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EXECUTIVE SUMMARY 

Simulation technologies can reduce the time and cost of the development and deployment of 

advanced technologies and allow rapid scale-up of these technologies for fossil fuel based energy 

systems.  However, to ensure their usefulness in practice, the credibility of the simulations needs 

to be established with Uncertainty Quantification (UQ) methods.  National Energy Technology 

Laboratory (NETL) has been applying non-intrusive UQ methodologies to categorize and quantify 

uncertainties in CFD simulations of gas-solid multiphase flows.  To reduce the computational cost 

associated with gas-solid flow simulations required for UQ analysis, techniques commonly used 

in the area of Artificial Intelligence (AI) and Data Mining (DM) are used to construct smart proxy 

models, which can reduce the computational cost of conducting large number of multiphase CFD 

simulations. 

 

The feasibility of using AI and machine learning to construct a smart proxy for a gas-solid 

multiphase flow has been investigated by looking at the flow and particle behavior in a non-

reacting rectangular fluidized bed.  NETL’s in house multiphase solver, MFiX, has been used to 

generate simulation data for the rectangular fluidized bed.  The CFD data is then used to train a 

smart proxy that can reproduce the CFD results with reasonable error (about 10%).  MATLAB 

neural network toolbox has been used for the current development effort.   
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1. INTRODUCTION 

Fossil fuel continues to be a reliable source of energy for power generation in the United States 

and worldwide.  Technologies, such as chemical looping and gasification, aim to reduce the carbon 

emission of fossil fuel based power plants.  Simulation technologies can reduce the time and cost 

of the development and deployment of such advanced technologies and allow rapid scale-up of 

these technologies. Simulation can be used to test new designs to ensure reliable operation under 

a variety of operating conditions. However, to ensure their usefulness in practice, the credibility 

of the simulations needs to be established with Uncertainty Quantification (UQ) methods.  To this 

end, National Energy Technology Laboratory (NETL) has been applying non-intrusive UQ 

methodologies to categorize and quantify uncertainties in CFD simulations of gas-solid multiphase 

flows, which are encountered in fossil fuel based energy systems [1, 2, 3, 4].  Gas-solid flows are 

inherently highly unsteady and chaotic flows, where sharp discontinuity can exist at the interface 

between the phases.  The challenge in CFD simulation of gas-solid flows is to adequately resolve 

the structures that exist at different spatial and temporal scales in an inherently transient flow.  

Additionally, in reacting gas-solid flow simulations, small time steps are needed in order to not 

only resolve the temporal scales of the flow, but also ensure numerical stability of the solution.  A 

rule of thumb for adequate spatial resolution is for the grid spacing to be about 10 times the particle 

diameter [5].  The grid requirement for maintaining such a ratio of grid size to particle diameter 

for smaller size particles makes such simulations computationally costly and impractical [4].  

Recent work at NETL [4] has shown the number of simulations, which is required for uncertainty 

quantification, can easily exceed many tens of simulations.  The spatial and temporal resolution 

requirements for multiphase flows makes CFD simulations computationally expensive and 

potentially beyond the reach of many design analysts. 

 

It’s clear that a paradigm shift in simulation technology is needed in order to make reacting gas-

solid flow CFD simulations with appropriate grid resolution more practical for design and 

optimization purposes during design scale up.  To accelerate the design and analysis process, high 

fidelity surrogate models that can capture the flow behavior of the design under consideration can 

be utilized.  Surrogate models are increasingly used in design exploration, optimization and 

sensitivity analysis.  Advances in big data analytic and machine learning allows for creation of 

data-driven metamodels, which can faithfully duplicate the behavior of the data that was used for 

their construction.  This new technology has been successfully applied in the upstream petroleum 

industry [6] [7] [8] [9].  Smart Proxy modeling takes advantage of pattern recognition capabilities 

of artificial intelligence and machine learning to build powerful tools to predict the behavior of a 

system with far less computational cost compared to traditional CFD simulators. 

 

The goal of this research project is to build a smart proxy model at the cell level, which is 

constructed from simulation data generated by high fidelity CFD models to, in effect, replace the 

use of computationally expensive CFD for the design space under study for further analysis, 

optimization and uncertainty quantification.  The goal of this portion of research project outlined 

in this report is to establish proof of concept for the application of this technology to Computational 

Fluid Dynamics.  A smart proxy model, which is constructed from simulation data generated by 

high fidelity CFD models can in effect replace the use of computationally expensive CFD for the 

design space under study and further analysis and optimization.  The smart proxy can be used to 
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perform uncertainty quantification analysis in order to quantify errors and uncertainties that are 

inherent in any simulation and to quantify uncertainties in the output variables in the model that 

result from the uncertainties in the input variables.  The smart proxy could potentially allow the 

user to explore the performance of the design, well beyond the CFD simulation time window.  In 

other word, few hundred seconds of CFD simulation time can be used to construct a smart proxy, 

which can be used to explore the design performance of the unit after many hours of performance.  

The uniqueness of this approach is in: 

 

1. Developing a unique engineering-based data preparation technology that optimizes the 

training of the neural networks. This innovative technique incorporates supervised fuzzy 

cluster analysis to: 

a. Identify the most influential parameters for the training process, and 

b. Identify the optimum partitioning of the data for training, calibration and validation.  

2. Using an “ensemble-based” approach to building the smart proxy, taking advantage of 

multiple neural networks and intelligent agents to accomplish the objectives of the project. 

 

1.1 STRUCTURE OF THE WORK 

The research and development concentrating on the CFD Smart Proxy modeling will be presented 

in multiple reports. Each report will concentrate on a major portion of the research work and 

accomplishments that are useful to the general research community. The report presented in this 

document is regarding the proof of concept of using the Smart Proxy technology for replicating a 

CFD simulation model. This report includes four chapters. In chapter one (this chapter), the 

problem was defined, and the final objective of the research was articulated.  

 

In chapter two, a brief definition of multiphase flow and its governing equations are provided to 

lay the groundwork for understanding the engineering and scientific details associate with the CFD 

model being studies. Also, the literature about the use of AI and Machine Learning related to fluid 

dynamics problems is reviewed. 

 

Chapter three discusses the methodology and the machine learning method which is used in this 

research. The artificial neural network with all the required information is introduced in this 

chapter. The network architecture with all input and output system are discussed.  

Results and discussions are presented in chapter four. The conclusions and recommendations for 

the next phase of the research are presented in chapter five  
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2. BACKGROUND 

This section of the report is dedicated to providing some background information on MFiX 

multiphase flow software and machine learning. 

 

2.1 MFIX 

Multiphase flows, both reacting and non-reacting, are part of many processes in power generation 

and chemical processing industries.  As expressed earlier, CFD is a valuable tool in design and 

optimization of processes and reactors used in these industries.  NETL has been in the forefront of 

developing CFD modeling tools that can help engineers and designers in improving the 

performance of processes such as gasification, chemical looping.  The MFiX (Multiphase Flow 

with Interphase eXchanges) suite of CFD software [10] is an open-source, general purpose 

multiphase CFD software suitable for modeling the hydrodynamics, along with heat transfer and 

chemical reaction for a wide spectrum of flow conditions (dilute to dense).  Multiphase flows can 

be modeled either in a continuum (Eulerian) framework or a Lagrangian framework.  The two 

frameworks can be summarized as follows:    

 

• Continuum (Eulerian): Both solid phase and gas phase are treated as interpenetrating 

continua (Two Fluid Model, TFM).  Multiple solid phases can be used to describe multiple 

solid particles of different sizes and properties (Multi Fluid Model, MFM). Continuum 

approach is computationally less intensive, but it cannot capture all the flow complexities, 

especially in multiphase flow where interaction between particles plays a major role [11].  

