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EXECUTIVE SUMMARY 

To ensure the usefulness of simulation technologies in practice, their credibility needs to be 

established with Uncertainty Quantification (UQ) methods.  In this project, smart proxy is 

introduced to significantly reduce the computational cost of conducting large number of 

multiphase CFD simulations, which is typically required for non-intrusive UQ analysis. Smart 

proxy for CFD models are developed using pattern recognition capabilities of Artificial 

Intelligence (AI) and Data Mining (DM) technologies.  

Several CFD simulation runs with different inlet air velocities for a rectangular fluidized bed are 

used to create a smart CFD proxy that is capable of replicating the CFD results for the entire 

geometry and inlet velocity range. The smart CFD proxy is validated with blind CFD runs (CFD 

runs that have not played any role during the development of the smart CFD proxy). The developed 

and validated smart CFD proxy generates its results in seconds with reasonable error (less than 

10%). Upon completion of this project, UQ studies that rely on hundreds or thousands of smart 

CFD proxy runs can be accomplished in minutes. Following figure demonstrates a validation 

example (blind CFD run) showing the results from the MFiX simulation and the smart CFD proxy 

for pressure distribution across a fluidized bed at a given time-step (the layer number corresponds 

to the vertical location in the bed). 

 

 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

2 

1. INTRODUCTION 

Fossil fuel continues to be a reliable source of energy for power generation in the United States 

and worldwide.  Technologies, such as chemical looping and gasification, aim to reduce the carbon 

emission of fossil fuel based power plants.  Simulation technologies can reduce the time and cost 

of the development and deployment of such advanced technologies and allow rapid scale-up of 

these technologies. Simulation can be used to test new designs to ensure reliable operation under 

a variety of operating conditions. However, to ensure their usefulness in practice, the credibility 

of the simulations needs to be established with Uncertainty Quantification (UQ) methods.  To this 

end, National Energy Technology Laboratory (NETL) has been applying non-intrusive UQ 

methodologies to categorize and quantify uncertainties in CFD simulations of gas-solid multiphase 

flows, which are encountered in fossil fuel based energy systems [1, 2, 3, 4].  Gas-solid flows are 

inherently highly unsteady and chaotic flows, where sharp discontinuity can exist at the interface 

between phases.  The challenge in CFD simulation of gas-solid flows is to adequately resolve the 

structures that exist at different spatial and temporal scales in an inherently transient flow.  

Additionally, in reacting gas-solid flow simulations, small time steps are needed in order to not 

only resolve the temporal scales of the flow, but also ensure numerical stability of the solution.  A 

rule of thumb for adequate spatial resolution is for the grid spacing to be about 10 times the particle 

diameter [5].  The grid requirement for maintaining such a ratio of grid size to particle diameter 

for smaller size particles makes such simulations computationally costly and impractical [4].  

Recent work at NETL [4] has shown the number of simulations, which is required for non-intrusive 

uncertainty quantification, can easily exceed many tens of simulations.  The spatial and temporal 

resolution requirements for multiphase flows make CFD simulations computationally expensive 

and potentially beyond the reach of many design analysts. 

 

It is clear that a paradigm shift in simulation technology is needed in order to make reacting gas-

solid flow CFD simulations with appropriate grid resolution more practical for design and 

optimization purposes during design scale up.  To accelerate the design and analysis process, high 

fidelity surrogate models that can capture the flow behavior of the design under consideration can 

be utilized.  Surrogate models are increasingly used in design exploration, optimization and 

sensitivity analysis.  Advances in big data analytics and machine learning has enabled the 

possibility of construction of data fitted metamodels (aka surrogate models), which can adequately 

duplicate the behavior of the CFD model results that was used for their construction.  This new 

technology has been successfully applied in the upstream petroleum industry [6] [7] [8] [9].  Smart 

Proxy modeling takes advantage of pattern recognition capabilities of artificial intelligence and 

machine learning to build powerful tools to predict the behavior of a system with far less 

computational cost compared to traditional CFD simulators. 

 

The goal of this research project is to build a smart proxy model at the cell level, which is 

constructed from simulation data generated by high fidelity CFD models to, in effect, replace the 

use of computationally expensive CFD for the design space under study for further analysis and 

optimization.  When compared to traditional proxy modeling techniques such as Reduced Order 

Models (ROM), the advantage of smart proxy is associated with its unique characteristics of (a) 

not simplifying the physics of the original CFD model, and (b) not reducing the resolution (in time 

and space) of the original CFD model. The smart proxy can be used to perform non-intrusive 

uncertainty quantification analysis in order to quantify errors and uncertainties that are inherent in 

any simulation and to quantify uncertainties in the model predictions that result from the 
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uncertainties in the input variables.  The smart proxy could potentially allow the user to explore 

the performance of the design, well beyond the CFD simulation time window.  In other words, few 

hundred seconds of CFD simulation time can be used to construct a smart proxy, which can be 

used to explore the design performance of the unit after many hours of performance.  The 

uniqueness of this approach is in: 

 
1. Developing a unique engineering-based data preparation technology that optimizes the training of 

the neural networks. This innovative technique incorporates supervised fuzzy cluster analysis to: 

a. Identify the most influential parameters for the training process, and 

b. Identify the optimum partitioning of the data for training, calibration and validation.  

2. Unique, innovative, and optimum preparation of the raw data extracted from the CFD for the 

training, calibration, and validation of a series of neural networks that together will form the final 

CFD smart proxy.  

3. Using an “ensemble-based” approach to building the smart proxy, taking advantage of multiple 

neural networks and intelligent agents to accomplish the objectives of the project. 

1.1 STRUCTURE OF THE WORK 

The research and development concentrating on the CFD smart proxy modeling will be presented 

in multiple reports. Each report will concentrate on a major portion of the research work and 

accomplishments that are useful to the general research community. The report presented in this 

document summarizes the building of the data driven predictive models at the cell level for 

replicating the CFD simulation for the UQ purpose. This report includes five chapters. In chapter 

one (this chapter), the problem was defined, and the final objective of the research was articulated.  

 

In chapter two, a brief definition of multiphase flow and its governing equations are provided to 

lay the groundwork for understanding the engineering and scientific details associate with the CFD 

model being studied. Also, the literature about the use of AI and Machine Learning related to fluid 

dynamics problems, is reviewed (this chapter is repeated in all four reports associated with this 

project in order to make each report to serve as a standalone document). 

 

Chapter three discusses the methodology and the machine learning method, which is used in this 

research. The artificial neural network with all the required information is introduced in this 

chapter. The network architecture with all input and output system are presented and discussed.  

Results and discussions are presented in chapter four, and finally, the conclusions and 

recommendations for the next phase of the research are presented in chapter five  
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2. BACKGROUND 

This section of the report is dedicated to providing some basic, but necessary background on three 

major components of this research work.  

 

2.1 MFIX 

Multiphase flows, both reacting and non-reacting, are part of many processes in power generation 

and chemical processing industries.  As expressed earlier, CFD is a valuable tool in design and 

optimization of processes and reactors used in these industries.  NETL has been in the forefront of 

developing CFD modeling tools that can help engineers and designers in improving the 

performance of processes such as gasification, chemical looping.  The MFiX (Multiphase Flow 

with Interphase eXchanges) suite of CFD software [10] is an open-source, general purpose 

multiphase CFD software suitable for modeling the hydrodynamics, along with heat transfer and 

chemical reaction for a wide spectrum of flow conditions (dilute to dense).  Multiphase flows can 

be modeled either in a continuum (Eulerian) framework, a Lagrangian framework or a hybrid 

Eulerian-Lagrangian framework.  The two frameworks can be summarized as follow:  

 

• Continuum (Eulerian): Both solid phase and gas phase are treated as interpenetrating 

continuum (Two Fluid Model, TFM).  Multiple solid phases can be used to describe 

multiple solid particles of different sizes and properties (Multi Fluid Model, MFM). 

Continuum approach is computationally less intensive but it cannot easily capture particle 

scale details such as particle size distribution, particle shape and many others [11].  

• Discrete Particle (Lagrangian): Track each particle in the fluid by using Newton’s Law of 

motion. This method is more straightforward to apply, even in multiphase flow, but the 

computational cost is high [11].  

 

There are several approaches to modeling multiphase gas-solid flows. Depending on the 

application, either the gas phase or the solid phase or both phases can be modeled in Eulerian or 

Lagrangian framework [11] [12] [13].  Table 2-1 shows the different modeling approaches to gas-

solid multiphase flow modeling.  In the present work, the MFiX-TFM is used to model a 

rectangular 3D fluidized bed.  MFIX-TFM treats both the gas phase and particulate phase as 

interpenetrating continuous phases.  The governing equations employed for the conservation of 

mass and momentum for each phase (m, n = g for gas phase and m, n = s for solid phase) are 

 

𝝏

𝝏𝒕
(𝜺𝒎𝝆𝒎) + 𝜵. (𝜺𝒎𝝆𝒎�⃗⃗� 𝒎) = ∑ 𝑹𝒎𝒏

𝑵𝒎

𝒏=𝟏
𝒏≠𝒎

 

           2-1 
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𝝏

𝝏𝒕
(𝜺𝒎𝝆𝒎�⃗⃗� 𝒎) + 𝛁. (𝜺𝒎𝝆𝒎�⃗⃗� 𝒎�⃗⃗� 𝒎) = 𝛁. (�̿�𝒎) + 𝜺𝒎𝝆𝒎�⃗⃗� − ∑ 𝑰𝒎𝒏

𝑴

𝒏=𝟏
𝒏≠𝒎

 

           2-2 

Where  

𝜀𝑚 is the phase volume fraction  

𝜌𝑚 is the phase density 

𝑣 𝑚 is the phase velocity vector  

𝑅𝑚𝑛 is mass transfer between phases  

𝑆�̿� is the phase stress tensor  

𝐼𝑚𝑛 is the interaction force representing the momentum transfer between the phases 

 

The closure terms for the solid phases are obtained through kinetic theory of granular flow.  

