gas Phase Solid Phase Coupling Scale 

1 Discrete bubble model Lagrangian Eulerian Drag Closure for bubbles 10 m 

2 Two Fluid Model Eulerian Eulerian Gas-Solid drag closure 1 m 

3 Unresolved Discrete particle model Eulerian Lagrangian Gas-particle drag closure 0.1 m 

4 Resolved Discrete particle model Eulerian Lagrangian Boundary condition at 
particle surface 0.01 m 

5 Molecular Dynamics Lagrangian Lagrangian Elastic collisions at particle 
surface 

<0.001 
m 
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Figure 2-1 MFiX solution algorithm. 

 

2.2 MACHINE LEARNING 
Based on the definition presented by Arthur Samuel [18], “Machine learning is a field of study 
that gives computers the ability to learn without being explicitly programmed.” 
Machine learning is a process through which computer will learn from data to find a possible 
pattern in the data set. This process encompasses three main components: 

• Learning algorithm 

• Data 

• Patterns in the data 
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If these three components are present, a successful learning process can be achieved based on the 
capability of the learning algorithm. There are two major type of Machine Learning: supervised 
learning and unsupervised learning [19]. 

 

2.2.1 Artificial Neural Network 
One of the popular machine learning processes is Artificial Neural Network (ANN). The idea of 
ANN came from the neurons of the brain and the way they are communicating with each other to 
solve a problem. Each artificial neural network consists of an input layer, one or more hidden 
layers, and an output layer. The number of neurons (processing elements) in the output and the 
input layers are chosen based on the nature of the problem being solved and the properties which 
are going to be predicted.  Figure 2-2 shows a typical ANN with three input neurons and two output 
neurons. ANN has one or more hidden layers and each layer has a specific number of neurons [20].  
In order to have a well-trained network, proper parameters should be introduced to the network.  
If improper data are used to train the network there is no guarantee to have a well-trained network 
that lead to accurate predictions, in other words, “Garbage in, Garbage out.”  In the upcoming 
sections of this report, a smart way of selecting parameters will be introduced. 

 

 
Figure 2-2 Artificial Neural Network schematic 

 

The number of hidden layers and the neurons in each hidden layer depends on the complexity of 
the problem, number of parameters, and number of records. Experience also plays an important 
role in this decision making. But generally, there is no solid rule for them. As a rule of thumb, the 
number of neurons in the first hidden layer shouldn’t be less than the number of input parameters. 
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2.2.1.1 Objective function 

Regardless of the learning method, each machine learning process needs an optimization procedure 
that helps the process reduce the prediction error as much as possible. The very common and 
simple objective function in supervised learning is the summation of all the differences between 
predicted values by the learning method and the actual values of the output.  Since summation of 
positive and negative errors can reduce the size of the overall error, the objective function is 
defined as the square of the difference between actual and predicted values [20], as shown by 
equation 2-3. 

 

𝐽𝐽�𝑤𝑤𝑗𝑗� =
1

2𝑚𝑚
��𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2
𝑚𝑚

𝑖𝑖=1
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Where wj is the weighting vector.  During the learning process, the learning algorithm tries to 
assign different weights to each of the connection between neurons in Figure 2-2, in a way that the 
global error of the objective function becomes minimum. Also, a blind calibration is done 
simultaneously to stop the learning process.  We will discuss the validation and test in more depth 
in the next sections of this report. 

In machine learning, the dataset used for training of ANN has to be normalized, before the data is 
introduced for training.  Therefore, the quality of ANN is characterized by error (discrepancy) 
distribution between mean normalized CFD data (used for training) and mean normalized ANN 
output as shown by equation 2-4. 

 

          2-4 
 

 

2.3 PREVIOUS WORK  

The idea of using Artificial Intelligence in petroleum engineering was first introduced by 
Mohaghegh and Ameri [21].  They took advantage of ANN for predicting the permeability of the 
formation based on geological well logs.  Mohaghegh and Ameri [21] showed that neural network 
is capable of making the task of permeability determination automated rather than doing it over 
and over by log analyst. They also stated that neural network can handle far more complex tasks. 
Mohaghegh et al. [22] used ANN for predicting gas storage well performance after hydraulic 
fracture in later investigations. 

% 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   
(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −  𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

(𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) −   𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
  −   

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −  𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
(𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) −   𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
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Alizadehdakhel et al. [23] successfully used ANN to predict the pressure loss of a two-phase flow 
in a 2 cm diameter tube. Gas and liquid velocities and the pressure drop along the pipe were the 
three input parameters to ANN, with average pressure drop being the output.  They utilized 8 
different networks with different number of neurons to find out the optimum number neurons. 
Mean Squared Error and R-square were used as a criterion to pick the best network design. They 
also obtained the most efficient transfer function between Log-Sigmoid, Hyperbolic-Tangent 
Sigmoid, and linear.  

Shahkarami et al. [10] used ANN to model the pressure and saturation distribution in a reservoir 
which was used for CO2 sequestration. This problem required a large number of time steps for 
simulation of CO2 injection and storage using a commercial software. They ran 10 different cases 
in CMG (commercial reservoir simulator) and then the results were used as input for ANN.   The 
output of the ANN was pressure distribution, water saturation, and CO2 mole fraction. 80% of the 
data coming from the CMG simulation runs were used to train the network while 10% were used 
for the calibration.  The remaining 10% of data was used for validation process. They have shown 
that ANN can be used as a powerful tool for multiphase flow simulation in oil and gas industry. 

Esmaili et al. [24] incorporated a newly developed AI-based reservoir modeling technology known 
as Data-Driven Reservoir Modeling [25] in order to model fluid flow in shale reservoirs using 
detail well logs, completion, and production data. By understanding the behavior of the shale 
reservoir, conducting the hydraulic fracture could be much easier. Moreover, this method has the 
ability to perform the history matching on the production data.  Kalantari-Dehghani et al. [26] 
coupled numerical reservoir simulator with AI methods to develop a shale proxy model that is able 
to regenerate numerical simulation results in just a few seconds. They introduced three different 
well-based tier systems to achieve a comprehensive input data for the ANN.  In another work, 
Kalantari-Dehghani et al. [27] showed that data-driven proxy models at the hydraulic fracture 
cluster level could be used separately as a reservoir simulator especially in low permeability 
reservoir such as shale which has a nonlinear behavior. 

Ansari et al. [11] established the viability of using machine learning and neural network to 
construct a smart proxy for a fluidized bed based on CFD data of the same fluidized bed. More 
details on the approach and the steps are given by Ansari  [28].  In a subsequent report, Ansari et 
al. [1] developed a proxy model for gas pressure and volume fraction in their fluidized bed, based 
on CFD data.  Although reasonable agreement was observed between the trained proxy model and 
CFD simulation results, further improvements in the training process were deemed necessary in 
order to improve the quality of the trained neural net proxy model.   