• Discrete Particle (Lagrangian): Track each particle in the fluid by using Newton’s Law of 

motion. This method is more straightforward to apply, even in multiphase flow, but the 

computational costs is high [11].  

 

There are several approaches to modeling multiphase gas-solid flows. Depending on the 

application, either the gas phase or the solid phase or both phases can be modeled in Eulerian or 

Lagrangian framework [11] [12] [13].  Table 2-1 shows the different modeling approaches to gas-

solid multiphase flow modeling. 

 

In the present work, the MFiX-TFM is used to model a rectangular 3D fluidized bed.  MFIX-TFM, 

which is based on kinetic theory of granular flow (KTGF) models both the gas phase and 

particulate phase as interpenetrating continuous phases.  The governing equations employed for 

the conservation of mass and momentum for each phase (m = g for gas phase and m = s for solid 

phase) are 
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Where  

𝜀𝑚 is the phase volume fraction  

𝜌𝑚 is the phase density 

𝑣 𝑚 is the phase velocity vector  

𝑅𝑚𝑛 is mass transfer between phases  

𝑆𝑚̿ is the phase stress tensor  

𝐼𝑚𝑛 is the interaction force representing the momentum transfer between the phases 

 

The closure terms for the solid phases are obtained through kinetic theory of granular flow.  

Detailed information on the constitutive relationships used to model momentum exchange between 

the phases along with the solid stress model incorporated in MFiX-TFM can be obtained from 

MFiX online documentations [14] [15].  Equations 2-1 and 2-2 form a system of nonlinear partial 

differential equations. An iterative algorithm is used in MFiX to solve this system of PDEs.  Figure 

2-1 illustrates the solution sequences used in MFiX for solving the equations 2-1 and 2-2.  As it is 

discussed in the next section, it is crucial to follow the same sequence in constructing the smart 

proxy.  

 

Table 2-1 Multiphase flow modeling approaches [11] 

 Name Gas Phase Solid Phase Coupling Scale 

1 Discrete bubble model Lagrangian Eulerian Drag Closure for bubbles 10 m 

2 Two Fluid Model Eulerian Eulerian Gas-Solid drag closure 1 m 

3 Unresolved Discrete particle model Eulerian Lagrangian Gas-particle drag closure 0.1 m 

4 Resolved Discrete particle model Eulerian Lagrangian 
Boundary condition at 

particle surface 
0.01 m 

5 Molecular Dynamics Lagrangian Lagrangian 
Elastic collisions at particle 

surface 

<0.001 

m 
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Figure 2-1 MFiX solution algorithm 

 

2.2 MACHINE LEARNING 

Based on the definition presented by Arthur Samuel [16], “Machine learning is a field of study 

that gives computers the ability to learn without being explicitly programmed.”  Machine learning 

is a process through which computer will learn from data to find a possible pattern in the data set. 

This process encompasses three main components: 

• Learning algorithm 

• Data 

• Patterns in the data 
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If these three components are present, a successful learning process can be achieved based on the 

capability of the learning algorithm. There are two major type of Machine Learning: supervise 

learning and unsupervised learning [17]. 

 

 Artificial Neural Network 

One of the popular machine learning processes is Artificial Neural Network (ANN). The idea of 

ANN came from the neurons of the brain and the way they are communicating with each other to 

solve a problem. Each artificial neural network consists of an input layer, one or more hidden 

layers, and an output layer. The number of neurons (processing elements) in the output and the 

input layers are chosen based on the nature of the problem being solved and the properties which 

are going to be predicted.  Figure 2-2 shows a typical ANN with three input neurons and two output 

neurons. ANN has one or more hidden layers and each layer has a specific number of neurons [18].  

In order to have a well-trained network, proper parameters should be introduced to the network.  

If improper data are used to train the network there is no guarantee to have a well-trained network 

that lead to correct predictions, in other words, “Garbage in, Garbage out.”  In the upcoming 

sections of this report, a smart way of selecting parameters will be introduced. 

 

 

Figure 2-2 Artificial Neural Network schematic 

 

The number of hidden layers and the neurons in each hidden layer depends on the complexity of 

the problem, number of parameters, and number of records. Experience also plays an important 

role in this decision making.  But generally, there is no solid rule for them.  As a rule of thumb, 

the number of neurons in the first hidden layer shouldn’t be less than the number of input 

parameters. 
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2.2.1.1 Objective Function 

Regardless of the learning method, each machine learning process needs an optimization procedure 

that helps the process reduce the error as much as possible. The very common and simple objective 

function in supervised learning is the summation of all the differences between predicted values 

by the learning method and the actual values of the output.  Since summation of positive and 

negative errors can reduce the size of the overall error, the objective function is defined as the 

square of the difference between actual and predicted values [18], as shown by equation 2-3. 

 

𝐽(𝜃0, 𝜃1) =
1

2𝑚
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑚

𝑖=1

 

          2-3 

During the learning process, the learning algorithm tries to assign different weights to each of the 

connection between neurons in Figure 2-2, in a way that the global error of the objective function 

becomes minimum. Also, a blind calibration is done simultaneously to stop the learning process. 

We will discuss the training set, calibration set, and validation set in more depth in sections 3.2.4. 

 

2.3 PREVIOUS WORK  

The idea of using Artificial Intelligence in petroleum engineering was first introduced by 

Mohaghegh and Ameri [19].  They took advantage of ANN for predicting the permeability of the 

formation based on geological well logs.  Mohaghegh and Ameri [19] showed that neural network 

is capable of making the task of permeability determination automated rather than doing it over 

and over by log analyst. They also stated that neural network can handle far more complex tasks. 

Mohaghegh et al. [20] used ANN for predicting gas storage well performance after hydraulic 

fracture his later investigations.  

 

Alizadehdakhel et al. [21] successfully used ANN to predict the pressure loss of a two-phase flow 

in the 2-cm diameter tube. Gas and liquid velocities and the pressure drop along the pipe were the 

three input parameters to ANN, with average pressure drop being the output.  They utilized 8 

different networks with different number of neurons to find out the optimum number neurons. 

Mean Squared Error and R-square were used as a criterion to pick the best network design. They 

also obtained the most efficient transfer function between Log-Sigmoid, Hyperbolic-Tangent 

Sigmoid, and linear.  

 

Shahkarami et al. [9] used ANN to model the pressure and saturation distribution in a reservoir 

which was used for CO2 sequestration. This problem required a large number of time steps for 

simulation of CO2 injection and storage using a commercial software. They ran 10 different cases 

in CMG (commercial reservoir simulator) and then the results were used as input for ANN.   The 

output of the ANN was pressure distribution, water saturation, and CO2 mole fraction. 80% of the 

data coming from the CMG simulation runs were used to train the network while 10% were used 
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for the calibration.  The remaining 10% of data was used for validation process. They have shown 

that ANN can be used as a powerful tool for multiphase flow simulation in oil and gas industry. 