Detailed information on the constitutive relationships used to model momentum exchange between 

the phases along with the solid stress model incorporated in MFiX-TFM can be obtained from 

MFiX online documentations [14] [15].   

 

Equations 2-1 and 2-2 form a system of nonlinear partial differential equations. An iterative 

algorithm is used in MFiX to solve this system of PDEs. Figure 2-1 illustrates the solution 

sequences used in MFiX for solving the equations 2-1 and 2-2.  As it is discussed in the next 

section, it is crucial to follow the same sequence in constructing the smart proxy.  

 

Table 2-1 Multiphase Flow Modeling Approaches [11] 

 Name Gas Phase Solid Phase Coupling Scale 

1 Discrete bubble model Lagrangian Eulerian Drag Closure for bubbles 10 m 

2 Two Fluid Model Eulerian Eulerian Gas-Solid drag closure 1 m 

3 Unresolved Discrete particle model Eulerian Lagrangian Gas-particle drag closure 0.1 m 

4 Resolved Discrete particle model Eulerian Lagrangian 
Boundary condition at 

particle surface 
0.01 m 

5 Molecular Dynamics Lagrangian Lagrangian 
Elastic collisions at particle 

surface 

<0.001 

m 
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Figure 2-1 MFiX solution algorithm. 

 

2.2 MACHINE LEARNING 

Based on the definition presented by Arthur Samuel [16], “Machine learning is a field of study 

that gives computers the ability to learn without being explicitly programmed.” 

Machine learning is a process through which computer will learn from data to find a possible 

pattern in the data set. This process encompasses three main components: 

 

• Learning algorithm 

• Data 

• Patterns in the data 
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If these three components are present, a successful learning process can be achieved based on the 

capability of the learning algorithm. There are two major types of Machine Learning: supervised 

learning and unsupervised learning [17]. 

In supervised learning, the training data consists of both input and output values and the learning 

algorithm finds a functional relationship between the two.  Examples for supervised learning are 

approximating the shoe size by knowing the person’s height and weight or classifying the type of 

cancer (malignant, benign) based on the patient’s age and tumor size.  In the first example, the 

output of the supervised learning process has a continuous form and it is called Regression.  In the 

second example, the output of the learning process has a discrete form and it is called classification. 

In unsupervised learning, no information about the output is included in the learning data. The 

learning algorithm objective is to find a pattern among the input data. For instance, grouping the 

vehicles to good or bad cars. This process is sometimes called clustering. 

 

2.2.1 Artificial Neural Network 

One of the popular machine learning processes is Artificial Neural Network (ANN). The idea of 

ANN came from the neurons of the brain and the way they are communicating with each other to 

solve a problem. Each artificial neural network consists of an input layer, one or more hidden 

layers, and an output layer. The number of neurons (processing elements) in the output and the 

input layers are chosen based on the nature of the problem being solved and the properties which 

are going to be predicted.  Figure 2-2 shows a typical ANN with three input neurons and two output 

neurons. ANN has one or more hidden layers and each layer has a specific number of neurons [18].  

In order to have a well-trained network, proper parameters should be introduced to the network.  

If improper data are used to train the network there is no guarantee to have a well-trained network 

that leads to correct predictions, in other words, “Garbage in, Garbage out.”  In the upcoming 

sections of this report, a smart way of selecting parameters will be introduced. 

 

 

Figure 2-2 Artificial Neural Network schematic 
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The number of hidden layers and the number of neurons in each hidden layer depends on the 

complexity of the problem, number of parameters, and number of records. Experience also plays 

an important role in this decision making. Hence, there is no universally acceptable recipe for them 

but as a rule of thumb, the number of neurons in the first hidden layer shouldn’t be less than the 

number of input parameters. 

 

2.2.1.1 Objective function 

Regardless of the learning method, each machine learning process needs an optimization procedure 

that helps the process reduce the error as much as possible. The very common and simple objective 

function in supervised learning is the summation of all the differences between predicted values 

by the learning method and the actual values of the output.  Since summation of positive and 

negative errors can reduce the size of the overall error, the objective function is defined as the 

square of the difference between actual and predicted values [18], as shown by equation 2-3. 

 

𝐽(𝑤𝑗) =
1

2𝑚
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑚

𝑖=1

 

          2-3 

 

Where wj is the weighting vector.  During the learning process, the learning algorithm tries to 

assign different weights to each of the connection between neurons in Figure 2-2, in a way that the 

global error of the objective function becomes minimum. Also, a blind calibration is done 

simultaneously to stop the learning process, which we will discuss the validation and test in more 

depth in the next sections of this report. 

 

In machine learning, the dataset used for training of ANN has to be normalized, before the data is 

introduced for training.  Therefore, the quality of ANN is characterized by error (discrepancy) 

distribution between mean normalized CFD data (used for training) and mean normalized ANN 

output as shown by equation 2-4. 

 

          2-4 

 

2.3 PREVIOUS WORK  

The idea of using Artificial Intelligence in petroleum engineering was first introduced by 

Mohaghegh and Ameri [19].  They took advantage of ANN for predicting the permeability of the 

formation based on geological well logs.  Mohaghegh and Ameri [19] showed that neural network 

% 𝐸𝑟𝑟𝑜𝑟 =   
𝐶𝐹𝐷𝑣𝑎𝑙𝑢𝑒 − 𝐶𝐹𝐷𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

𝑀𝐴𝑋(𝐶𝐹𝐷𝑣𝑎𝑙𝑢𝑒) −   𝑀𝐼𝑁(𝐶𝐹𝐷𝑣𝑎𝑙𝑢𝑒)
  −   

𝑆𝑚𝑎𝑟𝑡 𝑃𝑟𝑜𝑥𝑦𝑣𝑎𝑙𝑢𝑒 − 𝐶𝐹𝐷𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒

𝑀𝐴𝑋(𝐶𝐹𝐷𝑣𝑎𝑙𝑢𝑒) −   𝑀𝐼𝑁(𝐶𝐹𝐷𝑣𝑎𝑙𝑢𝑒)
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is capable of making the task of permeability determination automated rather than doing it over 

and over by log analyst. They also stated that neural network can handle far more complex tasks. 

Mohaghegh et al. [20] used ANN for predicting gas storage well performance after hydraulic 

fracture in their later investigations. 

 

Alizadehdakhel et al. [21] successfully used ANN to predict the pressure loss of a two-phase flow 

in the 2-cm diameter tube. Gas and liquid velocities and the pressure drop along the pipe were the 

three input parameters to ANN, with average pressure drop being the output of ANN.  They utilized 

8 different networks with different number of neurons to find out the optimum number of neurons. 

Mean Squared Error and R-square were used as a criterion to pick the best network design. They 

also obtained the most efficient transfer function between Log-Sigmoid, Hyperbolic-Tangent 

Sigmoid, and linear.  

 

Shahkarami et al. [9] used ANN to model the pressure and saturation distribution in a reservoir 

which was used for CO2 sequestration. This problem required a large number of time steps for 

simulation of CO2 injection and storage using a commercial software. They ran 10 different cases 

in CMG (commercial reservoir simulator) and then the results were used as input for ANN.   The 

output of the ANN was pressure distribution, water saturation, and CO2 mole fraction. 80% of the 

data coming from the CMG simulation runs were used to train the network while 10% were used 

for the calibration.  The remaining 10% of data was used for validation process. They have shown 

that ANN can be used as a powerful tool for multiphase flow simulation in oil and gas industry. 

 

Esmaili et al. [22] incorporated a newly developed machine learning based reservoir modeling 

technology known as Data-Driven Reservoir Modeling [23] in order to model fluid flow in shale 

reservoirs using detail well logs, completion, and production data. By understanding the behavior 

of the shale reservoir, conducting the hydraulic fracture could be much easier. Moreover, this 

method has the ability to perform the history matching on the production data.  Kalantari-Dehghani 

et al. [24] coupled numerical reservoir simulator with AI methods to develop a shale proxy model 

that is able to regenerate numerical simulation results in just a few seconds. They introduced three 

different well-based tier systems to achieve a comprehensive input data for the ANN.  In another 

work, Kalantari-Dehghani et al. [25] showed that data-driven proxy models at the hydraulic 

fracture cluster level could be used separately as a reservoir simulator especially in low 

permeability reservoir such as shale which has a nonlinear behavior. 
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3. METHODS 

In this section, the solution methodology and the required steps for constructing the neural network 

are discussed.  

3.1 CFD SIMULATION SETUP 

A schematic of the rectangular fluidized bed, used in this study is shown in Figure 3-1.  The 

fluidized bed, which is 0.12 x 0.72 x 0.12 m in X, Y and Z directions has an initial bed height of 

0.12 m, and initial bed voidage of 0.42.  The bed material has a density of 2000 kg/m3 and a 

diameter of 400 µm.  Based on a grid resolution study, which has been discussed in part one report 

[26], the grid size 27x162x27 in X, Y and Z directions is selected, hence, the grid spacing to 

particle diameter of 11 is obtained.  Details of the CFD simulation set up was covered in the part 

one report of this project, [26], and will not be repeated here.  

 

 

Figure 3-1 Geometry and initial condition of the problem in SI units. 

 

3.2 PROBLEM DEFINITION 

The MFiX model has been created and executed successfully for multiple inlet velocities. The data 

generated by the CFD runs with a variety of inlet velocities is used for the training, calibration, 

and validation process of the neural network model.  Furthermore, additional CFD simulations 

with different inlet velocities are performed and are excluded from the neural network training 
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process.  The additional CFD simulations are used to test the predictive capabilities of the smart 

CFD proxy, in what is referred to as a blind test.   