Hosseini [29] used a similar approach to model the behavior of flow after dam break with the goal 
of reducing the computational time for the fluid flow simulations by developing a Smart Proxy 
Model. 



Data Driven Smart Proxy for CFD Application- Part Three: Model Building at the Layer Level 

10 

3. METHODS 
In this section, the solution methodology and the required steps for constructing the neural network 
are discussed.  

3.1 CFD SIMULATION SETUP 

A schematic of the rectangular fluidized bed, used in this study is shown in Figure 3-1.  The 
fluidized bed, which is 0.12 x 0.72 x 0.12 m in X, Y and Z directions has an initial bed height of 
0.12 m, and initial bed voidage of 0.42.  The bed material has a density of 2000 kg/m3 and a 
diameter of 400 µm.  Details of the CFD simulation set up was covered in the part one report of 
this project, [11], and will not be repeated here.  

 
Figure 3-1 Geometry and initial condition of the problem. 

 

3.2 PROBLEM DEFINITION 

The MFiX model has been created and executed successfully for multiple inlet velocities. The data 
generated by the CFD runs with a variety of inlet velocities is used for the training, calibration, 
and validation process of the neural network model.  Furthermore, additional CFD simulations 
with different inlet velocities are performed and are excluded from the neural network training 
process.  The additional CFD simulations are used to test the predictive capabilities of the smart 
CFD proxy, in what is referred to as a blind test.   
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3.2.1 Interpolating the inlet air velocity 
The inlet air velocity varies from a minimum value of 0.6 m/s to a maximum value of 1.2 m/s 
(Figure 3-2). The inlet air velocity is assumed to be uniform across the fluidized bed inlet (Figure 
3-1) with air discharging into atmospheric pressure at the outlet.  

The goal of this project is to predict the behavior of the fluidized bed at Layer Level (cross sectional 
planes along the length of the fluidized bed) at any given inlet air velocity (within the velocity 
range used for training) at any time. The neural network model will be trained for seven different 
inlet velocities.  The predictive capability of the trained neural network is evaluated using CFD 
data, which has not been part of the training process (blind test). Figure 3-3 shows the concept of 
this project. 

 

 
Figure 3-2 Inlet air velocities used in MFIX simulations.  Inlet velocities 

used in ANN training are marked with X. 
 

 

 

 
Figure 3-3 Conceptual illustration of problem definition 

 

The process of fluidization, as shown in Figure 3-4, starts with the bed material moving upward 
like a slug flow, Figure 3-4a, until the maximum bed expansion is reached, Figure 3-4b, and the 
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bed starts to collapse.  In Figure 3-4 color red indicates high voidage (low solid volume fraction) 
and color blue indicates low voidage (high solid volume fraction).  The solid flow is symmetrical 
until the bed collapses, smaller bubbles are formed, and the bed behaves more chaotically, Figure 
3-4c.  And ultimately, the bed becomes fully fluidized and chaotic, Figure 3-4d. 

 

(a) (b) (c) (d) 

    

Figure 3-4 Voidage contours at different times encountered in the 
fluidized bed (for illustration purposes, the bed is titlted horizentoally) 

 

3.3 ARTIFICIAL NEURAL NETWORK SETUP 

Once the output files of MFiX are converted to *.csv file they are ready to be reorganized to serve 
as the input to the Artificial Neural Network (ANN). Every time-step and every inlet velocity has 
one *.csv file containing 9 columns and 118,098 rows (size of the modeled fluidized bed, 
27x162x27 = 118,098 cells). Each column represents one property such as gas pressure and each 
row corresponds to one cell. Depending on the solution scenario, which will be discussed later, 
some of these columns and rows or different combination of them (temporally averaging) will be 
used as input or output. 

3.3.1 Neural Network Architecture 

Each artificial neural network consists of an input layer, one or more hidden layers, and an output 
layer. The input and output parameters are chosen based on the nature of the problem and the 
property which is going to be predicted. 

The number of inputs and outputs are chosen based on the problem and the solution scenario which 
will be discussed in detail in the next section. There is no clear guideline on how many hidden 
layers and neurons are required at each layer.  The type of problem and user experience, along 
with few rules of thumb are the primary factors in determining the number of hidden layers and 
neurons. One such rule is that the number of neurons in the first hidden layer shouldn’t be less 
than the number of input parameters.  Matlab and its Neural Network toolbox have been used for 
ANN training. 
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For the first try, only one hidden layer with 15 neurons is considered. The network characteristics 
and the activation function were described in the part one report of this series, [11], and will not 
be repeated here. The type and some internal functions of ANN are listed in Table 3-1.   

 

Table 3-1 ANN model parameters 

ANN Parameters Current Status 

Network Type Feed-forward Back Propagation 

Training Algorithm Levenberg-Marquardt 

Transfer Function TANSIG 

 

3.3.2 Input and Output 

In the first report of this research, [11], it was shown that non-cascading scenario had a downside 
which was the need for the MFIX results at each time-step. In order to train the ANN at time step 
(t), the CFD results at time step (t-1) were used as input to ANN, along with static parameters, 
such as location of each cell or distance between each cell to the walls.  The output for the non-
cascading training process was a single dynamic parameter, such as pressure or velocities or 
volume fraction at time step (t). 
In the second report of this research, [1], static parameters, CFD results and other model input 
parameters such as gas inlet velocity were used at time step (t) to train the ANN for the same time 
step (t) and different ANNs were trained for different time steps.  The output of the neural network 
was either gas pressure, gas volume fraction or gas velocity. All the trainings were performed at 
the Cell Level. In the Cell Level approach, information in each computational cell (control volume) 
and the surrounding cells are used to construct the ANN. In other words, the ANN was trained 
using 118,098 (=27*27*162) data points for each inlet velocity.  

In this report, the training procedure outlined in our second report [1] is utilized at the Layer Level.  
Training and employing ANN at the layer level leads to improvement in the training time, since 
only a single average value is trained across each cross section (layer).  The speedup in training 
comes at the expense of less spatial resolution.  The average gas pressure at a horizontal plane is 
used to construct the ANN.  Since there are 162 grid points in the vertical direction in the CFD 
simulations, 162 layers are used for constructing the ANN. Figure 3-5 shows the difference 
between the cell based approach, where an ANN is constructed for each computational cells, 
Figure 3-5a, and the layer based approach, where an ANN is constructed for the averaged values 
across each cross-sectional area, Figure 3-5b.  
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(a) (b) 

Figure 3-5 Different training approaches for ANN at (a) Cell Level (b) Layer Level 

3.3.3 Data Partitioning 

A good ANN is a model that learns the pattern in the given data-set while it is able to predict the 
behavior of a new given dataset, this model is called “Just Right”. If the ANN does not learn the 
pattern in the data very well the model is called “Under-fit”. If the ANN learns the pattern of the 
data very well with a very small error but it is not able to predict the behavior of a new given data-
set, the model is called “Over-fit”. Under-fitting occurs for so many reasons such as lack of 
information (the model should have more parameters and more records). Overfitting occurs when 
the network learns to mimic almost all the data points exactly but when it comes to the prediction, 
the model performs poorly for a new given data, in other words, the model memorizes all the data 
points. Figure 3-6 shows these 3 states of training. 