 

Esmaili et al. [22] incorporated a newly developed AI-based reservoir modeling technology known 

as Data-Driven Reservoir Modeling [23] in order to model fluid flow in shale reservoirs using 

detail well logs, completion, and production data. By understanding the behavior of the shale 

reservoir, conducting the hydraulic fracture could be much easier. Moreover, this method has the 

ability to perform the history matching on the production data.  Kalantari-Dehghani et al. [24] 

coupled numerical reservoir simulator with AI methods to develop a shale proxy model that is able 

to regenerate numerical simulation results in just a few seconds. They introduced three different 

well-based tier systems to achieve a comprehensive input data for the ANN.  In another work, 

Kalantari-Dehghani et al. [25] showed that data-driven proxy models at the hydraulic fracture 

cluster level could be used separately as a reservoir simulator especially in low permeability 

reservoir such as shale which has a nonlinear behavior. 
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3. METHODS 

In this section of the report, the solution methodology both for MFiX CFD simulations and neural 

network training will be discussed in detail.  Additionally, the steps needed to create input to the 

neural network, which is the most important step of communicating with the learning algorithms 

is discussed.  

 

3.1 CFD SIMULATION SETUP 

A schematic of the rectangular fluidized bed, used in this study is shown in Figure 3-1.  The 

fluidized bed, which is 0.12 x 0.72 x 0.12 m in X, Y and Z directions has an initial bed height of 

0.12 m, and initial bed voidage of 0.42.  The bed material has a density of 2000 kg/m3 and a 

diameter of 400 µm.  Air velocity is set to 0.6 m/s and is uniformly distributed across the inlet.  

The spatial grid resolution is 4.4 mm (11 particle diameters) in all directions and is based on a grid 

resolution study that was carried out for four different grid levels, as shown in Table 3-1.  This is 

in line with Fullmer and Hrenya [5] work that a grid spacing as small as 10 particle diameters is 

needed for numerical accuracy.  Simulation of the fluidized bed is carried out for 30 seconds.  

MFiX outputs all relevant information such as gas and solid velocities, voidage and pressure field 

for the entire domain.  Figure 3-2 shows the instantaneous voidage contours at a point in time, 

during the simulation.  The output data from MFiX is used as the input and output data for the 

training, calibration and validation of the Artificial Neural network (ANN).  Since MFiX reports 

the results based on the location of each control volume in the grid, the order and the exact location 

of each grid becomes extremely important for ANN.  In MFiX, each control volume is represented 

by its X, Y and Z location (I, J and K indices).  An additional single index, IJK, is defined in MFiX 

that is unique to each control volume (which is defined by it I, J and K indices).  Figure 3-3 shows 

the order at which the IJK index is used.  MFiX outputs all the data following the IJK index order.  

ParaView, which is an open-source visualization software is used to extract the required data from 

MFiX files at each time step, for use in ANN training. 
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Figure 3-1 Geometry and initial condition of the problem 

 

 

Table 3-1 Different grid size and the number of cells 

Grid Classification Cell size No. of Cells No. of Nodes 

Coarse 8*48*8 (15 mm) 3,072 3,969 

Medium 12*72*12 (10 mm) 10,368 12,337 

Fine 18*108*18 (6.6 mm) 34,992 39,349 

Very Fine 27*162*27 (4.4 mm) 118,098 127,792 
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Figure 3-2 Snap shot of voidage contour predicted by MFiX 

 

3.2 ARTIFICIAL NEURAL NETWORK SETUP 

Table 3-2 shows the 9 MFiX output parameters used for ANN training.  Once the output files of 

MFiX are converted to *.csv file they are reorganized to serve as the input for the ANN.  Every 

time-step has one *.csv file that contains 9 columns and 118,098 rows. Each column represents 

one output parameter and each row corresponds to one cell. The input to the ANN is all the data 

at time-step t while the output will be one or more parameters at time-step t+1. In this approach, 

the network will learn what the output should be, given a set of input data. When the learning 

process is completed, the deployment process (prediction) will be performed. 
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Figure 3-3 MFiX numbering order 

 

 

Table 3-2 MFiX output variables used in ANN training 

Symbol Description 

𝜀𝑔 Gas volume fraction 

𝑃 Gas Pressure 

𝑃𝑠 Solid Pressure 

𝑢𝑔 Velocity of gas in x direction 

𝑣𝑔 Velocity of gas in y direction 

𝑤𝑔 Velocity of gas in z direction 

𝑢𝑠 Velocity of solid in x direction 

𝑣𝑠 Velocity of solid in y direction 

𝑤𝑠 Velocity of solid in z direction 
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 Tier System 

In order to communicate all the required information with the ANN so that it can have a reasonable 

understanding of the state of the process, and to learn in an effective manner, a tier system was 

developed. Each cell is in contact with 26 surrounding cells; 6 of them have the surface contact 

with the original cell, 12 have line contact with the original cell, and the remaining 8 have point 

contact with the original cell. 

 

Figure 3-4 The tier system with the 6 cell in surface contact with the focal 

cell 

 

Like any numerical method, the value of each variable in each cell is correlated to the variable 

value in the surrounding blocks. With that idea in mind, the ANN will not only learn from the 9 

parameters (Table 3-2) in a cell, it will also learn from the surrounding cells which are called 

“Tier” cells.  Each cell has several tiers.  Tier 1, tier 2 and tier 3 are the surrounding cells that are 

in surface contact, line contact and point contact respectively.  Depending on the complexity of 

the problem, different tier system will be used as input to ANN.  Figure 3-4 shows a tier 1 structure, 

where the main (focal) cell is surrounded by its 6 neighboring cells. For this case, the 9 parameters 

of the original cell and 9 parameters of the tier 1 cells make 63 parameters ((6+1) * 9), which are 

the input for the ANN. Depending on the complexity of the problem and spatial and temporal 

correlations between different tiers and the center cell more or less input parameters might be 

required.  

 

 Input Matrix 

It is not enough to consider only the values of each parameter in a focal cell and the related tiers 

in the input matrix, but for the network to learn the behavior of the process and perform pattern 

recognition, the location of each cell in the geometry is also crucial. Adding the location as an 

input helps the system understand the spatial correlation between different parameters, as well.  

On the other hand, walls (boundary conditions) have important impact on the flow pattern, 

therefore, the location of walls with respect to the focal cell should also be somehow included into 
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the inputs for the training of the ANN. To accommodate these ideas, six different distances to the 

wall confinements (top, bottom, east, west, north, and south) are considered in order to define the 

exact location of each focal cell and the parameters associated with each cell.   By adding these 6 

distances to the previous 63 parameters (9 parameters of 7 cells - the focal cell plus six tier one 

cells), the total number of parameters used as input becomes 69, as shown in Figure 3-5. So, the 

dimension of input matrix is 69 by 118,098 (i.e., number of parameters multiply by the number of 

cells). 

Figure 3-5 69 parameters of ANN 

 

 Neural Network Architecture 

Each artificial neural network consists of an input layer, one or more hidden layers, and an output 

layer. The input and output parameters are chosen based on the nature of the problem and the 

property which is going to be predicted. In the last section, it was described how the number of 

input parameters were selected to be 69. The output of the ANN could be one or more parameters.  