3.2.1 Interpolating the inlet air velocity 

In this project, the inlet air velocity varies from a minimum value of 0.6 m/s to a maximum value 

of 1.2 m/s (Figure 3-2). The inlet air velocity is assumed to be uniform across the fluidized bed 

inlet (Figure 3-1) with air discharging into atmospheric pressure at the outlet.  

 

The goal of this project is to predict the behavior of a fluidized bed with any given inlet air velocity 

(within the velocity range used for training) at any specific time within a very short period of time 

(in seconds).  Total of 11 CFD simulations have been carried out, when only the inlet velocity has 

been changed.  Figure 3-2 shows the 11 inlet velocities used in this study.  The neural network is 

trained with only 7 of the 11 velocities shown in Figure 3-2.  The predictive capability of the 

trained neural network is evaluated with the remaining 4 inlet velocities, which have not been used 

during the training process of ANN.  This blind test process is discussed further in section 3.3.4.  

Figure 3-3 shows the concept of this project. 

 

 

 

Figure 3-2 Different inlet air velocities (m/s) for MFIX simulations 
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Figure 3-3 Conceptual illustration of problem definition 

 

3.3 ARTIFICIAL NEURAL NETWORK SETUP 

Once the output files of MFiX are converted to *.csv file they are ready to be reorganized to serve 

as the input to the Artificial Neural Network (ANN). Every time-step and every inlet velocity has 

one *.csv file containing 9 columns and 118,098 rows (size of the modeled fluidized bed, 27 x 162 

x 27 = 118,098 computational cells). Each column represents one property such as pressure and 

each row corresponds to one cell. Depending on the solution scenario, which will be discussed 

later, some of these columns and rows will be used as input or output. 

3.3.1 Neural Network architecture 

Each artificial neural network consists of an input layer, one or more hidden layers, and an output 

layer. The input and output parameters are chosen based on the nature of the problem and the 

property which is going to be predicted. 

 

The number of inputs and outputs are chosen based on the problem and the solution scenario which 

will be discussed in detail in the next section. There is no clear guideline on how many hidden 

layers and neurons are required at each layer.  The type of problem and user experience, along 

with few rules of thumb are the primary factors in determining the number of hidden layers and 

neurons. One such rule is that the number of neurons in the first hidden layer shouldn’t be less 

than the number of input parameters.  For the first try, only one hidden layer with 15 neurons is 

considered. The network characteristics and the activation function were described in the part one 

report of this series, [26], and will not be repeated here. 
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3.3.2 Input and output 

In the previous report of this series, [26], it was shown that non-cascading scenario had a downside 

which was the need for the MFIX results at each time-step.  In order to train the ANN at time step 

(t), the CFD results at time step (t-1) were used as input to ANN, along with static parameters, 

such as location of each cell or distance between each cell to the walls.  The output for the non-

cascading training process was one dynamic parameter, such as pressure or velocities or volume 

fraction at time step (t).  In the present report, static parameters, CFD results and other model input 

parameters such as gas inlet velocity are used at time step (t) to train the ANN for the same time 

step (t).  The output of the neural network is either gas pressure, gas volume fraction or gas 

velocity. Some important details regarding the use of neighboring cells and the tier system 

associated with them were described in detail in the part one report, [26], and will not be repeated 

here. 

 

The process of fluidization, as shown in Figure 3-4, starts with the bed material moving upward 

like a slug flow, Figure 3-4a, until the maximum bed expansion is reached, Figure 3-4b, and the 

bed starts to collapse.  In Figure 3-4 color red indicates high voidage (low solid volume fraction) 

and color blue indicates low voidage (high solid volume fraction).  Up to now, the solid flow is 

symmetrical.  Once the bed collapses, smaller bubbles are formed, and the bed behaves more 

chaotically, Figure 3-4c.  And ultimately, the bed becomes fully fluidized and chaotic, Figure 3-4d. 

 

(a) (b) (c) (d) 

    

Figure 3-4 Different flow regime 

 

CFD data at time step 1400 is chosen for ANN training, since this time step represents the initial 

chaotic stage, when smaller bubbles are formed, and the bed starts to fluidize, Figure 3-4c.   Other 

time-steps will be studied later in different scenarios for different purposes.  

 

3.3.3 Data partitioning 

A good ANN is a model that learns the pattern in the given data-set while it is able to predict the 

behavior of a new unseen dataset, this model is called “Just Right”. If the ANN does not learn the 

pattern in the data very well the model is called “Under-fit”. If the ANN learns the pattern of the 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

14 

data very well with a very small error but it is not able to predict the behavior of a new unseen 

dataset the model is called “Over-fit”. Under-fitting occurs for so many reasons such as lack of 

information (the model should have more parameters and more examples). Overfitting occurs 

when the network learns to mimic almost all the data points exactly but when it comes to the 

prediction, the model performs poorly for a new unseen data, in other words the model memorizes 

all the data points. Figure 3-5 shows these 3 states of training. 

 

 

Figure 3-5 Three states of ANN training 

 

To overcome the overfitting problem, the data is partitioned into three subsets.  Each subset is used 

for training, calibrating and validating the ANN.  The process of data partitioning can best be 

explained by considering the sample dataset shown in Figure 3-6.  This figure shows 10,000 data 

points that can be used to construct an ANN.  The dataset is partitioned into a training subset 

(Figure 3-7, 70% of the original data points, selected randomly), calibration subset (Figure 3-8, 

15% of the original data points, selected randomly), and validation subset (Figure 3-9, the 

remaining 15% of the original dataset). 

 

 

Figure 3-6 10,000 sample points used for constructing the ANN 
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Figure 3-7 Data used for training the ANN 

 

 

Figure 3-8 Data used for calibrating the ANN 
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Figure 3-9 Data used for validating the ANN 

 

 

Training is an iterative process where in each iteration the optimization algorithm aims to reduce 

the error.  An iteration is defined as the process through which all the records in the training data 

set are introduced to the ANN once and the error between the actual (target) output and those 

predicted by the ANN are calculated and the impact of the calculated error is back-propagated 

throughout the ANN in order to modify the weights associated will all the connections between 

neurons in the ANN.  In this example, the training dataset, shown in Figure 3-7 is used to train the 

ANN.  The training process stops based on some user defined criteria. This criterion could be the 

total number of iterations, or the total time of training, or lowest possible error, or the number of 

validation failure or a combination of those.  In this project, the combination of all the mentioned 

criteria are used to terminate the training process. The learning algorithm is such that the network 

learns more with increasing number of iterations, but in order to avoid overfitting or memorization, 

the calibration dataset, shown in Figure 3-8, is used concurrently with the training ANN and 

training is terminated once enough learning is achieved.  Training is stopped once the calibration 

error reaches a minimum.  Error during both training and calibration initially decreases, as shown 

in Figure 3-10.  However, if ANN overfits or memorizes the data, the calibration error increases, 

while the training error continues to decrease.  If the calibration error increases for a predefined 

number of iterations, the training stops. Most of the time, number of failure in calibration is the 

criterion which makes the training stop.  The model at this point is usually the best trained ANN 

model because it has provided the lowest possible error for the calibration data set (used in a blind 

test fashion), while it has an acceptable error for the training data set. 
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Figure 3-10 Learning curve, training error and calibration error 

 

The validation data set, shown in Figure 3-9, is used upon the completion of the training process 

when the best ANN is achieved.  Having an ANN model with a low calibration error does not 

mean that the ANN is a good predictor.  The ANN is deemed properly trained, when the error from 

the validation process, which like the calibration process is being performed in a blind test manner, 

is also acceptable.  The percentage of the data partitioning used for the preliminary study of this 

project is shown in Table 3-1. It is important to mention that this partitioning is the preliminary 

one and a deeper study will be conducted on the percentage of the data as it will be described in 

the upcoming sections of this report. 

 

It is noteworthy to reiterate that the input datasets used for training have to be different enough, 

such that there is variability in the flow field.  This variability will provide a greater opportunity 

for ANN to learn. 

 

Table 3-1 Original data partitioning 

Data Training Calibration Validation 

Percentage of data (%) 70 15 15 

 

 

3.3.4 Blind test 

As mentioned earlier, total of 11 CFD simulations have been carried out, when only the inlet 

velocity has been changed.  Of the 11 CFD simulations, 4 have been set aside and used for blind 

testing, Figure 3-11.  A blind test is when some of the data that was not used during the training 

of ANN, is used to further validate the predictive capability of the trained ANN, Figure 3-11.  The 

difference between calibration and validation during the training process and the complete blind 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

18 

test is that the records (data) in the calibration and validation process during the training are a 

subset of the original data that are chosen randomly from the original dataset, as explained earlier.  

However, the entire records (data) are used during the blind test. 

 

 

 

Figure 3-11 Different inlet air velocities (m/s) for MFIX runs 

 

3.4 SOLUTION SCENARIOS 

Different scenarios are considered to reach the final goal of this project. The term “Different 

scenarios” refers to having different input and output structures and also using different time-steps 

for the training, while the training technique is the same in all the scenarios. Depending on what 

time-step(s) and what inlet velocity(s) and how they are used for the training, different scenarios 

will be designed which is the main discussion of the following section.  Each scenario has two 

parts, first is the training process and second is the deployment process.  