 

 
Figure 3-6 Underfitting and overfitting of the data 
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To overcome the overfitting problem, only a portion of the data is used to train the network. The 
remaining data points which the model has not seen in the training process, are further divided into 
two sub groups; calibration and validation. 

Training is an iterative process where in each iteration the optimization algorithm tries to move 
toward the lower error. An iteration is defined as the process through which all the records in the 
training data set are introduced to the ANN once and the error between the actual (target) output 
and those predicted by the ANN are calculated and the impact of the calculated error is back-
propagated throughout the ANN in order to modify the weights associated with all the connections 
between neurons in the ANN. The training process stops based on some user defined criteria. This 
criterion could be the total number of iteration, or the total time of training, or the number of 
calibration failure or a combination of those.  In this project, the combination of all the mentioned 
criteria are used to terminate the training process. 

Calibration data set is used while the training is being carried out. It is used as some criteria to stop 
the training process when the model is “Just Right”. The error in both training data set and 
calibration dataset usually decreases at the beginning of the training process, however somewhere 
along the training process, the error in calibration data set stops decreasing while the error 
continues to decrease in the training data set. The model at this point is usually the best model 
because it has provided the lowest possible error for the calibration data set (blind data set) and 
while it has an acceptable error for the training data set. Figure 3-7 shows the training and 
calibration curves. 

 
Figure 3-7 Learning curve, training error and calibration error  

 

The validation data set is used upon the completion of the training process when the best ANN is 
achieved. Although both calibration and validation data sets are blind but having an ANN model 
with a low calibration error does not mean that the ANN is a good predictor (because the best 
model is already picked when the calibration error is minimum) unless the ANN error in validation 
data set is also acceptable. The percentage of the data partitioning used for the preliminary study 
of this project is shown in Table 3-2.  
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Table 3-2 Original data partitioning 

Data Training Calibration Validation 

Percentage of data (%) 70 15 15 

3.3.4 Blind Test 

A blind test is when some of the data that was not used during the training of ANN, is used to 
further validate the predictive capability of the trained ANN, Figure 3-8.  The difference between 
calibration and validation during the training process and the complete blind test is that the records 
in the calibration and validation process during the training are chosen randomly from the original 
dataset, for example, some of the records of inlet velocity of 0.9 are in the training set and some 
of them are in calibration and validation set, but all the records of inlet velocity of 0.825 are in the 
blind test set which makes the prediction much more difficult. 

 

 
Figure 3-8 Blind test cases carried out at four different inlet velocities 

 

3.4 SOLUTION SCENARIOS 

Different scenarios are considered to reach the final goal of this project. The term “Different 
scenarios” refers to having different input and output structures at different time-steps.  The 
training technique is the same throughout all the scenarios. Each scenario has two parts, the 
training process and the deployment process. During training process, the input parameters and 
CFD output are fed to the ANN to optimize the network parameters. In deployment, the ANN 
output will be generated based on the trained ANN and the given input parameters. Deployment 
could be done with the data used in the training to check the training quality, and it could be done 
on blind cases to evaluate the predictability and generality of the ANN. 

As it was stated earlier, the goal of this research project is to build a smart proxy model at the 
Layer Level, which is constructed from CFD based data.  The scenarios outlined below show the 
systematic steps, which have been taken from the least complex scenario to the more complex 
scenarios. The scenarios are as follows: 

• Training an ANN for gas pressure using 4 static parameters at a single time step, as 
discussed in section 3.4.1 

• Training an ANN in a non-cascading manner at a single time step for gas pressure using 4 
static parameters at the target layer and pressure at the next layer, downstream of the target 
layer, as discussed in section 3.4.2 
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• Training an ANN in a cascading manner at a single time step for gas pressure using 4 static 
parameters at the target layer and pressure at the next layer, downstream of the target layer, 
as discussed in section 3.4.3 

• Training an ANN in a non-cascading manner at a single time step for gas pressure using 4 
static parameters at the target layer and pressure at the previous layer, upstream of the target 
layer, as discussed in section 3.4.4 

• Training an ANN in a cascading manner at a single time step for gas pressure using 4 static 
parameters at the target layer and pressure at the previous layer, upstream of the target 
layer, as discussed in section 3.4.5 

• Temporal and spatial averaging of ANN data in Upward (inlet to outlet) Cascading mode 
from time steps 500 to 1400 and time steps 1500 to 3400 are discussed in section 3.4.6 

3.4.1 Training for gas pressure using 4 static parameters 

In the Cell Level approach, identification of the cell location was done by using 6 values (distances 
to the right, left, top, bottom, north, and south walls, as shown in Figure 3-9-a). In order to define 
the location of each layer in Layer Level approach, we have only 2 distances to the top and bottom 
walls (Figure 3-9-b). By using these 2 distances, we can teach the ANN how close the exit or inlet 
planes are to each layer, which helps the ANN to handle the boundary condition.  Moving from 
Cell Level to Layer Level will reduce the available static parameters from 11 features to 4 features 
(Figure 3-9). 

As depicted in Figure 3-10, a neural network is trained with 4 static parameters (2 distances to the 
exit and inlet planes to account for boundary effects, the index of the layer, and the inlet velocity) 
at time step 1400, along with inlet velocity value.  Additionally, average gas pressure from CFD 
results at each inlet velocity is used as output to ANN.  For this scenario, Figure 3-10, at each inlet 
velocity and time step, there are 162 records, for a total of 1,134 (7 velocities *162) records for all 
the inlet velocities, as shown in Figure 3-2. 
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(a) 

 
(b) 

Figure 3-9 Distances to the wall in Cell Level (a) and in Layer Level (b) 
 

 

Table 3-3 Moving from Cell Level to Layer Level 
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Figure 3-10 Traning for average gas pressure using 4 static parameters at layer level 
at each time step 

 

Table 3-4 summarizes the ANN numerical values associated with this step of the project. Similar 
to previous report, Figure 3-11 shows the distribution of gas pressure in the fluidized bed for 
different inlet velocities., This figure shows that there is enough variation for the neural network 
to learn from (Figure 3-11 a and b). Data for inlet velocity of 0.825 m/s is kept out of the training 
and is used for validation, Figure 3-11c.  The results of training ANN with 4 static parameters at 
layer level are presented in section 4.2. 