There will be different scenarios to compare different ANN with different number of output 

parameters. There is no clear guideline on how many hidden layers and neurons are required at 

each layer for a given problem.  A rule of thumb indicates that the number of neurons in the first 

hidden layer shouldn’t be less than the number of input parameters.  For the first try, one hidden 

layer with 100 neurons is considered where 69 parameters are used as input and only one parameter 

is selected as output, as shown in Table 3-3.  The network characteristics are shown in Table 3-4. 

Feed-forward back propagation method is used for the training. The transfer function for the 

hidden layer and the output layer was chosen to be TANSIG, as shown in Figure 3-6. 

 

Table 3-3 Important numbers in Neural Network Model 

Number of Inputs 69 

Number of hidden layers 1 

Number of Hidden Neurons 100 

Number of records 118,098 

Number of Output 1 
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Table 3-4 Neural Network characteristics 

Network Type Feed-forward Back propagation 

Training Function Levenberg-Marquardt 

Adaption Learning Function LEARNGDM 

Performance Function MSE 

Transfer Function TANSIG 

 

 

Figure 3-6 Nueral Network transfer function (TANSIG) 

 

 Data Partitioning 

 

A good ANN is a model that learns the pattern in the given data-set while it is able to predict the 

behavior of a new given dataset, this model is called “Just Right”. If the ANN does not learn the 

pattern in the data very well the model is called “Under-fit”. If the ANN learns the pattern of the 

data very well with a very small error but it is not able to predict the behavior of a new given data-

set the model is called “Over-fit”. Under-fitting occurs for so many reasons such as lack of 

information (the model should have more parameters and more examples). Overfitting occurs 

when the network learns to mimic almost all the data points exactly but when it comes to the 

prediction, the model performs poorly for a new given data, in other words the model memorizes 

all the data points. Figure 3-7 shows these 3 states of training. 
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Figure 3-7 Underfitting and overfitting of the data 

 

To overcome the overfitting problem only a portion of the data is used to train the network and the 

rest of data is kept outside of the training as a criteria to stop the training process when the model 

is “Just Right”. The remaining data points which the model has not seen in the training process, 

are further divided into two sub groups; calibration and validation. 

 

Training is an iterative process where in each iteration the optimization algorithm tries to move 

toward the lower error. Calibration data-set is used while the training is being carried out. The 

error in both training data set and calibration dataset usually decreases at the beginning of the 

training process, however somewhere along the training process, the error in calibration data set 

stops decreasing while the error continues to decrease in the training data set. The model at this 

point is usually the best model because it has provided the lowest possible error for the calibration 

data set (blind data set) and while it has an acceptable error for the training data set.  

 

The validation data set is used upon the completion of the training process when the best ANN is 

achieved. Although both calibration and validation data sets are blind but having an ANN model 

with a low calibration error does not mean that the ANN is a good predictor (because the best 

model is already picked when the calibration error is minimum) unless the ANN error in validation 

data set is also acceptable.   The percentage of the data partitioning used for the preliminary study 

of this project is shown in Table 3-5. It is important to mention that this partitioning is the 

preliminary one and a deeper study will be conducted on the percentage of the data as it will be 

described in the upcoming sections of this report. 

 

Table 3-5 Original data partitioning 

Data Training Calibration Validation 

Percentage of data (%) 70 15 15 
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3.3 SPATIO-TEMPORAL DATABASE 

MFiX simulation results of the rectangular fluidized bed described in section 3.1 is used as the 

training, calibration and validation data to build a Spatio-Temporal data base for the construction 

of fluidized bed smart proxy (Figure 3-8).  

 

Figure 3-8 Spatio-Temporal Database and optimized database 

 

Initially, the Spatio-Temporal database was created based on the data from one single time step. 

This database included the location and the properties (listed in Table 3-2) of each cell and the 

properties of tiers (totally 69 parameters). Later in this report (section 3.4.5), additional time steps 

will be added to the database to have a general model for all the time steps. The elapsed time 

should be also added to the data base as a new parameter, therefore the total number of parameters 

becomes 70. The Spatio-Temporal database treats each cell as a separate record, so the model has 

118,098 records which is equal to the number of cells.  This database is then optimized for a more 

efficient storage and access. 

 

3.4 SOLUTION SCENARIOS 

Different scenarios are considered in order to reach the final goal of this part of the project, which 

is to illustrate the feasibility of constructing a smart proxy for a fluidized bed, based on data 

generated from CFD. The term “Different scenarios” refers to having different input and output 

structures and also using different time-steps for the training of ANN, while the training technique 

is kept the same.  

 

Each scenario has two parts, first is the training process and second is the deployment process. A 

pair of time-steps is used in the training process. The training process stops based on user defined 

criteria. This criterion could be the total number of iteration, the total time of training, or the 

number of calibration failure or as is the case in this work, the termination criteria is a combination 

of all of the above. The learning algorithm is such that the network learns more after each iteration, 

so to prevent overfitting or memorization, calibration error is always checked. If the calibration 

error increases for a predefined number of iterations, the training stops. Most of the time, 

calibration is the criterion which makes the training stop. 

 

As mentioned in the section 3.2.2, at a given time step, 69 parameters are used as input to ANN 

during the training stage.  Additionally, there are also 9 CFD parameters, Table 3-2, at the next 
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time step in CFD, which should be included as additional input parameters to ANN during the 

training stage.  We can train the ANN with either one or multiple CFD parameters at the next time 

step.   It’s important to reiterate that in the training stage, CFD output results for the variable that 

ANN is being trained for, are input to ANN, along with the static parameters (depicted in Figure 

3-9). 

 

 

Figure 3-9 Training stage flow chart 

 

The trained network is then ready for the deployment stage, where data at a given time step is used 

as input and the trained network provides prediction at the next time step (Figure 3-10). The input 

of the ANN for each deployment could come from the CFD directly or from the ANN itself. 

Cascading and non-cascading deployment are defined based on what type of input is used for the 

network and it will be discussed in detail in the following sections.  

 

 

Figure 3-10 Deployment stage flow chart 

 

As it was stated earlier, this phase of the current research aims to show the feasibility of 

constructing a smart proxy, based on CFD results for a fluidized bed.  As such, the scenarios 

outlined below show the systematic steps, which has been taken from the least complex scenario 

to the more complex scenarios, where more input parameters are used for training of the ANN.  

The scenarios followed in order of complexity are: 

 

• ANN training with 69 input parameters at a given time step during the initial stage of 

fluidization and during the later time, section 3.4.1. 

• ANN training with 69 input parameters at a given time step, using a cascading and non-

cascading process, section 3.4.2. 
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•  ANN training with 69 input parameters at a given time step and one output parameter 

compare to multiple output parameters, section 3.4.3. 

• ANN training with 69 input parameters at a given time step with explicit temporal 

approach compared to implicit temporal approach, section 3.4.4. 

• ANN training at multiple time steps which requires 70 input parameters, section 3.4.5. 

• Reducing the size of the 70 input parameter data set, used for ANN training, section 

3.4.6. 