As it was stated earlier, the goal of this research project is to build a smart proxy model at the 

cell level, which is constructed from CFD based data.  The smart proxy can reduce the use of 

computationally expensive CFD for the design space under study. This is particularly beneficial, 

when conducting uncertainty quantification analysis, using CFD.  The scenarios outlined below 

show the systematic steps taken, from least number of input parameters used during the training 

to the when the most number of input parameters are used during the ANN training.  The 

scenarios followed in order of complexity are: 

• Training an ANN for gas pressure using 7 static parameters at a single time step, as 

discussed in section 3.4.1 

• Training an ANN for gas pressure using 11 static parameters at a single time step, as 

discussed in section 3.4.2 

• Optimization of ANN, discussed in section 3.4.3 

• Temporal and spatial averaging of ANN data from time steps 500 to 1400 and time steps 

1500 to 3400 are discussed in section 3.4.4 

• Training an ANN for velocity and gas volume fraction using 11 static parameters at a 

single time step, as discussed in section 3.4.5 

• Sequential modeling, where an ANN for velocity uses the trained ANN for pressure as 

the input and the ANN for gas volume fraction uses the trained ANN for velocity and 

pressure as inputs.  More details are provided in section 3.4.6 

• Sequential training, when the tier system is used and information from the surrounding 

cells are used in the training of ANN, as discussed in section 3.4.7 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

19 

3.4.1 Training for gas pressure using 7 static parameters 

A neural network is trained with 7 static parameters (6 distances to the boundaries and 1 inlet 

velocity) at time step 1400.  Seven inlet velocities are used to build this scenario. According to 

Figure 3-12, the 7 static parameters, including 6 distances to the walls plus the inlet velocity form 

the inputs and the gas pressure of time-step 1400 of different inlet velocities set as the output. For 

this preliminary run, one time-step from the breakdown flow regime (time-step 1400) is used for 

the training. The other time-steps will be used in following sections.   

Figure 3-12 shows the input and the output of the ANN for this step. Each inlet velocity at each 

time-step has 27*27*162 (=118,098) records, so total 7*118,098 (=826,686) records are used in 

this scenario.  It’s important to reiterate that in the training stage, CFD output results for the 

variable that ANN is being trained for, are input to ANN, along with the static parameters.   

 

 

Figure 3-12 Training for gas pressure using 7 static parameters 

 

Table 3-2 summarizes the ANN numerical values, when 7 input parameters are used.  The same 

ANN numerical values are used through this work, with the exception of number of input 

parameters and hence number of records changing going from one scenario to the next. Figure 

3-13 shows the distribution of gas pressure in the fluidized bed for different inlet velocities of 0.6 

and 1.2 m/s and blind test condition of 0.825 m/s. This figure shows that there is enough spatial 

variation in the bed for the neural network to learn from.  The results of training ANN with 7 static 

parameters are presented in section 4.2. 

 

Table 3-2 Important numbers in Neural Network Model 

Number of Inputs 7 

Number of hidden layers 1 

Number of Hidden Neurons 15 

Number of records 826,686 

Number of Output 1 
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(a) 

 

(b) 

 

(c) 

Figure 3-13 Gas pressure (105 Pa) at cross sectional plane K = 7 with (a) 

Vinlet = 0.6 m/s (b) Vinlet = 1.2 m/s (c) Vinlet =0.825 m/s 

 

3.4.2 Training for gas pressure using 11 static parameters 

In the previous scenario, 7 attributes were used in the training process which might not have been 

enough for the training. Our effort is to find the static attributes to give network more flexibility 

to find the patterns in gas pressure and at the same time we want these attributes to be available all 

the time and that is why static parameters are chosen. Data scientists usually try to remove all the 

redundant attributes from the training set, but sometimes redundancy could help ANN to find out 

the hidden pattern in the data. Since there are no more static attributes available it is decided to use 

the indices of the cells. Adding I, J, K and the index of each cell will add the location of each data 

point, in the physical domain, to the training process and worth exploring.  The results of training 

with 11 static parameters are presented in section 4.3. 

 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

21 

 

Figure 3-14 Training for gas pressure using 11 static parameters 

 

3.4.3 Optimizing the ANN 

Some of the model parameters, which can affect the quality of ANN are listed in Table 3-3.  These 

parameters undergo an optimization process, in order to improve the quality of ANN.  The results 

of ANN optimization are presented in section 4.4.   

 

Table 3-3 ANN model parameters 

ANN Parameters Current Status 

Number of hidden layers 1 

Number of Hidden Neurons 15 

Training Algorithm Levenberg-Marquardt 

Transfer Function TANSIG 

3.4.4 Time and space average 

Flow in a fluidized bed is highly transient and chaotic.  As such, even multiple CFD simulations 

of the same flow conditions yield different instantaneous flow fields, although the time averaged 

flow fields should be the same.  For this reason, the performance of a fluidized bed is typically 

assessed based on the time and/or space averaged behavior of the various variables such as 

pressure, velocities and volume fraction of gas and solid particles.   

 

More than one ANN is needed in order to perform time average analysis of the smart proxy results.  

This is achieved by constructing 10 ANNs for time steps 500 to 1400, at an increment of 100-time 

steps and 20 ANNs for time steps 1500 to 3400 at an increment of 100 time steps, using the training 

approach outlined in Figure 3-14.  Each time step is 0.001 seconds of simulation time.  Figure 3-15 

shows the two-time periods used for time averaging, for time steps 500 to 1400, and for time steps 

1500 to 3400, representing flow conditions depicted in Figure 3-4(a) to (b) and Figure 3-4(c) to 
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(d) respectively.  In this fluidized bed, since the predominated flow direction is in the Y-direction, 

the output results of ANN is averaged across the cross-sectional area, perpendicular to the flow 

direction, as seen in Figure 3-16.  Section 4.5 shows the results of time averaging step.    

 

 

Figure 3-15 Time steps span selected for time average 

 

 

Figure 3-16 Spatial cross sectional planes used for averaging 

 

3.4.5 Training for gas velocity and gas volume fraction using static parameters 

Figure 3-17 and Figure 3-18 show the training approach for gas velocity and volume fraction, 

when 11 static parameters are used.  However, at the deployment stage, only the static parameters 

are used as inputs to ANN.  The gas velocity used for training of ANN is the magnitude of the 

velocity vector from CFD calculated by equation 3-1.  Section 4.6 shows the results of approach 

outlined here.   

 

𝑽𝒈 = √𝑽𝒈𝒙
𝟐 + 𝑽𝒈𝒚

𝟐 + 𝑽𝒈𝒛
𝟐   

3-1 
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Figure 3-17 Training for gas velocity using 11 static parameters 

 

 

Figure 3-18 Training for gas volume fraction using 11 static parameters 

 

3.4.6 Sequential modeling 

The sequential modeling approach is outlined in Figure 3-19.  In this training approach, the output 

of trained ANN for gas pressure field is used as input parameter for the training of ANN for the 

velocity field, as seen in Figure 3-20.  And the output of trained ANN for pressure field and 

velocity field are used as input parameters for training of ANN for gas volume fraction, as seen in 

Figure 3-21.  The approach used in this step of development of the smart proxy has been inspired 

by the approach commonly used in the numerical solution of PDEs, which increases the 

converging speed.  This approach is expected to have a lower error.  The results of sequential 

training of ANN are provided in section 4.7. 
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Figure 3-19 Sequential training algorithm 

 

 

 

Figure 3-20 Training for gas velocity using 11 static parameters and gas pressure from 

ANNP (a total of 12 input) 
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Figure 3-21 Training for gas volume fraction using 11 static parameters, 

gas pressure from ANNP and gas velocity from ANNV 

 

3.4.7 Sequential modeling by considering tier system 

As it was discussed in our first report, [26], using a tier system is an effective way of 

communicating relevant information from the surrounding cells.  A cell is in contact with 26 of its 

surrounding cells (6 having surface contact with the original cell, 12 having line contact with the 

original cell, and 8 having point contact with the original cell), providing information associated 

with these connected cells can be helpful to the learning of the physics of the fluidized bed by the 

smart proxy. 

 

Figure 3-22 The tier system with the 6 cell in surface contact with the focal cell 

 

Like any numerical method, the values of each cell have a relation with the value of the 

surrounding blocks. With that idea in mind, the ANN will not only learn from the static parameters 

and the value(s) of the parameters of the cell, it will also learn from the surrounding cells which 

are called “Tier” cells. There are several tiers at the neighbor of each cell and depending on the 
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complexity of the problem, one can use tier 1 (surface contact), tier 2 (line contact), and tier 3 

(point contact) cells as input to the ANN. 

 

Figure 3-22 shows a tier 1 structure, where the main (focal) cell is surrounded by its 6 neighboring 

cells. For this case, only tier 1 will be used. Depending on the complexity of the problem and 

spatial and temporal correlations between different tiers and the center cell more or less input 

parameters might be required (tier 2 or 3).  By adding the tier 1 system to the input attributes, the 

number of inputs becomes 18 for gas velocity which is shown in Figure 3-23. The number of inputs 

becomes 25 for gas volume fraction as it is depicted in Figure 3-24.  

 

 

 

Figure 3-23 Sequential training for gas velocity using tiers of gas pressure 

 

 

Figure 3-24 Sequential training for gas volume fraction using tiers of gas 

pressure and gas velocity 
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4. RESULTS AND DISCUSSIONS 

The results of the various scenarios outlined in the previous section are discussed in this section. 

 

4.1 PRESENTATION OF THE RESULT 

To compare the CFD results with the smart proxy results, 5 vertical cross-sectional planes, 3 cm 

apart, are selected, where the contour plots for the various output parameters are presented.  The 

locations of these vertical planes are shown in Figure 4-1.  

Detailed comparison will be shown in the following sections for different solution scenarios at 

cross-sectional plane of K = 7.  Results for the other planes are shown in the appendices.  Each 

figure has three subplots, the left plot is the result of MFiX CFD simulation model, the middle plot 

is the result of the smart proxy which is the output of ANN, and the right plot is the error 

distribution which is the difference between CFD and the smart proxy. 