 

 

Table 3-4 Neural Network Model parameters 

Number of Inputs 4 

Number of hidden layers 1 

Number of Hidden Neurons 8 

Number of records 1,134 

Number of Output 1 
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(a) 

 
(b) 

 
(c) 

Figure 3-11 Gas pressure at cross sectional plane K = 7 at (a) Vinlet = 0.6 
m/s (b) Vinlet = 1.2 m/s (c) Vinlet =0.825 m/s (Pressure unit: 105 Pa) 

 

3.4.2 Training and deployment for average gas pressure in Non-Cascading Mode with 

information flowing from downstream to upstream 

In the previous scenario, 4 static parameters are used to train the ANN.  To improve the quality of 
the trained ANN, a dynamic parameter (gas pressure in the current scenario) is used during the 
training process, as an additional input.  In our previous report [11], it was shown that the dynamic 
parameter used during the training has to be selected from the same time step the ANN is being 
trained for and not from the previous time step.  In the current scenario, if training ANN for level 
“L”, pressure from CFD results at level “L+1” (downstream level) is used as input to the training 
of ANN.  The training scheme discussed above is shown in Figure 3-12.  The direction of ANN 
training is selected to be from fluidized bed outlet to inlet (downstream to upstream).  This choice 
is explained in section 3.4.3.  The last layer is a boundary plane (outlet) and therefore does not 
require any training.  
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Figure 3-12 Traning for average gas pressure using 5 parameters for target layer 
“L”, with information flowing from downstream to upstream 

 

The deployment process is exactly the same as training except gas pressure at the target level is 
not an input to the ANN from CFD, rather this gas pressure at the target level is the output of ANN.  
Figure 3-13 shows the schematic of the deployment process, for the blind test condition of inlet 
velocity of Vin = 0.825 m/s.  The results from this scenario is presented in section 4.3.   

 
 

Figure 3-13 ANN deployment for average gas pressure using 5 parameters in non-
cascading mode, with information flowing from downstream to upstream 

 

3.4.3 Training and deployment for average gas pressure in Cascading Mode with information 

flowing from downstream to upstream 

The training of ANN in the cascading mode is identical to the training steps described in the 
previous section, for non-cascading mode.  If training ANN for level “L”, pressure from CFD 
results at level “L+1” (downstream level) is used as input to the training of ANN, as shown in 
Figure 3-12.  The only difference between cascading and non-cascading modes occurs at the 
deployment stage.  In non-cascading mode, CFD results at the downstream level are input to the 
ANN during the deployment, Figure 3-13.  However, in the cascading mode, the pressure values 
at the downstream level of “L+1”, when training ANN for the target layer “L” comes from the 
trained ANN and not the CFD, Figure 3-14.  Since in this approach, pressure value at level “L+1” 
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of trained ANN is used to predict the pressure at level “L”, the direction of the information flow 
has to be from level “L+1” to level “L”.  In other word, deployment is done from downstream to 
upstream (outlet to inlet).  The deployment process for the cascading mode is shown in Figure 
3-15.   

 

 

 
 

Figure 3-14 ANN deployment for average gas pressure using 5 parameters in 
cascading mode with information flowing from downstream to upstream 

 

Since the direction of cascading is downward, the top layer (J=162) acts as the boundary condition 
and 𝑃𝑃𝐽𝐽=161 could be obtained using 𝑃𝑃𝐽𝐽=162. Then, 𝑃𝑃𝐽𝐽=160 is predicted using 𝑃𝑃𝐽𝐽=161 and this process 
will be repeated until the pressure of bottom layer (J=1) is predicted. The only challenge of 
cascading approach is that the pressure of top layer (J=162) may or may not be known for blind 
test cases, so the pressure should be estimated at this layer which will be discussed later.  

 

 

 
Figure 3-15 Detail of cascading deployment for average gas pressure using 5 

parameters when information flows from downstream to upstream 
 

It is worth mentioning that the training process for cascading and non-cascading approaches are 
identical. In the training process, all the gas pressures (at the target layer and the layer downstream 
from it) are provided from CFD results. In the non-cascading deployment, the input still comes 
from CFD, however in the cascading deployment, the ANN output from one layer is used as ANN 
input for the predication of the next layer. The summary of this discussion is shown in Table 3-5. 
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Table 3-5 Original data partitioning 

Process Approach 
Source of the Data 

Input Output 

Training Non-cascading / cascading CFD CFD 

Deployment 
Non-cascading CFD N/A 

cascading ANN N/A 

 

The only input that is required for cascading deployment beside the static parameters, is the starting 
pressure of the top layer (exit plane), as shown in Figure 3-15.  Figure 3-16 shows the starting 
layer and deployment direction for predicting the average pressure at each layer for the cascading 
approach.  The top layer (exit plane of the fluidized bed, shown is green) is a boundary plane and 
is set to atmospheric pressure, since the fluidized bed discharges into the ambient condition and 
the flow in the freeboard section of fluidized bed is extremely dilute, which implies negligible gas 
pressure drop.  As such, the average pressure at the exit plane (layer 162) is equal to 101,325 Pa.  
With this pressure value known, it is easy to see why the direction of ANN deployment is from 
exit plane to inlet plane for pressure.  Additionally, Figure 3-17 shows that, as expected, the 
average pressure in the freeboard region of the fluidized bed, where there is no solid particle 
present, remains constant.  Since there will be very little change in pressure in the freeboard, the 
starting layer for the cascading approach during deployment is set to layer 70, Figure 3-18.  The 
average pressure value at layer 70 can be estimated from CFD results to be 101,329.6 Pa, as seen 
in Figure 3-19.  The results of downward cascading starting from layer 70 are shown in section 
4.4. 

 
 

Figure 3-16 Starting layer (exit plane) and direction of cascading deployment 
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Figure 3-17 Average pressure profile for different inlet velocities used in training 

 

 

 
Figure 3-18 Starting layer (layer 70) and direction of Cascading deployment 
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Figure 3-19 Average pressure across layer 70 for different inlet velocities  

 

3.4.4 Training and deployment for averaged gas pressure in Non-Cascading Mode with 

information flowing from upstream to downstream 

 

As an alternate method to the previous two sections, the direction of training and deployment could 
be from upstream to downstream of target layer “L”, (inlet to outlet).  This may be a more 
institutive direction for training and deployment, since this is the direction of mean flow in the 
fluidized bed and flow information travel downstream. 