 

 Early Time versus Late Time 

Gas-solid flow in a fluidized bed is highly unsteady and chaotic.  The gas-solid flow initially 

behaves like a slug flow, before instabilities set in and fluidization begins at a later time, as shown 

in Figure 3-11.  As time goes by, changes in flow regime occur and flow becomes more chaotic 

and heterogeneous.  It is therefore necessary to investigate how well an ANN can be trained, when 

the degree of heterogeneity in the flow increases.  An ANN is trained based on flow encountered 

at the early stage of fluidized bed operation, Figure 3-12, and an ANN is trained based on the flow 

conditions at a later time, Figure 3-13.  In both cases, the 69 inputs come from time-step t and the 

CFD output is from time-step t+1 in Figure 3-12 and time step t+2 in Figure 3-13.  The larger time 

step used in Figure 3-13 is for expediting the training process. The CFD output could be one 

parameter (as is the case in Figure 3-14) or multiple parameters.  Each time step used for training 

represents 1 millisecond of simulation time.   
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Figure 3-11 Gas volume fraction distribution initially in the bed (left) and 

later when it is fully fluidized (right) 

 

 

Figure 3-12 Input at time step 100 and CFD output at time step 101 used 

for training (early time, startup) 

 

 

Figure 3-13 Input at time step 4000 and CFD output at time step 4002 used 

for training (later time, fully fluidized bed) 
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Figure 3-14 Input and CFD output parameters used for training 

 

The purpose of this analysis is to show that the ANN is capable of capturing all the physics 

involved in different time-steps (different flow regimes). In the next section, complete results of 

this analysis will be presented and discussed in detail.  

 

 Cascading versus Non-cascading 

Cascading and non-cascading refer to the source of input that is used for the deployment process. 

If the input comes directly from the CFD simulation model for each deployment stage, then the 

process is called “non-cascading”, shown in Figure 3-15. If the input of the ANN for each 

deployment stage comes from the output of previous deployment, then the process is called 

“cascading”, shown in Figure 3-16.  Although the non-cascading deployment has little benefit, 

since it requires input from CFD solver at every time step, it should always be studied in order to 

confirm that the trained network is working properly. Eventually, every parameter should be 

predicted by cascading method, however, first non-cascading training should be performed.  In the 

following sections, the results from both non-cascading and cascading deployment process will be 

shown for early and late time frames. 

 

 

Figure 3-15 The process of non-cascading deployment 
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Figure 3-16 The process of cascading deployment 

 

 Single Output versus Multiple Output 

As discussed earlier, ANN can have one output or have multiple outputs at the same time. 

Obviously, having multiple outputs simultaneously increases the training time, furthermore, the 

network has to fit multiple outputs with the same weights, so the network has less flexibility to 

learn from data.  However, sometimes better results are obtained, especially if there are 

correlations and dependencies between the output parameters. This is a problem dependent issue 

that must be studied and decided upon.  Figure 3-17 and Figure 3-18 show the input and output of 

the ANN when only one output and 3 outputs are used respectively.  

 

 

 

Figure 3-17 Traning with one output (one component of gas velocity) 
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Figure 3-18 Traning with multiple outputs (3 components of gas velocity) 

 

As another advantage of this approach, it should be stated that having multiple outputs at the same 

time would reduce the number of neural networks. As mentioned in the last section, there are total 

nine different ANN needed for cascading deployment, this number could be reduced to three if 

each network has three outputs at the same time. The result of this approach is also available in 

upcoming sections of this report.  

 Explicit versus Implicit 

Regardless of the training scenario, the training process needs a pair of data; input and output 

(time-step t and time-step t+1).  An explicit method is when all the input data come from time-

step t and the output data come from time-step t+1, as shown in Figure 3-18.  It is also possible to 

have the combination of data from time-step t and t+1 as input and have time-step t+1 as the 

output.  

 

Implicit training is when the parameters that have been used as input from time-step t+1 will not 

be used for output.  Figure 3-19 shows one of examples of implicit training. The input consists of 

gas volume fraction, pressures, and gas velocity vector from time-step t in addition to solid velocity 

vector from time-step t+1. The output is gas velocity vector from time-step t+1.  

 

 

 

Figure 3-19 Traning implicitly with multiple outputs 
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This approach is very common in the numerical solution of PDE’s, which increases the converging 

speed.  Implicit approach is expected to have a lower error.  

 

 Training with Multiple Time-steps 

The techniques outline so far uses a single time step for input and output of the ANN.  This is 

illustrated by Figure 3-20.  However, as discussed in section 3.4.1, the gas-solid flow undergoes a 

regime change, from a slugging flow at the beginning to a fluidized regime as time goes by.  The 

ANN trained with the data from when the flow field is slugging does not have the predictive 

capability of capturing the flow dynamics, when the bed is fully fluidized.  In order to train an 

ANN, which has a wider range of applicability, the input and output of the ANN must be trained 

on data from multiple time step, capturing many changes taking place in the flow.  

 

 

Figure 3-20 Input and output pair for the training with single time-step 

 

Figure 3-21 shows the input and output pair for the training with three different time-steps, when 

the flow is slugging at first (time step of 200), then transitioning (time step 1000) and finaly 

fluidizing stage (time step 4000).  Figure 3-22 shows the voidage contours in the CFD simulations 

at time steps 200 (0.2 sec elapsed time), 1000 (1 sec elapsed time) and 4000 (4 sec elapsed time).  

 

 

 

Figure 3-21 Input and output pair for the training 
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Figure 3-22 Three different time-steps with different flow characteristics 

 

The quality of the ANN is characterized by the square root of mean square error, as defined by 

equ. 3-1.  

 

𝑹𝑴𝑺𝑬 = √
𝟏

𝒏
∑(𝒚𝒂𝒄𝒕𝒖𝒂𝒍 − 𝒚𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅)

𝟐
𝒏

𝒋=𝟏

 

           3-1 

 

 Reducing the Size of the System 

In this work, the input training data consists of 70 parameters (data columns) and 118,098 records 

(data rows) that produce a total number of 8,266,860 data points for a given time step.  Reducing 

the data size will not only reduces the storage and data handling overhead, it also could reduce the 

computational cost.   

 

 Reducing Number of Records 

One can remove cells (records) from the training data set randomly, or remove cells from the 

regions of fluidized bed, where the information is not as crucial to the main goal of the constructing 

an ANN for the bed.  For example, the gas flow in the freeboard region of the fluidized bed does 

not affect the gas-solid behavior in the bed greatly, and therefore can be dropped from 

consideration.  Figure 3-23 shows the voidage contours at time-step 4000 (4 seconds of elapsed 

time).  It can be seen in Figure 3-23 that there are no solids present above the blue line in the 

freeboard and therefore, all the cells above the blue line can be removed from the training data set.  

This will reduce the size of the data set by more than one half, as seen in Figure 3-24. 
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Figure 3-23 Gas volume fraction contours at time-step 4000 

 

 

Figure 3-24 The key section of the fluidized bed used for training ANN 
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3.4.7.1 Reducing Number of Parameters (KPI) 

In order to reduce the number of parameters, sensitivity analysis should be performed to quantify 

how sensitive the output is to various input parameters. This process is called identification of the 

Key Performance Indicator (KPI) and our effort is concentrated on finding the most influential 

parameters that impact the output more than the other parameters.  