 

 

 

Figure 4-1 Cross-sectional planes, 3 cm apart, where results are presented 
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4.2 TRAINING FOR GAS PRESSURE USING 7 STATIC PARAMETERS AT A 

SINGLE TIME STEP 

Figure 3-11 shows the 7 different inlet velocity conditions used in the current study, along with 

the velocity condition used for blind test of the trained ANN.  Seven static parameters, as shown 

in Figure 3-12 are used for the training of the ANN.  Figure 4-2 shows the quality of the trained 

ANN, when inlet velocity of Vin = 1.2 (m/s) is used.  The blue line is the linear fit to the data.  It 

is clear from Figure 4-2 that the ANN required more training in the lower region of the fluidized 

bed, where pressure is the highest.  The R2, which is a measure of how well the regression model 

can explain the variability observed in the dataset that is used for constructing the model (trained 

ANN output) is 0.99432.  To better access the quality of the trained ANN, the histogram for the 

discrepancy between the ANN results and the CFD data used for training for data shown in Figure 

4-2 is constructed.  The percent error or discrepancy is defined by equation 2-4 and is shown in 

Figure 4-3.  It is clear from Figure 4-3 that there is no systematic bias in the data shown in Figure 

4-2.  The mean value in Figure 4-3 is nearly zero, which indicates there are as many cells 

underpredicted by ANN than cells that are overpredicted.  Figure 4-4 shows the gas pressure 

distribution in CFD and smart proxy in the 2nd cross-sectional plane at time step of 1400.  The 

maximum error of less than 7%, based on equation 2-4, is observed in the gas pressure at the lower 

portion of the fluidized bed.  To get the actual discrepancy between actual CFD data and ANN 

output, contour scales in Figure 4-4 has to be multiplied by 22.36 Pa, which is the difference 

between maximum and minimum pressure values in the CFD data set used for training divided by 

100. 

 

 

Figure 4-2 Parity plot of trained ANN and CFD results for gas pressure at inlet 

velocity of Vin of 1.2 m/s and time step of 1400, using 7 static parameters 
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Figure 4-3 Error distribution per equation 2-4 for gas pressure at inlet velocity of Vin 

of 1.2 m/s and time step of 1400, using 7 static parameters 

 

 

Figure 4-4 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin = 1.2 m/s, using 7 static parameters 
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Figure 4-5 shows the training quality of the ANN, when the inlet velocity of Vin = 0.9 (m/s) is 

used.  The R2 for the trained ANN output is 0.98845. The distribution of percent error, as defined 

by equation 2-4, is shown in Figure 4-6.  It is clear from Figure 4-6 that there is no systematic bias 

in the data shown in Figure 4-5.  The mean value in Figure 4-6 is -0.05, which indicates there are 

as many cells underpredicted by ANN than cells that are overpredicted.  Figure 4-7 shows the gas 

pressure distribution in CFD and smart proxy in the 2nd cross-sectional plane at time-step of 1400. 

At lower inlet gas velocity, the discrepancy between the trained ANN and the CFD results is 

primarly around the bed and freeboard interface.  The maximum error of about 16%, based on 

equation 2-4, is observed in the gas pressure at the lower portion of the fluidized bed.  To get the 

actual discrepancy between actual CFD data and ANN output, contour scales in Figure 4-7 has to 

be multiplied by 14.95 Pa, which is the difference between maximum and minimum pressure 

values in the CFD data set used for training divided by 100.  

 

 

Figure 4-5 Parity plot of trained ANN and CFD results for gas pressure at 

inlet velocity of 0.9 m/s and time step of 1400, using 7 static parameters 
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Figure 4-6 Error distribution per equation 2-4 for gas pressure at inlet velocity of 0.9 

m/s and time step of 1400, using 7 static parameters 

 

 

Figure 4-7 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane, 

for time step of 1400 and Vin of 0.9 m/s, 7 static parameters 
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Figure 4-8 Parity plot of ANN and CFD results for gas pressure for blind test condition 

of inlet velocity of 0.825 m/s and time step of 1400, using 7 static parameters 

 

 

Figure 4-9 Error distribution per equation 2-4 for gas pressure for blind test condition 

of inlet velocity of 0.825 m/s and time step of 1400, using 7 static parameters 
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Figure 4-10 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane, 

for time step of 1400 and Vin of 0.825 m/s, using 7 static parameters 

 

A blind test at inlet velocity of Vin=0.825 (m/s) is carried out to test the quality of the ANN during 

deployment.  Figure 4-8 shows the comparison between the CFD results (target) with ANN 

prediction at the inlet velocity value, which was not used as part of training.  It is clear that the 

ANN under predicts the gas pressure field in the entire bed, as also evident from the R2 value of 

0.87822.  The error distribution, as defined by equation 2-4, is shown in Figure 4-9.  It is clear 

from Figure 4-9 that the error distribution is skewed towards positive error values, with a mean 

value of 5%.  This skewedness indicates that there is systematic bias in the data shown in Figure 

4-8.  The trained ANN in a blind test, systematically underpredicts the gas pressure.  Figure 4-10 

shows the pressure distribution at K = 7 cross-sectional plane for both CFD and ANN for the blind 

test.  The maximum error of about 25%, based on equation 2-4, is observed in the gas pressure in 

the fluidized bed.  To get the actual discrepancy between actual CFD data and ANN output, contour 

scales in Figure 4-8 has to be multiplied by 15.58 Pa, which is the difference between maximum 

and minimum pressure values in the CFD data set used for training divided by 100.  A closer look 

at the R2 values shown in Figure 4-2, Figure 4-5, and Figure 4-8 points to R2 standalone, not being 

a reliable measure of the quality of the ANN output.  The use of 7 static parameters at a single time 

step clearly leads to prediction of a more dilute flow by ANN during deployment and hence is not 

acceptable. The gas pressure distribution at other cross-sectional planes for this case are provided 

in Appendix I.  
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4.3 TRAINING FOR GAS PRESSURE USING 11 STATIC PARAMETERS AT A 

SINGLE TIME STEP 

To improve the quality of training, the 11 static parameters shown in Figure 3-14, are used for 

training of the ANN.  Figure 4-11 shows that the output of the trained ANN under-predicts gas 

pressure at the lower part of the bed, at time step 1400.  The R2 for data in Figure 4-11 is 0.99712.  

As in previous section, the quality of the trained ANN is further accessed by constructing the error 

distribution, as defined by equation 2-4, for data in Figure 4-11.  The percent error (discrepancy) 

is shown in Figure 4-12.  It is clear from Figure 4-12 that there is no systematic bias in the data 

shown in Figure 4-11.  The mean value in Figure 4-12 is nearly zero, which indicates there are as 

many cells underpredicted by ANN than cells that are overpredicted.  The gas pressure distribution 

in CFD and smart proxy in the 2nd cross-sectional plane at time step of 1400 is shown in Figure 

4-13.  Although the maximum error in Figure 4-13 is about 5% and is lower than the previous 

case, when 7 static parameters were used for training, the trained ANN still under-predicts the 

pressure field and hence predicates a more dilute flow field.  The same general trends are observed, 

when the inlet velocity of Vin = 0.9 m/s is used for training ANN, Figure 4-14 and Figure 4-16.  

As in the previous section, the percent error shown in Figure 4-13, Figure 4-16, and Figure 4-19 

are the error defined by equation 2-4.  To get the actual discrepancy between actual CFD data and 

ANN output, error contour scales has to be multiplied by 22.36, 14.95, and 15.58 Pa for Figure 

4-13, Figure 4-16, and Figure 4-19 respectively.  The multiplier factor is the difference between 

maximum and minimum pressure values in the CFD data set used for training divided by 100 for 

each case. 

 

 

Figure 4-11 Parity plot of trained ANN and CFD results for gas pressure at inlet velocity 

of Vin of 1.2 m/s and time step of 1400, using 11 static parameters 
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Figure 4-12 Error distribution per equation 2-4 for gas pressure at inlet 

velocity of Vin of 1.2 m/s and time step of 1400, using 11 static parameters 

 

 

Figure 4-13 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin = 1.2 m/s, using 11 static parameters 
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Figure 4-14 Parity plot of trained ANN and CFD results for gas pressure at inlet velocity 

of Vin of 0.9 m/s and time step of 1400, using 11 static parameters 

 

 

Figure 4-15 Error distribution per equation 2-4 for gas pressure at inlet 

velocity of Vin of 0.9 m/s and time step of 1400, using 11 static parameters 
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Figure 4-16 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin = 0.9 m/s, using 11 static parameters 

 

 

Figure 4-17 Parity plot of ANN and CFD results for gas pressure for blind test condition 

of inlet velocity of 0.825 m/s and time step of 1400, using 11 static parameters 
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Figure 4-18 Error distribution per equation 2-4 for gas pressure for blind test condition 

of inlet velocity of 0.825 m/s and time step of 1400, using 11 static parameters 

 

 

Figure 4-19 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin = 0.825 m/s, using 11 static parameters 
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The result of the blind test of ANN at inlet velocity of Vin=0.825 m/s are shown in Figure 4-17 

through Figure 4-19.  The error distribution, as defined by equation 2-4, is shown in Figure 4-18.  

It is clear from Figure 4-18 that the error distribution is skewed towards positive error values, with 

a mean value of 7%.  This skewedness indicates that there is systematic bias in the data shown in 

Figure 4-17.  The trained ANN in a blind test, systematically underpredicts the gas pressure.  As 

it was the case in the previous section, the ANN predicts a more dilute flow, when it is used at an 

inlet velocity, which was not part of the training data set.  The outcome of the tests with 7 and 11 

static parameters at time step of 1400 is summarized in Table 4-1 in terms of the calculated R2 .  