 

 
Figure 3-20 Traning for average gas pressure using 5 parameters with information 

flowing from upstream to downstream 
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Figure 3-21 shows the deployment process of the non-cascading approach for one of the blind tests 
with inlet velocity of Vin= 0.825 m/s. The average pressure of the layer “L-1”, below the target 
layer of “L” is obtained from the CFD results and the ANN will predict the average pressure at 
target layer of “L”. All the inlet velocities that are used in the training process can be used to 
confirm the training quality of the ANN. 

 
 

 

Figure 3-21 ANN deployment for average gas pressure using 5 parameters in non-
cascading mode with information flowing from upstream to downstream 

 

As mentioned before, the importance of the non-cascading approach is only to show how well the 
ANN could predict if the correct input is used. But for the practical application, cascading approach 
should be employed. The results of the training using upward non-cascading approach are 
presented in section 4.5. 

 

3.4.5 Training and deployment for averaged gas pressure in Cascading Mode with 

information flowing from upstream to downstream  

The training of cascading approach is identical to non-cascading approach, Figure 3-20. As 
mentioned before, the only difference between cascading and non-cascading is at deployment. The 
average gas pressure from CFD results is used during non-cascading deployment, while the 
average pressure from ANN is used in the cascading approach. Figure 3-22 depicts this process. 

 
 

Figure 3-22 ANN deployment for average gas pressure using 5 parameters in 
cascading mode when information flows from upstream to downstream 
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In cascading approach, the pressure of below layer is not available and it should be calculated 
based on previous layer. The deployment sequence for cascading approach is shown in Figure 
3-23. Since the direction of deployment for layer “L” is from upstream to downstream, the bottom 
layer (J=1) acts as the boundary condition and 𝑃𝑃𝐽𝐽=2 could be obtained using 𝑃𝑃𝐽𝐽=1. Then, 𝑃𝑃𝐽𝐽=3 is 
predicted using 𝑃𝑃𝐽𝐽=2 and this process will be repeated until it reaches to the top layer (J=162).  

 

 
Figure 3-23 Detail of cascading deployment for average gas pressure using 5 

parameters when information flows from upstream to downstream 
 

Figure 3-24 shows the starting point and the direction of deployment.  Since the pressure at the 
bottom layer is not known (not a prescribed boundary condition), the average value of pressure at 
layer 1, from all CFD simulations are used at a reasonable starting point, as shown in Figure 3-25.  
This average value, which is 102,644 Pa and will be the pressure estimate for layer 1, during 
cascading deployment, as shown in Figure 3-23. The results of the upward cascading with layer 1 
as the starting point are presented in section 4.6. 

 

 
Figure 3-24 Starting layer (inlet plane) and direction of Cascading deployment 

 



Data Driven Smart Proxy for CFD Application- Part Three: Model Building at the Layer Level 

28 

 
 

Figure 3-25 Average pressure across the bottom layer at different inlet velocities  
 

3.4.6 Time average 
Flow in a fluidized bed is highly transient and chaotic.  As such, even multiple CFD simulations 
of the same flow conditions yield different instantaneous flow field, although the time averaged 
flow field must be the same.  For this reason, the performance of a fluidized bed is typically 
accessed based on the time and/or space averaged behavior of the various variables such as 
pressure, velocities and volume fraction of gas and solid particles.   

More than one ANN is needed in order to perform time average analysis of the smart proxy results.  
This is achieved by constructing 10 ANNs for time steps 500 to 1400, at an increment of 100 time 
steps and 20 ANNs for time steps 1500 to 3400 at an increment of 100 time steps, using the training 
approach outlined in Figure 3-20.  Each time step is 0.001 seconds of simulation time.  Figure 3-26 
shows the two-time periods used for time averaging, for time steps 500 to 1400, and for time steps 
1500 to 3400, representing flow conditions depicted in Figure 3-4(a) to (b) and Figure 3-4(c) to 
(d) respectively. Section 4.7 shows the results of time averaging step.    

 

 
Figure 3-26 Time steps selected for time average 
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4. RESULTS AND DISCUSSIONS 
The results of the various scenarios outlined in the previous section are discussed in this section 
with the related figures. 

 

4.1 PRESENTATION OF THE RESULT 
All the various scenarios in the previous section were built using data from 7 different MFIX runs. 
In this chapter, the pressure drop curves are provided both for training cases and for blind test 
cases.  Once a good training is achieved, ANN is deployed on several blind test cases to evaluate 
the predictability of the ANN model.  Figure 3-8 showed all the inlet velocities that have been used 
in the training and deployment process.  

Average pressure across each layer for both CFD simulations and ANN, as shown in Figure 4-1, 
is used for comparison, to assess the prediction accuracy of trained ANN. 

 

 
Figure 4-1 Cross sectional planes (layers) used in data analysis 

 

4.2 GAS PRESSURE USING 4 STATIC PARAMETERS 
Four static parameters, as shown in Figure 3-10 were used for the training of the ANN to mimic 
the gas pressure at time step 1400.  Figure 4-2 and Figure 4-3 show the comparison between the 
trained ANN and CFD results for the training data with inlet velocity of Vin = 0.6 m/s and 1.2 m/s  
respectively.  Since the flow in the freeboard section of the fluidized bed (layers 70 and above) is 
extremely dilute, gas pressure drop in the freeboard is very small, as seen in Figure 4-2 and Figure 
4-3.  Therefore, the pressure profile in the freeboard will not be included in the preceding figures.  
Additional figures for the rest of the inlet velocities are provided in Appendix I.  It is clear from 
these figures that the ANN performs well in the inlet velocities that are part of the training. Figure 
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4-4 through Figure 4-6 show the quality of the ANN for blind test cases, when inlet velocities of 
Vin = 0.72, 0.825, and 1.02 m/s are used, respectively.  

 
Figure 4-2 Spatially averaged CFD and smart proxy results for gas pressure 

at time step = 1400 and Vin=0.6 m/s (with 4 static parameters) 

 
Figure 4-3 Spatially averaged CFD and smart proxy results for gas pressure 

at time step = 1400 and Vin=1.2 m/s (with 4 static parameters) 
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Figure 4-4 Spatially averaged CFD and smart proxy results for gas pressure 

at time step = 1400 for blind test condition of Vin=0.72 m/s (with 4 static 
parameters) 

 
Figure 4-5 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1400 for blind test condition of Vin=0.825 m/s (with 4 static parameter) 
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Figure 4-6 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=1.02 m/s (with 4 static parameters) 
 

Although there is good agreement between CFD results and smart proxy results in the training 
cases, there is a poor agreement for the blind test cases.  Figure 4-4 to Figure 4-6 show that the 
ANN is predicting a much more dilute flow in the vicinity of inlet and the lower portion of the 
bed, compare to CFD prediction results.  The pressure drop across the bed predicted by ANN is 
subsequently lower than in CFD.  This indicates that the amount of solid particles predicted by 
ANN is less than the actual amount of solid in the bed (as predicted by CFD results).  This fact 
shows that the ANN can mimic the data which is used in the training but it has not learnt enough 
to be used as a predictive model. It means that the network does not have enough information to 
predict a blind test.  To resolve this issue, additional parameter, average pressure at the downstream 
or upstream layer, is added to the training data set.  