 

To perform KPI, all the weights associated with parameters should be obtained.   Every parameter 

has several weights assigned to it to communicate with the hidden layer, as it is depicted in Figure 

3-25. If all the weights assigned to one parameter (𝑤11, 𝑤12, …) are integrated to one value (𝑤1), 

that value will represent the total weight and show the priority of that particular parameter when it 

compares to all the other total weights.   After obtaining all the total weights of the parameters, the 

tornado chart of each ANN could be plotted, and the key parameters could be determined. 

 

 

Figure 3-25 Network schematic with its weights 

 

3.4.7.2 Changing the Data Partitioning 

According to Table 3-5, 70% of the data is used for training, 15% of data is used for the calibration, 

and the other 15% of data is used for the validation.  Since training of the network is the most 

computationally intensive part of the entire process, reducing the amount of training will accelerate 

the process of constructing an ANN. 

 



Data Driven Smart Proxy for CFD, Part One: Proof of Concept 

29 

3.4.7.3 Reducing Number of Records Using Smart Sampling 

Smart sampling is a process through which the data used for training and calibration of the artificial 

neural network is not selected through a complete random process. During the smart sampling 

process all the available data (both input parameters and the output parameter) are scrutinized in 

detail to make sure that proper data is used for training and calibration purposes. For example, 

highly pronounced skewness of the distribution of the output parameter can bias the training 

process toward the portion of the data with much higher frequency. In such cases, while the 

skewness is preserved to a certain degree, the frequency of the data used for training and calibration 

is selected such that the shape of the distribution is communicated with the neural network while 

giving the learning algorithm a real chance of learning all aspects of the distributed data. 

 

 A wide spectrum of flow regime is encountered in a fluidized bed.  At a given time, portion of the 

flow can be in a dense phase, while part of the flow is in the dilute phase and yet other part of the 

flow is in the emulation phase.  Figure 3-26 shows the distribution of gas volume fraction at time 

step 4000. The distribution is bi-modal.  Cells with voidage value of 0.4 represents cells that are 

at the solid packing limit (solid volume fraction of 0.4) and cells with voidage of 1.0 represent 

cells with no solid phase present (all air).  Due to the strong bi-modal distribution of voidage, the 

learning will be biased towards the regions of the distribution, where the peeks reside.  This is not 

desirable, since the region in between voidage of 0.4 and 1.0 represents the interface between 

bubbles and solid phase and the more dilute regions of the fluidized bed.  To avoid this bias in 

training, the concept of smart sampling is introduced.  

 

In the training process, the ANN is taught by the data. The data should provide even information 

in different ranges. If the data is not uniform and it emphasizes more on one part, the ANN will 

learn that parts very well and will not learn the other parts. Thus, the best practice is to have a 

uniform distribution rather than the bi-modal distribution. The simplest way to make the 

distribution uniform is to sample the data randomly.  Figure 3-27 shows the distribution after smart 

sampling.   This reduces the number of records from 118,098 to 25,827. 
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Figure 3-26 Distibution of gas volume fraction at time step 4000 

 

 

Figure 3-27 Distibution of gas volume fraction at time step 4000 after smart 

sampling 
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4. RESULTS AND DISCUSSIONS 

Different scenarios were introduced in the previous section. In this section of the report, the results 

of all the scenarios are presented and discussed in detail. These results are coming from different 

approaches; early time or late time, single time-step or multiple time-steps for training, cascading 

or non-cascading deployment, single output or multiple outputs, and explicit or implicit method. 

Before proceeding with the results, there next section provides a short description of how the 

results are going to be presented. 

 

4.1 PRESENTATION OF RESULT 

To compare the CFD results with the smart proxy results, 5 vertical cross-sectional planes, 3 cm 

apart, are selected, where the contour plots for the various output parameters are presented.  The 

locations of these vertical planes are shown in Figure 4-1.   Each figure has three subplots, the left 

plot is the result of CFD simulation model which is coming directly from MFiX, the middle plot 

is the result of the smart proxy which is the output of ANN, and the right plot is the error 

distribution which is the difference between CFD and the smart proxy. 

 

4.2 EARLY TIME-STEP, NON-CASCADING, SINGLE OUTPUT, EXPLICIT 

The simplest case to consider is when one-time step selected as the input, along with one output. 

9 separate ANN have been trained for all the 9 parameters. Time-steps 100 and 101 were used to 

train the system.  After the training was completed, to deploy the model, all the time-steps from 

101 all the way to 120 were used as input to the ANN and acceptable results were obtained. In the 

next sections, the results of gas volume fraction and gas pressure are provided for time-step 102 

and remaining time-steps could be found in Appendix I.  The results for the rest of the parameters 

are in Appendix II.  

 

 Gas Volume Fraction 

Comparison between the CFD results and smart proxy for voidage at time step of 102 (0.102 sec 

elapsed time) are shown in Figure 4-2 through Figure 4-6.  It can be seen that the smart proxy is 

able to replicate the MFIX simulation results very well, with less than 3% error especially around 

the inlet region. 
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Figure 4-1 Cross-sectional planes, 3 cm apart, where results are presented 
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Figure 4-2 CFD and smart proxy results for gas volume fraction at K = 1 

cross-sectional plane 

 

 

Figure 4-3 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane 
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Figure 4-4 CFD and smart proxy results for gas volume fraction at K = 14 

cross-sectional plane 

 

 

Figure 4-5 CFD and smart proxy results for gas volume fraction at K = 21 

cross-sectional plane 
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Figure 4-6 CFD and smart proxy results for gas volume fraction at K = 27 

cross-sectional plane 

 

 Gas Pressure 

The results of the smart proxy versus CFD for the gas pressure are shown in Figure 4-7 through 

Figure 4-11.  As it is shown in Figure 4-7, Smart proxy is able to replicate the pressure distribution 

well, when compared to CFD simulation results, at time-step 102.  The error is less than 2% 

everywhere except in the vicinity of inlet, where the maximum error is less than 20%.   
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Figure 4-7 CFD and smart proxy results for gas pressure at K = 7 cross-

sectional plane 

 

 

Figure 4-8 CFD and smart proxy results for gas pressure at K = 7 cross-

sectional plane 
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Figure 4-9 CFD and smart proxy results for gas pressure at K = 14 cross-

sectional plane 

 

 

Figure 4-10 CFD and smart proxy results for gas pressure at K = 21 cross-

sectional plane 
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Figure 4-11 CFD and smart proxy results for gas pressure at K = 27 cross-

sectional plane 

 

4.3 LATE TIME-STEP, NON-CASCADING, SINGLE OUTPUT, EXPLICIT 

In this section, the results of the training and deployment are presented for late time-steps when 

the bed is fully fluidized.  The time steps 4000 and 4002 are selected to train the network.  Similar 

to the previous scenario, the ANN had only one output, so 9 different ANN are trained for all 9 

parameters.  For the deployment, all the time-steps from 4002 to 4040 were input to the ANN and 

acceptable results were obtained. In the next sections, the results of the gas volume fraction are 

provided for time-step 4004, additional figures for next time-steps are provided in Appendix III. 