Marginal improvement in the training process of ANN is achieved, when 11 static parameters are 

used instead of 7 static parameters during the training.  However, regardless of the number of 

parameters used, the quality of the trained ANN is not acceptable, when used in a blind test case, 

with inlet velocity of 0.825 m/s.   

 

Table 4-1 R2 of different training scenarios 

Scenario Vin=1.2 Vin=0.9 Vin=0.825 

Using 7 static parameters 0.99432 0.98845 0.77128 

Using 11 static parameters 0.99712 0.99366 0.53532 

 

An expanded view of areas in Figure 4-11 and Figure 4-14, where ANN under-predicts gas 

pressure are shown in Figure 4-20 and Figure 4-21.  To better isolate these areas, local cells with 

pressure value greater than 103 kPa in Figure 4-20 and cells with pressure values greater than 

102.6 kPa in Figure 4-21 are shown in Figure 4-22.  It is clear from Figure 4-22 that there are 

handful of cells in the vicinity of inlet that gas pressure is under-predicted by ANN.  To investigate 

further gas pressure under-prediction in the lower part of the fluidized bed, average gas pressure 

across planes perpendicular to the flow, as shown in Figure 3-16, is compared to that of CFD 

results and shown in Figure 4-23, for the training case with inlet velocity of 0.9 m/s.  The 

agreement for the spatially averaged gas phase pressure between ANN and CFD is very favorable, 

even though the cell based comparison of the same two data sets points to larger discrepancies in 

the lower part of the bed.  In fact, this discrepancy is far more evident, when ANN is used in the 

deployment mode as shown in Figure 4-24, which is the spatially averaged gas pressure along the 

bed for the case of inlet velocity of 0.825 m/s (blind test).  The gas pressure at other cross-sectional 

planes are provided in appendix II.  To improve the quality of ANN training process, particularly 

in the lower portion of the fluidized bed, where gas pressure is under-predicted, various techniques 

are employed and outlined in the next section.  
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Figure 4-20 Zooming in to the parity plot of trained ANN for gas pressure at inlet 

velocity of 1.2 m/s and time step of 1400, using 11 static parameters 

 

   

Figure 4-21 Zooming in to the parity plot for trained ANN for gas pressure 

at inlet velocity of 0.9 m/s and time step of 1400, using 11 static parameters 
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(a) 

 

(b) 

 

(c) 

Figure 4-22 Cells, where the gas pressure is underpredicted by ANN, for 

time step of 1400, when (a) Vin=1.2 m/s (b) Vin=0.9 m/s (c) Vin=0.6 m/s 
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Figure 4-23 Temporal average of CFD and smart proxy results at training for gas 

pressure, spatially averaged along the fluidized bed at time step=1400 and Vin=0.9 m/s 

 

 

Figure 4-24 Temporal average of CFD and smart proxy results at deployment for gas 

pressure, spatially averaged along the fluidized bed at time step=1400 and Vin=0.825 m/s 
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4.4 OPTIMIZING THE ANN 

The techniques outlined below are some of the techniques employed during the training process 

in order to improve the quality of the trained ANN.  

 

1. Training one ANN for the lower bed are and one ANN for the rest of the fluidized bed,  

2. Training different ANNs for each X-Z layer (cross sectional areas perpendicular to the 

flow) in the lower portion of the bed and 2 ANNs for the rest of the fluidized bed, 

3. Training different ANNs for each X-Z layer while using the values of the (Y-1) layers as 

input to predict the values for the Y layer,  

4. Tuning the ANN internal parameters by training hundreds of ANNs, 

5. Training the ANN by introducing dimensionless inlet velocity values and different forms 

of inlet velocities (√𝑉𝑖𝑛, 𝑉𝑖𝑛
2 , 𝑉𝑖𝑛

3 , log 𝑉𝑖𝑛 , …), 

 

Not all the optimization techniques used led to improvement in better training of ANN.  Of the 5-

improvement technique listed above, item 4 exhibited the most improvement in the quality of the 

trained ANN.  Table 4-2 outlines some of the improvements, which were achieved by applying 

item 4 of the list above.  All of these techniques share the same basic neural network architecture.  

 

Table 4-2 Some of the ANN internal parameters before and after 

optimization 

 
Originally (before 

optimization) 

After Optimization 

Number of hidden layers 1 2 

Number of Hidden Neurons 15 
1st layer: 6 

2nd layer 3 

Training Algorithm Levenberg-Marquardt Gradient Descent with adaptive LR 

Transfer Function TANSIG 
Hidden layers: LOGSIG 

Output layer: PURELIN 
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Figure 4-25 Optimized CFD and smart proxy results at deployment for gas pressure, 

spatially averaged along the fluidized bed at time step=1400 and Vin=0.825 m/s 

 

Figure 4-25shows the spatially averaged gas pressure along the fluidized bed, after optimization, 

for the same conditions depicted in Figure 4-24.  Clearly, the ANN predication in the deployment 

mode (blind test) has drastically improved after the various optimization techniques that were 

applied.   

 

The process of optimizing the predictive quality of the ANN was only briefly mentioned in this 

section. Details of how such optimizations are accomplished are of major importance to 

construction of an ANN, with high degree of fidelity.  As such, this topic will be discussed in 

greater details in the next report.   

 

4.5 TIME AVERAGE 

The approach developed in sections 4.3 and 4.4 is used to develop series of ANNs at time steps 

500 to 1400 at an increment of 100, as shown in Figure 4-26.  The ANN results are time averaged 

and the temporally averaged vales are compared to temporally averaged CFD results for the same 

time interval of time step 500 through time step 1400.  
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Figure 4-26 Time steps used in time average between time steps 500 to 1400 
 

 

Figure 4-27 shows the comparison of time averaged gas pressure between ANN in deployment 

mode and CFD results at K = 7 plane for time-steps 500 to 1400 and inlet velocity of Vin=0.825 

m/s.  This inlet velocity is part of the blind test.  Figure 4-27 shows a favorable agreement between 

the time averaged ANN prediction and CFD results.  The maximum error is about 10% in the bed.  

Additional figures at other cross sectional planes for this flow condition are provided in Appendix 

III.  Figure 4-28 shows the time average of spatially averaged gas pressure.  The RMSE in Figure 

4-28 is 58 Pa, which is less than 4% of the pressure drop across the fluidized bed.  
 

 

Figure 4-27 CFD and smart proxy results for gas pressure averaged over time steps 500 

to 1400 at K=7 cross-sectional plane with Vin=0.825 m/s 
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Figure 4-28 Time averaged CFD and smart proxy results for gas pressure, spatially 

averaged along the fluidized bed (time-steps = 500 to 1400 and Vin = 0.825 m/s) 

 

To examine the robustness of this technique and its predictive capability the same process is 

repeated for two other blind tests (inlet velocity value that were not included in the training sets). 

The new blind tests had the inlet velocities of Vin = 0.72 m/s and Vin = 1.02 m/s, as shown in Figure 

4-29.  

 

Figure 4-29 Additional blind tests at Vin = 0.72 and Vin =1.02 m/s 

 

Figure 4-30 shows the time average gas pressure from CFD and the smart proxy at K = 7 plane 

using time-steps 500 through 1400 with inlet gas velocity of Vin=0.72 m/s.  Reasonable agreement 

is observed in Figure 4-30 between CFD result and ANN prediction, with the maximum error of 

10% along the walls in the bed.  Additional figures showing the average gas pressure at different 

cross sectional planes for this blind test are provided in Appendix III.  Figure 4-31 shows the time 

average of the spatially averaged gas pressure values along the fluidized bed.  The RMSE in Figure 

4-31 is 59 Pa, which is less than 4% of the pressure drop across the fluidized bed. 
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Figure 4-30 CFD and smart proxy results for gas pressure averaged over time steps 500 

to 1400 at K=7 cross-sectional plane with Vin=0.72 m/s 

 

 

Figure 4-31 Time averaged CFD and smart proxy results for gas pressure, spatially 

averaged along the fluidied bed (time-steps = 500 to 1400 and Vin = 0.72 m/s) 
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Figure 4-32 shows the time average gas pressure from CFD and the smart proxy at K = 7 cross 

sectional plane using time-steps 500 through 1400 for Vin=1.02 m/s.  The agreement between CFD 

results and ANN prediction is favorable, with the maximum error of about 10% in the bed.  

Additional figures at other cross sectional planes are provided in Appendix III.  

 

Figure 4-33 shows the time average of spatially averaged gas pressure along the fluidized bed.  

The RMSE for this blind test is 28.411 Pa, which is about 2% of the pressure drop across the 

fluidized bed. 

 

 

Figure 4-32 CFD and smart proxy results for gas pressure averaged over time steps 500 

to 1400 at K=7 cross-sectional plane with Vin=1.02 m/s 
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Figure 4-33 Time averaged CFD and smart proxy results for gas pressure, spatially 

averaged along the fluidized bed (time-steps = 500 to 1400 and Vin = 1.02 m/s) 

 

The smart proxy model is able to capture the behavior of the time-steps 500 through 1400 

reasonably well, when flow is more of a slugging flow.  The following figures illustrate the 

performance of the ANN, over time steps 1500 to 3400, when flow becomes fluidized.  Series of 

ANNs are constructed at time steps 1500 to 3400 at an increment of 100, as shown in Figure 4-34.  

Once the ANNs are trained, three blind tests, as outlined in Figure 4-35 are carried out. 

 

 

 

 

Figure 4-34 Time steps used for time averaging between time steps 1500 to 3400 
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Figure 4-35 Blind test carried out at three different inlet velocities 

 

Figure 4-36, Figure 4-38, and Figure 4-40 show the time average of gas pressure for the CFD and 

the smart proxy for the 2nd cross-sectional plane using time average for the time-steps 1500 through 

3400 for Vin=0.825 m/s, Vin=1.02 m/s, and Vin=1.1 m/s, respectively. These figures display good 

agreements between pressure distributions calculated by the CFD and those predicted by the smart 

proxy.  Additional figures for these three blind tests are provided in Appendix IV.  