 

4.3 AVERAGE GAS PRESSURE, WITH INFORMATION FLOWING FROM 
DOWNSTREAM TO UPSTREAM IN NON-CASCADING MODE 

To improve the quality of ANN, one more parameter is added to the training which is the average 
pressure of downstream layer (according to Figure 3-12). Figure 4-7 shows the quality of the 
training for gas pressure at time step 1400, when inlet velocity of Vin = 0.6 is used. As expected, 
this figure shows a significant improvement in the training result in compare to when 4 static 
parameters are used (Figure 4-2). Adding one dynamic parameter to the input along with the 4 
static parameters helps the ANN to mimic the CFD results with higher accuracy. Figure 4-8 shows 
the deployment quality when inlet velocity of Vin = 0.825 is used. This figure shows an excellent 
match between CFD and the smart proxy results. The non-cascading deployment proves that the 
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ANN can be used as a predictive model for the blind test cases if the ANN is trained properly. This 
approach could be further tested when cascading approach is used. 

 
Figure 4-7 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 and Vin=0.6 m/s 

 
Figure 4-8 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=0.825 m/s 
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Figure 4-9 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=0.72 m/s 

 
Figure 4-10 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=1.1 m/s 
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Figure 4-11 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=1.02 m/s 
 

 

4.4 AVERAGE GAS PRESSURE, WITH INFORMATION FLOWING FROM 
DOWNSTREAM TO UPSTREAM IN CASCADING MODE 

After successful deployment in the non-cascading approach, the same trained ANN described in 
section 4.3 is used in the cascading mode according to Figure 3-14 and Figure 3-15. Figure 4-12 
shows the cascading deployment when inlet velocity of Vin = 0.6 m/s, which is part of the training 
data set, is used at time-step 1400. The starting layer for deployment is exit plane (layer J=162) 
and the direction of deployment is from downstream (exit plane) to upstream (inlet plane). The 
result of smart proxy deviates from CFD results after couple of layers. The ANN model is not 
performing well even though inlet velocity of 0.6 m/s is part of the training data set.  The lack of 
fidelity between ANN predication and CFD results indicate that the training process is not as 
optimal as it can be. 
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Figure 4-12 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 and Vin=0.6 m/s with starting layer = 162 
 

As mentioned in the section 3.4.3, since the fluidized bed discharges into atmospheric condition, 
the outlet pressure should be atmospheric and hence constant.  Additionally, since the gas pressure 
drop in the freeboard region of the bed is minimal, due to lack of solid particles, layer 70 (Figure 
4-12) is chosen as the start of deployment plane.  

Figure 4-13 shows the results of the smart proxy and CFD when the ANN is deployed from 
downstream (layer 70) to upstream (layer 1) in a cascading manner, for inlet velocity of Vin = 0.6 
(m/s) and time-step of 1400.  The agreement between CFD results and ANN prediction has not 
improved.  Figure 4-12 and Figure 4-13 show that training and deployment of ANN from 
downstream (exit plane) to upstream (inlet plane) does not yield a high-fidelity ANN model.  
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Figure 4-13 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 and Vin=0.6 m/s, with starting layer=70 
 

4.5 GAS PRESSURE WITH TRAINING AND DEPLOYMENT FROM UPSTREAM 
TO DOWNSTREAM IN NON-CASCADING MODE 

After an unsuccessful deployment in the previous sections, the direction of ANN training and 
deployment is changed to training and deploying from upstream layer (inlet plane) to downstream 
plane (exit plane), according to Figure 3-20.  The input to the training process is shown in Figure 
3-21.  Figure 4-14 shows the quality of the training for average gas pressure at time step 1400, 
when inlet velocity of Vin = 0.6 is used. As expected, this figure shows a good agreement between 
CFD and smart proxy. Figure 4-15 shows the deployment quality when inlet velocity of Vin = 
0.825, from blind test cases, is used. This figure shows an acceptable match between CFD results 
and the smart proxy.  
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Figure 4-14 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 and Vin=0.6 m/s 

 
Figure 4-15 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=0.825 m/s 
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4.6 AVERAGE GAS PRESSURE WITH INFORMATION FLOWING FROM 
UPSTREAM TO DOWNSTREAM IN CASCADING MODE 

The ANN from section 4.6 is used for the cascading approach based on Figure 3-23. Figure 4-16 
shows the ANN deployment in the cascading mode for the inlet velocity of Vin = 0.6 m/s and time-
step of 1400.  This inlet velocity is part of the training data set used to train the ANN.  The direction 
of training and deployment is from inlet plane (layer 1) to exit plane (layer 162). Changing the 
cascading direction improves the results significantly, although there are some discrepancies 
between ANN prediction and CFD results in the bed.  

 

 
Figure 4-16 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 and Vin=0.6 m/s 
 

Next, the ANN is used for the blind test cases to evaluate the smart proxy predictability. Figure 
4-17 shows the comparison between CFD results and ANN prediction, in upstream to downstream 
cascading deployment when the Vin = 0.825 m/s from blind test cases is used. As shown, the smart 
proxy and CFD have a good agreement. The only input to the ANN is the inlet velocity and the 
average gas pressure at the starting layer of J=1, as discussed in detail in section 3.4.5. The gas 
pressure of starting layer is assumed to be 102,644 kPa which is the average pressure at layer 1 
from all CFD simulations (Figure 3-25).  

Figure 4-18 and Figure 4-19  show the predictive capability of the trained ANN, when deployed 
for two additional blind test cases with inlet velocities of Vin = 0.72 and 1.02 m/s and time-step of 
1400. 
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Figure 4-17 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=0.825 m/s 
 

 
Figure 4-18 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=0.72 m/s 
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Figure 4-19 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=1.02 m/s 
 

The above results show an acceptable agreement between CFD and smart proxy results. The smart 
proxy results show some deviation from CFD results in the bed.  This may be due to the fact that 
pressure at the starting layer of 1 is the average of all CFD simulations and may differ from the 
actual average pressure at layer 1 for individual cases.  

4.7 TIME AVERAGE 
The approach developed in the section 3.4.6 is used to train a series of ANNs at time steps 500 to 
1400 with an increment of 100, as shown in Figure 4-20.   
 