 

 Gas Volume Fraction 

The results of the smart proxy versus CFD for gas volume fraction when the bed is fluidized are 

shown by Figure 4-12 through Figure 4-16.  The smart proxy is able to capture the bubbles in the 

fluidized bed, with maximum error of around 4%.  The error is mostly around the interface of gas 

and solid. 
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Figure 4-12 CFD and smart proxy results for gas volume fraction at K = 1 

cross-sectional plane 

 

 

Figure 4-13 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane 
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Figure 4-14 CFD and smart proxy results for gas volume fraction at K = 14 

cross-sectional plane 

 

 

Figure 4-15 CFD and smart proxy results for gas volume fraction at K = 21 

cross-sectional plane 
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Figure 4-16 CFD and smart proxy results for gas volume fraction at K = 27 

cross-sectional plane 

 

4.4 CASCADING, SINGLE OUTPUT, EXPLICIT 

In the previous section, it is shown that ANN is able to mimic the CFD results both when there is 

moderate change in the dynamics of the multi-phase flow and when the bed is fully fluidized, when 

non-cascading approach is selected.  In this section, the results of the cascading approach are 

presented. 

 Gas Volume Fraction for Early Time 

The network is trained for gas volume fraction by introducing time-step 100 as input and time-step 

101 as output. Then for the deployment process, time-step 100 was used as the input to ANN, with 

the output of each ANN being used as input for the next time step.  Figure 4-17 through Figure 

4-26 show the voidage contours based on CFD and ANN, along with the percent error between 

time step 101 (0.101 sec elapsed time) to time step 110 (0.11 sec elapsed time).  These figures 

show that percent error increases in time.  The error propagation from time step to time step can 

eventually go beyond the user defined tolerance level that forces the cascading deployment process 

to terminate.  In order to overcome the error propagation, more time-steps should be used for 

training. This will be discussed in later sections. 
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Figure 4-17 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 101 

 

 

Figure 4-18 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 102 
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Figure 4-19 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 103 

 

 

Figure 4-20 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 104 
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Figure 4-21 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 105 

 

 

Figure 4-22 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 106 
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Figure 4-23 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 107 

 

 

Figure 4-24 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 108 
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Figure 4-25 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 109 

 

 

Figure 4-26 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 110 
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 Gas Volume Fraction for Late Time 

Figure 4-27 through Figure 4-30 show the contours of voidage, for time step 4002 (4.002 sec 

elapsed time) through 4020 (4.02 sec of elapsed time), when flow is fully fluidized.  As in section 

4.4.1, error propagation in ANN from time frame to time frame increases in time.  Techniques for 

minimizing the accrued error will be discussed in the following sections. 

 

 

Figure 4-27 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 4002 
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Figure 4-28 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 4004 

 

 

Figure 4-29 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 4006 
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Figure 4-30 CFD and cascading smart proxy results for gas volume 

fraction at K = 7 cross-sectional plane and time step = 4020 

 

4.5 EARLY TIME-STEP, NON-CASCADING, MULTIPLE OUTPUT, EXPLICIT 

Based on the discussion in the previous sections, it is sometimes beneficial to have multiple outputs 

rather than only a single output. Three components of gas velocity were selected to be the output 

of the ANN; the input data is exactly the same as previous scenarios. The inputs come from time-

step 100 and the outputs come from time-step 101. The ANN is trained successfully and the time-

step 102 is predicted.  

 

Figure 4-31 to Figure 4-33 show the results of smart proxy and comparison with CFD simulation 

results.  Smart proxy result compares favorably to CFD simulation result.  The highest error is 

about %20 in the vertical component of velocity, Figure 4-32.  
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Figure 4-31 CFD and smart proxy results for x-component of gas velocity 

at K = 21 cross-sectional plane, based on expilictly constructed ANN 

 

 

Figure 4-32 CFD and smart proxy results for y-component of gas velocity 

at K = 1 cross-sectional plane, based on expilictly constructed ANN 
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Figure 4-33 CFD and smart proxy results for z-component of gas velocity 

at K = 7 cross-sectional plane, based on expilictly constructed ANN 

 

4.6 EARLY TIME-STEP, NON-CASCADING, MULTIPLE OUTPUT, IMPLICIT 

The process in section 4.5 is repeated, this time with an implicit scheme.  The input of the ANN 

consists of all parameters at time step 100, except solid velocity that comes from time step 101.  

The output is the three components of gas velocity from time-step 101.  Figure 4-34 to Figure 4-36 

show the results of this scenario.  A comparison of Figure 4-31 and Figure 4-34 shows that 

maximum percent error in the x-component of velocity decreases from 12% to 9%, when an 

implicit scheme is used instead of explicit.  Maximum error in the y-component of velocity 

deceases from 19% to 12%, when using an implicit scheme, as shown in Figure 4-32 and Figure 

4-35.  A comparison of Figure 4-33 and Figure 4-36 show that the maximum error in z-component 

of velocity reduces from 5% to 3% when the implicit scheme is utilized. 
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Figure 4-34 CFD and smart proxy results for x-component of gas velocity 

at K = 21 cross-sectional plane, based on implicitly constructed ANN 

 

 

Figure 4-35 CFD and smart proxy results for y-component of gas velocity 

at K = 1 cross-sectional plane, based on implicitly constructed ANN 
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Figure 4-36 CFD and smart proxy results for z-component of gas velocity 

at K = 7 cross-sectional plane, based on implicitly constructed ANN 

 

4.7 USING MULTIPLE TIME-STEPS FOR TRAINING, NON-CASCADING, SINGLE 

OUTPUT, EXPLICIT 

As discussed in the previous sections, the ANN for early time steps (startup period) is valid only 

for early period and the ANN for later time steps (fully fluidized state) only is valid for the later 

time periods.  A more general approach has to be able to cover the entire time span (different flow 

regimes).  The ANN is therefore constructed using additional time steps that account for the 

transition from the startup condition to fully fluidized condition.  Time steps 200-202 and 1000-

1002 have been added to the training data set (4000-4002).  The deployment process is then 

conducted with the trained ANN by inputting time step 200 all the way to time step 4000.  The 

results are presented in terms of RMSE of gas volume fraction in Figure 4-37.  Figure 4-37 shows 

the RMSE distribution versus time-steps. It is clear that in the time-steps that we had training data, 

the amount of error is minimum but in the other time-steps the RMSE increased.  The time steps 

with larger peaks in Figure 4-37 point to the need for additional ANN training at those time steps.  

Or potentially other dynamic behaviors are taking place in the bed that additional training is 

needed.  The contour plot of voidage at time step 500, where the RMSE is high (see Figure 4-37) 

is shown in Figure 4-38.  It is clear that at around this time step, flow is transitioning from the 

initial plug flow behavior to a more bubbling flow.  This change in the flow regime is not properly 

captured, since the input data to ANN at the training stage did include any data from the time steps, 

when transitioning is taking place.  Figure 4-39 shows a decrease in RMSE, when data from time 

steps where RMSE peeks in Figure 4-37 are added to the training data set. 
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Figure 4-37 RMSE distribution over time, when three pairs of data are 

used for training 

 

 

Figure 4-38 CFD and smart proxy results for gas volume fraction at K = 1 

cross-sectional plane 

 



Data Driven Smart Proxy for CFD, Part One: Proof of Concept 

55 

 

Figure 4-39 RMSE distribution over time, when four pairs of data are used 

for training 

 

4.8 REDUCING THE NUMBER OF PARAMETERS (KPI) 

It was shown earlier that eliminating the free board section from the network reduces the size of 

the input data. By eliminating some of the parameters from the training process, the size of the 

input data can be reduced even further.  This can be done through a ranking analysis of total 

weights of the parameters used in training of ANN.  Since in back propagation method, there is a 

weighted summation between all the parameters from each layer to the next layer, the total weight 

could be obtained by averaging all the weights corresponding to a specific parameter. There are 

two different ways to find the total weights; averaging all the weights by considering their signs 

or averaging all the weights by considering the absolute value of each weight.  Table 4-1 and Table 

4-2 show the 14 least important parameters, using the two-different averaging scheme, described 

above.  The remaining 56 parameters are used to train the network.  Figure 4-40 and Figure 4-41 

show the Tornado chart for some of the remaining 56 parameters that is used for training the ANN.  