 

Figure 4-37, Figure 4-39, and Figure 4-41 show the time average of spatially averaged gas pressure 

along the fluidized bed.  The RMSE of ANN prediction for Vin=0.825 m/s, Vin=1.02 m/s, and 

Vin=1.1 m/s, is 30 Pa, 38 Pa and 76 Pa respectively. 

 

 

Figure 4-36 CFD and smart proxy results for gas pressure averaged over time steps 1500 

to 3400 at K=7 cross-sectional plane with Vin=0.825 m/s 
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Figure 4-37 Time averaged CFD and smart proxy results for gas pressure, spatially 

averaged along the fluidized bed (time-steps = 1500 to 3400 and Vin = 0.825 m/s) 

 

 

Figure 4-38 CFD and smart proxy results for gas pressure averaged over time steps 1500 

to 3400 at K=7 cross-sectional plane with Vin=1.02 m/s 
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Figure 4-39 Time averaged CFD and smart proxy results for gas pressure, spatially 

averaged along the fluidied bed (time-steps = 1500 to 3400 and Vin = 1.02m/s) 

 

 

 

Figure 4-40 CFD and smart proxy results for gas pressure averaged over time steps 1500 

to 3400 at K=7 cross-sectional plane with Vin=1.1 m/s 

 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

53 

 

Figure 4-41 Time averaged CFD and smart proxy results for gas pressure, spatially 

averaged along the fluidized bed (time-steps = 1500 to 3400 and Vin = 1.1 m/s) 

 

 

4.6 TRAINING FOR GAS VELOCITY AND GAS VOLUME FRACTION USING 

STATIC PARAMETERS 

The same 11 static parameters that were used for the development of the smart proxy model for 

the gas pressure, were used to train a model to predict the behavior of a gas velocity and gas volume 

fraction using seven different inlet velocities. The gas velocity and gas volume fraction have more 

spatial variation than the gas pressure and this fact makes the training process more challenging.  

Figure 4-42 and Figure 4-43 show the results of training for the gas velocity and gas volume 

fraction at K = 7 cross-sectional plane and Vin=0.9 m/s which is one of the inlet velocities in the 

training set.  By comparing the CFD and Smart Proxy results, it is clear that the ANN is not training 

adequately.  Results at different cross sectional plane are provided in Appendix V.  Due to lack of 

agreement with CFD results, no blind test is carried out for this particular scenario. 
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Figure 4-42 CFD and smart proxy results for gas velocity at time step=1400, Vin=0.9 m/s 

and K = 7 cross-sectional plane, using 11 static parameters 

 

 

Figure 4-43 CFD and smart proxy results for gas volume fraction at time step=1400, 

Vin=0.9 m/s and K = 7 cross-sectional plane, using 11 static parameters 
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4.7 SEQUENTIAL MODELING 

It was observed in the previous section that high spatial variation in gas velocity and gas volume 

fraction led to a poor quality trained ANN.  Sequential modeling is a potential remedy for this 

problem.  First, an ANN is trained for gas pressure, then the output of gas pressure ANN is included 

as an input for training of gas velocity and finally, the trained ANNs for gas pressure and velocity 

are included as input in training of gas volume fraction.  

 

Table 4-3 shows the training quality of ANN for gas velocity without and with using gas pressure 

as input respectively.  There is not a noticeable improvement in the quality of the trained ANN for 

gas velocity.  On the other hand, Table 4-3 shows an improvement in the quality of trained ANN 

when gas pressure and gas velocity are also included as the input parameters for training ANN for 

gas volume fraction.  Since gas volume fraction is more trainable in this sequential approach than 

gas velocity, the order of the sequential modeling is changed, as shown in Figure 4-44.  The gas 

pressure is used to train ANN for gas volume fraction first, as seen in Figure 4-45 and then gas 

pressure and gas volume fraction are used to train for gas velocity.  

 

Table 4-3 Quality of training R2 with and without using gas pressure 

ANN’s Output without using pressure with using pressure 

Gas Velocity 0.6663 0.6666 

Gas Volume Fraction 0.8443 0.9473 

 

 

 

Figure 4-44 Changing the order of sequential training algorithm 
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Figure 4-45 Training for gas volume fraction using 11 static parameters and gas pressure 

 

A new ANN was trained with the architecture shown in Figure 4-45, using seven inlet velocities 

for time-step 1400.  The spatially averaged result for the blind test condition of Vin = 0.825 m/s at 

time step of 1400 is shown in Figure 4-46.  Although the smart proxy prediction follows the same 

trend as CFD results, the predicted gas volume fraction field is under-predicted in the lower part 

of the bed, over-predicted in the upper region of the bed and under-predicted in the free board.  To 

potentially improve the quality of ANN prediction, shown in Figure 4-45, the tier system is 

incorporated into the training process.  

 

 

Figure 4-46 Spatially averaged CFD and smart proxy results for gas 

volume fraction at time step = 1400 and Vin=0.825 m/s 
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4.8 SEQUENTIAL MODELING BY CONSIDERING TIER SYSTEM 

A major advantage of the smart proxy methodology employed in this research is that an ANN is 

trained for each computational cell used in CFD, which provides the training data.  As such, the 

tier system described in section 3.4.7 is incorporated into the training process for ANN.  Figure 

4-47 shows the training architecture of the ANN model for constructing an ANN for gas volume 

fraction using 18 inputs including static parameters and the gas pressure at a cell and its tier cells. 

 

 

Figure 4-47 Sequential training for gas volume fraction using gas pressure and tier cells 

 

The result of the spatial average of gas volume fraction along the fluidized bed, for a blind test at 

time step of 1400 and inlet velocity of Vin=0.825 m/s is shown in Figure 4-48. This prediction 

shows a better agreement than the previous model prediction, shown in Figure 4-46.  Since the 

results shown in Figure 4-48 look very promising, additional ANNs are constructed to compare 

time averaged gas volume fraction to CFD results, based on the sequential training approach 

outlined in Figure 4-47.  To achieve this, 20 ANNs are trained using 7 inlet velocities for different 

time-steps according to Figure 4-34.  
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Figure 4-48 Spatially averaged profile of CFD and smart proxy results for gas volume 

fraction at time step of 1400 and Vin = 0.825 m/s, when tier cells are used 

 

To ensure the quality of the trained ANN, the predicted spatially averaged gas volume fraction 

over the time steps of 1500 to 3400 for the entire data set used for training (inlet velocities of 0.6, 

0.69, 0.75, 0.9, 0.94, 1.05 and 1.2 m/s) are shown in Figure 4-49 through Figure 4-55 respectively.  

It can be seen that in the vicinity of inlet, ANN is under-predicting the average gas volume fraction.  

The under-prediction grows larger with increasing inlet gas velocity (in Figure 4-49 through Figure 

4-55).  At lower inlet velocity, the ANN predictions are in good agreement, with the CFD training 

data in the lower part of the fluidized bed (up to layer 20 in Figure 4-50 through Figure 4-51).  

However, as inlet velocity increases, ANN under-predicts the average gas volume fraction in the 

lower part of the fluidized bed (up to layer 20 in Figure 4-52 through Figure 4-55).  In the upper 

portion of the fluidized bed (layer 20 to layer 40), ANN over-predicts the gas volume fraction, and 

as free board is approached (layer 40 and beyond), ANN under-predicts the gas volume fraction.  

Although the overall trend of predicted gas volume fraction by ANN is in agreement with the 

training data from CFD, clearly, further improvement in the training process is required.  The 

trained ANN is now used in deployment mode for three blind tests, with inlet velocities of 

Vin=0.825 m/s, Vin=1.02 m/s, and Vin=1.1 m/s, with results shown in Figure 4-56 through Figure 

4-58 respectively.  As expected, the same trends described above, are observed in ANN prediction, 

when ANN is used for blind tests.  This reinforeces the need for improvement in the training 

process  
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Figure 4-49 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 0.6 m/s 

 

 

Figure 4-50 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 0.69 m/s 
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Figure 4-51 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 0.75 m/s 

 

 

Figure 4-52 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 0.9 m/s 
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Figure 4-53 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 0.94 m/s 

 

 

Figure 4-54 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 1.05 m/s 
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Figure 4-55 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 1.2 m/s 

 

 

Figure 4-56 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 0.825 m/s 
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Figure 4-57 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 1.02 m/s 

 

 

Figure 4-58 Spatial average profile of CFD and smart proxy results for gas volume 

fraction, averaged over time steps 1500 to 3400 at inlet velocity of 1.1 m/s 

 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

64 

5. CONCLUSIONS 

A data-driven smart proxy has been developed to mimic CFD results for gas pressure and gas 

volume fraction in a fluidized bed, with a reasonable accuracy and faster execution time.  

Originally, the average time for training an ANN was about one hour.  However, after 

improvement to the training process and training algorithm, the training time reduced to 2 to 3 

minutes.  The training time is strongly affected with the choice of hardware used.  Table 5-1 shows 

the comparison of run time of multiphase CFD and smart proxy. This proxy requires incredibility 

less amount of time to execute than CFD simulation does, with a reasonable error (less than 10%).  

The results of this project are very promising and they show that artificial intelligence and machine 

learning can expedite application of non-intrusive uncertainty quantification techniques to CFD 

based multiphase flow modeling.  