 
Figure 4-20 Time steps used in time average between time steps 500 to 1400 
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Figure 4-21 shows all the smart proxy results for different time-steps for inlet velocity of 0.825 
m/s (a blind test case).  All time steps have the same average pressure of 102,644 Pa as their 
starting point at layer 1. The black curve in Figure 4-21 shows the time average curve for time 
steps 500 to 1400. The comparison between CFD and smart proxy for all the time-steps from 500 
to 1400 are provided in Appendix II. 

 

 
Figure 4-21 Spatial average profile of smart proxy results for gas pressure for times 500 

through 1400 and blind test condition of Vin  = 0.825 m/s 
 

Comparison between the time averaged CFD results across each layer and time averaged ANN 
results across each layer is shown in Figure 4-22.  The RMSE in Figure 4-22 is 38 Pa, which is 
less than 3% of the pressure drop across the fluidized bed.  Additional deployment for blind test 
cases of inlet velocities of 1.02 and 1.1 m/s are shown in Figure 4-23 and Figure 4-24, respectively. 
The comparison between CFD and smart proxy for all the time-steps from 500 to 1400 are provided 
in Appendix III and IV for Vin = 1.02 and 1.1 (m/s), respectively. 
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Figure 4-22 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 500 to 1400 at blind test condition of Vin = 0.825 m/s 
 

 
Figure 4-23 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 500 to 1400 for blinf test condition of Vin = 1.02 m/s 
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Figure 4-24 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 500 to 1400 for blind test condition of Vin = 1.1 m/s 
 

 
Figure 4-25 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 500 to 1400 for blinf test condition of Vin = 0.72 m/s 
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The smart proxy model is able to capture the behavior of the time-steps 500 through 1400 
reasonably well, when flow is more of a slugging flow.  The following figures illustrate the 
performance of the ANN, over time steps 1500 to 3400, when flow becomes fluidized.  Series of 
ANNs are constructed at time steps 1500 to 3400 at an increment of 100, as shown in Figure 4-26.  
Once the ANNs are trained, three blind tests, as outlined in Figure 3-8 are carried out. 

 

 
Figure 4-26 Time steps used for time averaging between time steps 1500 to 3400 

 

Figure 4-27 shows all the smart proxy results for different time-steps for inlet velocity of 0.825 
m/s (a blind test case). The black curve in Figure 4-21 shows the time average pressure across all 
layers between time steps 1500 to 3400.  The comparison between CFD and smart proxy results 
for the time-steps 1500 to 3400 are provided in Appendix II. 

 
Figure 4-27 Spatial average profile of smart proxy results for gas pressure for time steps 

1500 to 3400 at blind test condition of Vin = 0.825 m/s 
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The comparison of time averaged pressure values across each layer from CFD results and ANN 
prediction in deployment mode for three blind test cases with inlet velocities of 0.825, 1.02 and 
1.1 m/s between time steps of 1500 to 3400 are shown in Figure 4-28 through Figure 4-30, 
respectively. The comparison between CFD and smart proxy results for the time-steps 1500 to 
3400 are provided in Appendix II, III and IV for Vin = 0.825, 1.02 and 1.1 (m/s), respectively. 

 

 

 
Figure 4-28 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 1500 to 3400  for blind test condition of Vin = 0.825 m/s 
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Figure 4-29 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 1500 to 3400 for blind test condition of Vin = of 1.02 m/s 
 

 
Figure 4-30 Spatial average profile of CFD and smart proxy results for gas pressure, 

averaged over time steps 1500 to 3400 for blind test condition of Vin = 1.1 m/s 
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5. CONCLUSIONS 
A data-driven smart proxy has been developed to mimic CFD results for gas pressure in a fluidized 
bed at the Layer Level, with a reasonable accuracy and faster execution time.  In the Cell Level 
training, the average time for training an ANN was about 2 to 3 minutes (for optimized ANN) [1].  
However, after changing the approach to Layer Level, the training time reduced to less than 1 
minute, since the size of training data was reduced dramatically.  The size of training data set 
reduced from 118,098 data points (rows) and 11 parameters (columns) in Cell Level approach to 
162 data points (rows) and 4 parameters (columns) in Layer Level approach. The Layer Based 
approach, in comparison with Cell Based approach provides more accurate results for the pressure 
drop, however, the disadvantage of Layer Based approach is that all cell information are lost. Table 
5-1 shows the RMSE of different blind test cases when Cell Based and Layer Based approach are 
used to simulate the time average results. Table 5-1 shows a significant improvement for the 
temporally averaged results when the model is built at the Layer Level. 
 

Table 5-1 RMSE for Cell-based and Layer-based approaches 

Blind cases Cell Based  Layer Based 

 Vin = 0.825 (m/s) 29.7 15.7 

Vin = 1.02 (m/s) 38.0 21.2 

Vin = 1.1 (m/s) 76.2 15.9 

 

Table 5-2 shows the comparison of run time of multiphase CFD and smart proxy. This proxy 
requires incredibility less amount of time to execute than CFD simulation does, with a reasonable 
error (less than 3% based on Equ. 2-4).  The results of this project are very promising and they 
show that artificial intelligence and machine learning can expedite application of non-intrusive 
uncertainty quantification techniques to CFD based multiphase flow modeling.  

 

Table 5-2 Execution time for CFD and smart proxy 

Method Execution Time 

CFD 4 seconds simulation = 3 days on 4 CPUs 

Smart Proxy 4 seconds simulation = 60 s = 1 min 

 

5.1 RECOMMENDATIONS AND FUTURE WORKS 

This study shows that the smart proxy is a feasible technology to handle complex, multi-physics, 
nonlinear flows.  The next step for this project is to train an ANN for gas volume fraction and gas 
velocity at the Layer Level. Additionally, the use of geometry as a model variable in training an 
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ANN may be explored.  This could expedite the process of scale up, which is very time consuming, 
when approached with CFD modeling.   
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7. APPENDIX I: GAS PRESSURE USING 4 STATIC PARAMETERS 

 
Figure 7-1 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=0.6 m/s (using 4 static parameters) 

 
Figure 7-2 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=0.9 m/s (using 4 static parameters) 
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Figure 7-3 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=0.75 m/s (using 4 static parameters) 

 
Figure 7-4 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=1.2 m/s (using 4 static parameters) 
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Figure 7-5 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=0.69 m/s (using 4 static parameters) 
 

 
Figure 7-6 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=0.94 m/s (using 4 static parameters) 
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Figure 7-7 Spatially averaged CFD and smart proxy results for gas volume 

fraction at time step = 1400 and Vin=1.05 m/s (using 4 static parameters) 
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8. APPENDIX II: AVERAGE GAS PRESSURE PROFILE AT BLIND TEST 
CONDITION OF VIN = 0.825 M/S WITH INFORMATION CASCADING FROM 
UPSTREAM TO DOWNSTREAM AT TIME STEPS 500 TO 3400 

 
Figure 8-1 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 500 for blind test condition of Vin=0.825 m/s 

 
Figure 8-2 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 600 for blind test condition of Vin=0.825 m/s  
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Figure 8-3 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 700 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-4 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 800 for blind test condition of Vin=0.825 m/s  
 



Data Driven Smart Proxy for CFD Application- Part Three: Model Building at the Layer Level 

59 

 
Figure 8-5 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 900 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-6 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1000 for blind test condition of Vin=0.825 m/s  
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Figure 8-7 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1100 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-8 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1200 for blind test condition of Vin=0.825 m/s  
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Figure 8-9 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1300 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-10 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=0.825 m/s  
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Figure 8-11 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1500 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-12 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1600 for blind test condition of Vin=0.825 m/s  
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Figure 8-13 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1700 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-14 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1800 for blind test condition of Vin=0.825 m/s  
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Figure 8-15 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1900 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-16 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2000 for blind test condition of Vin=0.825 m/s  
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Figure 8-17 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2100 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-18 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2200 for blind test condition of Vin=0.825 m/s  
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Figure 8-19 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2300 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-20 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2400 for blind test condition of Vin=0.825 m/s  
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Figure 8-21 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2500 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-22 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2600 for blind test condition of Vin=0.825 m/s  
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Figure 8-23 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2700 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-24 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2800 for blind test condition of Vin=0.825 m/s  
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Figure 8-25 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2900 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-26 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3000 for blind test condition of Vin=0.825 m/s  
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Figure 8-27 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3100 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-28 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3200 for blind test condition of Vin=0.825 m/s  
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Figure 8-29 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3300 for blind test condition of Vin=0.825 m/s  
 

 
Figure 8-30 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3400 for blind test condition of Vin=0.825 m/s  
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9. APPENDIX III: GAS PRESSURE PROFILE AT BLIND TEST CONDITION OF 
VIN=1.02 M/S, WITH INFORMATION CASCADING FROM UPSTREAM TO 
DOWNSTREAM FOR TIME STEPS 500 THROUGH 3400 

 
Figure 9-1 Spatial average profile of smart proxy results for gas pressure for time steps 

500 through 1400 at blind test condition of Vin = 1.02 m/s 

 
Figure 9-2 Spatial average profile of smart proxy results for gas pressure for time steps 

1500 through 3400 at blind test condition of Vin = 1.02 m/s  
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Figure 9-3 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 500 for blind test condition of Vin=1.02 m/s 
 

 
Figure 9-4 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 600 for blind test condition of Vin=1.02 m/s  
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Figure 9-5 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 700 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-6 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 800 for blind test condition of Vin=1.02 m/s  
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Figure 9-7 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 900 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-8 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1000 for blind test condition of Vin=1.02 m/s  
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Figure 9-9 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1100 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-10 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1200 for blind test condition of Vin=1.02 m/s  
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Figure 9-11 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1300 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-12 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1400 for blind test condition of Vin=1.02 m/s  
 



Data Driven Smart Proxy for CFD Application- Part Three: Model Building at the Layer Level 

78 

 
Figure 9-13 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1500 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-14 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1600 for blind test condition of Vin=1.02 m/s  
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Figure 9-15 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1700 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-16 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1800 for blind test condition of Vin=1.02 m/s  
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Figure 9-17 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1900 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-18 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2000 for blind test condition of Vin=1.02 m/s  
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Figure 9-19 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2100 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-20 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2200 for blind test condition of Vin=1.02 m/s  
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Figure 9-21 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2300 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-22 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2400 for blind test condition of Vin=1.02 m/s  
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Figure 9-23 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2500 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-24 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2600 for blind test condition of Vin=1.02 m/s  
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Figure 9-25 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2700 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-26 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2800 for blind test condition of Vin=1.02 m/s  
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Figure 9-27 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 2900 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-28 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3000 for blind test condition of Vin=1.02 m/s  
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Figure 9-29 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3100 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-30 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3200 for blind test condition of Vin=1.02 m/s  
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Figure 9-31 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3300 for blind test condition of Vin=1.02 m/s  
 

 
Figure 9-32 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 3400 for blind test condition of Vin=1.02 m/s  
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10. APPENDIX IV: GAS PRESSURE PROFILE AT BLIND TEST CONDITION OF 
VIN=1.1 M/S, WITH INFORMATION CASCADING FROM UPSTREAM TO 
DOWNSTREAM FOR TIME STEPS 500 THROUGH 3400 

 
Figure 10-1 Spatial average profile of smart proxy results for gas pressure, all time steps 

(500 to 1400) at inlet velocity of 1.1 m/s 

 
Figure 10-2 Spatial average profile of smart proxy results for gas pressure, all time steps 

(1500 to 3400) at inlet velocity of 1.1 m/s 
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Figure 10-3 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 500 for blind test condition of Vin=1.1 m/s 
 

 
Figure 10-4 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 600 for blind test condition of Vin=1.1 m/s  
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Figure 10-5 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 700 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-6 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 800 for blind test condition of Vin=1.1 m/s  
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Figure 10-7 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 900 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-8 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1000 for blind test condition of Vin=1.1 m/s  
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Figure 10-9 Spatially averaged CFD and smart proxy results for gas pressure at time 

step = 1100 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-10 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1200 for blind test condition of Vin=1.1 m/s  
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Figure 10-11 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1300 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-12 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1400 for blind test condition of Vin=1.1 m/s  
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Figure 10-13 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1500 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-14 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1600 for blind test condition of Vin=1.1 m/s  
 



Data Driven Smart Proxy for CFD Application- Part Three: Model Building at the Layer Level 

95 

 
Figure 10-15 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1700 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-16 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1800 for blind test condition of Vin=1.1 m/s  
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Figure 10-17 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 1900 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-18 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2000 for blind test condition of Vin=1.1 m/s  
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Figure 10-19 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2100 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-20 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2200 for blind test condition of Vin=1.1 m/s  
 



Data Driven Smart Proxy for CFD Application- Part Three: Model Building at the Layer Level 

98 

 
Figure 10-21 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2300 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-22 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2400 for blind test condition of Vin=1.1 m/s  
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Figure 10-23 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2500 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-24 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2600 for blind test condition of Vin=1.1 m/s  
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Figure 10-25 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2700 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-26 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2800 for blind test condition of Vin=1.1 m/s  
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Figure 10-27 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 2900 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-28 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 3000 for blind test condition of Vin=1.1 m/s  
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Figure 10-29 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 3100 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-30 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 3200 for blind test condition of Vin=1.1 m/s  
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Figure 10-31 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 3300 for blind test condition of Vin=1.1 m/s  
 

 
Figure 10-32 Spatially averaged CFD and smart proxy results for gas pressure at 

time step = 3400 for blind test condition of Vin=1.1 m/s  
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