 

Table 5-1 Execution time for CFD and smart proxy 

Method Execution Time 

CFD 4 seconds simulation = 3 days on 4 CPUs 

Smart Proxy 4 seconds simulation = 180 s = 3 min 

 

5.1 RECOMMENDATIONS AND FUTURE WORKS 

This study showed that the smart proxy is a feasible technology to handle a complex, multi-

physics, nonlinear gas-solid flow.  Results in section 4.8 show that additional improvements are 

required in the training process, in order to increase the degree of fidelity of the constructed ANN.  

Some of ideas to be explored are: 

1. Using additional tiers at each cell during the training process 

2. Using gas velocity, alongside of gas pressure, when training an ANN for gas volume 

fraction.  Higher values of gas volume fraction mean a more porous cell.  This in turn leads 

to a lower gas velocity, compare to cells with lower gas volume fraction.  Including gas 

velocity during the training could provide added learning opportunities for ANN. 

3. Break down the fluidized bed to two separate zone of lower bed region and upper bed and 

free board regions.  

Also train an ANN for gas velocity and solid velocity prediction.  Additionally, the use of geometry 

as a model variable in training an ANN may be explored.  This could expedite the process of scale 

up, which is very time consuming, when approached with CFD modeling.  
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7. APPENDIX I: GAS PRESSURE USING 7 STATIC PARAMETERS 

 

 

Figure 7-1 CFD and smart proxy results for gas pressure at K=1 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 7 static parameters 

 

 

Figure 7-2 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 7 static parameters 
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Figure 7-3 CFD and smart proxy results for gas pressure at K=14 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 7 static parameters 

 

 

Figure 7-4 CFD and smart proxy results for gas pressure at K=21 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 7 static parameters 
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Figure 7-5 CFD and smart proxy results for gas pressure at K=27 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 7 static parameters 

 

 

Figure 7-6 CFD and smart proxy results for gas pressure at K=1 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 7 static parameters 
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Figure 7-7 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 7 static parameters 

 

 

Figure 7-8 CFD and smart proxy results for gas pressure at K=14 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 7 static parameters 
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Figure 7-9 CFD and smart proxy results for gas pressure at K=21 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 7 static parameters 

 

 

Figure 7-10 CFD and smart proxy results for gas pressure at K=27 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 7 static parameters 
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Figure 7-11 CFD and smart proxy results for gas pressure at K=1 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 7 static parameters 

 

 

Figure 7-12 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 7 static parameters 
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Figure 7-13 CFD and smart proxy results for gas pressure at K=14 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 7 static parameters 

 

 

Figure 7-14 CFD and smart proxy results for gas pressure at K=21 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 7 static parameters 
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Figure 7-15 CFD and smart proxy results for gas pressure at K=27 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 7 static parameters 
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8. APPENDIX II: GAS PRESSURE USING 11 STATIC PARAMETERS 

 

 

Figure 8-1 CFD and smart proxy results for gas pressure at K=1 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 11 static parameters 

 

 

Figure 8-2 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 11 static parameters 
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Figure 8-3 CFD and smart proxy results for gas pressure at K=14 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 11 static parameters 

 

 

Figure 8-4 CFD and smart proxy results for gas pressure at K=21 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 11 static parameters 
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Figure 8-5 CFD and smart proxy results for gas pressure at K=27 cross-sectional plane 

for time step of 1400 and Vin of 1.2 m/s, using 11 static parameters 

 

 

Figure 8-6 CFD and smart proxy results for gas pressure at K=1 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 11 static parameters 
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Figure 8-7 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 11 static parameters 

 

 

Figure 8-8 CFD and smart proxy results for gas pressure at K=14 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 11 static parameters 
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Figure 8-9 CFD and smart proxy results for gas pressure at K=21 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 11 static parameters 

 

 

Figure 8-10 CFD and smart proxy results for gas pressure at K=27 cross-sectional plane 

for time step of 1400 and Vin of 0.9 m/s, using 11 static parameters 
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Figure 8-11 CFD and smart proxy results for gas pressure at K=1 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 11 static parameters 

 

 

Figure 8-12 CFD and smart proxy results for gas pressure at K=7 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 11 static parameters 
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Figure 8-13 CFD and smart proxy results for gas pressure at K=14 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 11 static parameters 

 

 

Figure 8-14 CFD and smart proxy results for gas pressure at K=21 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 11 static parameters 
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Figure 8-15 CFD and smart proxy results for gas pressure at K=27 cross-sectional plane 

for time step of 1400 and Vin of 0.825 m/s, using 11 static parameters 
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9. APPENDIX III: TIME AVERAGE OF GAS PRESSURE BETWEEN TIME STEP 500 

TO 1400) 

 

 

Figure 9-1 CFD and smart proxy results for gas pressure averaged over 

time steps 500 to 1400 at K=1 cross-sectional plane and Vin=0.825 m/s 

 

 

Figure 9-2 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=7 cross-sectional plane and Vin=0.825 m/s 
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Figure 9-3 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=14 cross-sectional plane and Vin=0.825 m/s 

 

 

Figure 9-4 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=21 cross-sectional plane and Vin=0.825 m/s 
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Figure 9-5 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=27 cross-sectional plane and Vin=0.825 m/s 

 

 

Figure 9-6 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=1 cross-sectional plane and Vin=0.72 m/s 
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Figure 9-7 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=7 cross-sectional plane and Vin=0.72 m/s 

 

 

Figure 9-8 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=17 cross-sectional plane and Vin=0.72 m/s 
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Figure 9-9 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=21 cross-sectional plane and Vin=0.72 m/s 

 

 

Figure 9-10 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=27 cross-sectional plane and Vin=0.72 m/s 
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Figure 9-11 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=1 cross-sectional plane and Vin=1.02 m/s 

 

 

Figure 9-12 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=7 cross-sectional plane and Vin=1.02 m/s 
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Figure 9-13 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=14 cross-sectional plane and Vin=1.02 m/s 

 

 

Figure 9-14 CFD and smart proxy results for gas pressure avergaed over 

time steps 500 to 1400 at K=21 cross-sectional plane and Vin=1.02 m/s 
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Figure 9-15 CFD and smart proxy results for gas pressure avergaed over time steps 500 

to 1400 at K=27 cross-sectional plane and Vin=1.02 m/s 
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10. APPENDIX IV: BLIND TEST RESULTS FOR TIME AVERAGE OF GAS PRESSURE 

BETWEEN TIME STEP 1500 TO 3400 

 

 

Figure 10-1 CFD and smart proxy results for gas pressure avergaed over time steps 1500 

to 3400 at K=1 cross-sectional plane and Vin=0.825 m/s 

 

 

Figure 10-2 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=7 cross-sectional plane and Vin=0.825 m/s 
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Figure 10-3 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=14 cross-sectional plane and Vin=0.825 m/s 

 

 

Figure 10-4 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=21 cross-sectional plane and Vin=0.825 m/s 
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Figure 10-5 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=27 cross-sectional plane and Vin=0.825 m/s 

 

Figure 10-6 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=1 cross-sectional plane and Vin=1.02 m/s 

 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

32 

 

Figure 10-7 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=7 cross-sectional plane and Vin=1.02 m/s 

 

 

Figure 10-8 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=7 cross-sectional plane and Vin=1.02 m/s 
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Figure 10-9 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=21 cross-sectional plane and Vin=1.02 m/s 

 

 

Figure 10-10 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=27 cross-sectional plane and Vin=1.02 m/s 
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Figure 10-11 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=1 cross-sectional plane and Vin=1.1 m/s 
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Figure 10-12 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=7 cross-sectional plane and Vin=1.1 m/s 

 

 

 

Figure 10-13 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=14 cross-sectional plane and Vin=1.1 m/s 
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Figure 10-14 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=21 cross-sectional plane and Vin=1.1 m/s 

 

 

Figure 10-15 CFD and smart proxy results for gas pressure avergaed over 

time steps 1500 to 3400 at K=27 cross-sectional plane and Vin=1.1 m/s 
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11. APPENDIX V: GAS VELOCITY AND GAS VOLUME FRACTION USING STATIC 

PARAMETERS 

 

 

Figure 11-1 CFD and smart proxy results for gas velocity at time step=1400, Vin=0.9 m/s 

and K=1 cross-sectional plane, using 11 static parameters 

 

 

Figure 11-2 CFD and smart proxy results for gas velocity at time step=1400, Vin=0.9 m/s 

and K=7 cross-sectional plane, using 11 static parameters 
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Figure 11-3 CFD and smart proxy results for gas velocity at time step=1400, Vin=0.9 m/s 

and K=4 cross-sectional plane, using 11 static parameters 

 

 

Figure 11-4 CFD and smart proxy results for gas velocity at time step=1400, Vin=0.9 m/s 

and K=21 cross-sectional plane, using 11 static parameters 
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Figure 11-5 CFD and smart proxy results for gas velocity at time step=1400, Vin=0.9 m/s 

and K=27 cross-sectional plane, using 11 static parameters 

 

 

Figure 11-6 CFD and smart proxy results for gas volume fraction at time step=1400, 

Vin=0.9 m/s and K=1 cross-sectional plane, using 11 static parameters 

 



Data Driven Smart Proxy for CFD, Report Two: Model Building at the Cell Level  

40 

 

Figure 11-7 CFD and smart proxy results for gas volume fraction at time step=1400, 

Vin=0.9 m/s and K=7 cross-sectional plane, using 11 static parameters 

 

 

Figure 11-8 CFD and smart proxy results for gas volume fraction at time step=1400, 

Vin=0.9 m/s and K=14 cross-sectional plane, using 11 static parameters 
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Figure 11-9 CFD and smart proxy results for gas volume fraction at time step=1400, 

Vin=0.9 m/s and K=21 cross-sectional plane, using 11 static parameters 

 

 

Figure 11-10 CFD and smart proxy results for gas volume fraction at time step=1400, 

Vin=0.9 m/s and K=27 cross-sectional plane, using 11 static parameters 
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