Figure 4-42 shows the comparison of RMSE distribution from ANN results based on the technique 

described in section 4.7 and the two different averaging techniques, with reduced number of 

parameters.  Clearly prioritizing the parameters, based on the absolute value of their total weight 

leads to less error in the ANN results.  The fact that reducing the number of input parameters, 

which are used for training the ANN, leads to reduction in RMSE shows the important role 

optimization of the spatio-temporal database has in the training process.  In effect, eliminating the 

less important parameters from ANN training has improved the training process, by eliminating 

irrelevant connections between the parameters and increasing the potential for detecting stronger 

correlations among the key parameters.  
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Table 4-1 The least important parameters based on averaging of the weights 

          

 

 

Table 4-2 The least important parameters based on averaging of absolute value of 

the weights 
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Figure 4-40 Parameters ranking for construction of gas volume fraction 

ANN, based on averaging all weights 

 

 

Figure 4-41 Parameters ranking for construction of gas volume fraction 

ANN, averaging of absolute value of all weights 
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Figure 4-42 RMSE distribution over time with two different averaging approach 

 

Since reducing the number of input parameters for training led to a reduction in RSME, additional 

sensitivity analysis is performed in order to reduce the sampling size even further.  Figure 4-43 

shows the RMSE, with 42 and 35 input parameters, along with the original 70 parameters and 56 

parameters. 
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Figure 4-43 RMSE distribution with different parameters used for training 

 

The same analysis is performed for all other parameters, such as pressure and velocities, in order 

to reduce the training data size.  Although the results are not shown here, the number of parameters 

for training of ANN is set at 42, for all parameters shown in Table 3-2.  It is noteworthy that the 

42 parameters are not necessarily the same for all the parameters in Table 3-2.  

 

4.9 USING SEVEN TIME-STEPS FOR TRAINING, CASCADING, SINGLE OUTPUT, 

EXPLICIT 

In the previous section, it was shown that the RMSE can be reduced by eliminating non-essential 

parameters from training dataset.  This reduction in sample size allows for using more time steps 

for training without hitting the hardware memory limitation.  

 

In the previous section, it was mentioned that in order to be able to perform the cascading 

deployment, more time-steps should be used in the training process. Because of the memory 

limitations, it was not possible to add more time-steps in the training but now, when the size of 

input has been decreased; more time-steps could be used in the training, which is the discussion of 

the next section.  Table 4-3 shows the size of data before and after size reduction, the data size is 

reduced by a factor of 5, if 35 parameters are used for training the ANN. 
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Table 4-3 Database size before and after optimization 

Model Size of input Total Data Point 

Original Model 118,098 by 70 8,148,762 

Latest Model 51,030 by 35 1,786,050 

 

So far, 4 time-steps were used to build the model (time-steps: 200, 500, 1000, and 4000). In this 

section, the cascading approach is repeated by using 3 more time-steps. These three time-step were 

chosen based on the highest RMSE in Figure 4-44. As it is shown in the figure, time step 574, 904, 

and 1842 were selected.  Once the ANN is trained using data from the above 7-time steps, the 

ANN is deployed in a cascading manner, with data from time step of 4000.  Prediction is 

terminated at time step 4020, after the error surpasses the user defined termination threshold, as 

seen in Figure 4-45.  

 

 

Figure 4-44 RMSE distribution in time, with three of the high RMSE 

values identified 
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Figure 4-45 CFD and cascading smart proxy results for gas volume 

fraction at K = 1 cross-sectional plane 

 

4.10 CHANGING THE DATA PARTITIONING 

Another approach for reducing the input data size is partitioning of the CFD data used for training, 

validation and testing of the ANN.  Table 4-4 shows the 4-different data partitioning method tested 

in this work.  The results are shown in Figure 4-46 to Figure 4-48, where the error increases from 

about 2.2% to about 6% when the percentage of data used for training was reduced from 60% to 

30%.  

 

Table 4-4 Data partitioning in different scenarios 

Data 
Training 

(%) 

Calibration 

(%) 

Validation 

(%) 

Original simulation 70 15 15 

First attempt 60 20 20 

Second attempt 40 30 30 

Third attempt 30 35 35 



Data Driven Smart Proxy for CFD, Part One: Proof of Concept 

62 

 

Figure 4-46 CFD and non-cascading smart proxy results for gas volume 

fraction at K = 1 cross-sectional plane with 60% of data used for training 

 

 

Figure 4-47 CFD and non-cascading smart proxy results for gas volume 

fraction at K = 1 cross-sectional plane with 40% of data used for training 
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Figure 4-48 CFD and non-cascading smart proxy results for gas volume 

fraction at K = 1 cross-sectional plane with 30% of data used for training 

 

4.11 SMART SAMPLING 

The data from time step 4000 was used for training the ANN, using the smart sampling procedure 

that is outlined in section 3.4.7.3.  After training is completed, the deployment starts from time 

step 3950 to time step 4150.  Figure 4-49 shows RMSE during the deployment, with and without 

the smart sampling technique.  It can be seen that the RMSE is comparable between the two 

methods.  It is noteworthy that smart sampling only uses 20% of the records compare to when 

smart sampling is not used.  
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Figure 4-49 RMSE distribution in time with and without smart sampling 
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5. CONCLUSIONS 

A data-driven smart proxy was developed to mimic the CFD simulation results of a three-

dimensional fluidized bed, with a good accuracy and faster speed.  Table 5-1 shows the comparison 

of run time of these two approaches.  On average, training of ANN takes between 24 hours to 36 

hours, depending on the scenario under consideration.  The training time of an ANN is also 

strongly affected by the computer hardware.  Once the smart proxy is trained, 4 seconds of 

simulation can be achieved in 180 seconds.  This is considerably shorter compare to CFD execution 

time (a wall time speedup of 1440%).  This study shows that machine learning and artificial 

intelligence can be an important tool in multiphase flow modeling and warrants further 

investigation.  

 

Table 5-1 Comparison between speed of run for CFD and Smart proxy 

Method Execution Time 

CFD 4 seconds simulation = 3 days on 4 CPUs 

Smart Proxy 4 seconds simulation = 180 s on 1 CPU = 3 min 

 

The original database (Spatio-Temporal database) included 70 parameters and 118,098 records. 

This database was then sent through an optimization process to get an optimized database with the 

smaller size but the same efficiency. In the optimization process, the size of Spatio-Temporal 

database was reduced more than 25 times by. This optimization was done by: 

 

1.  Reducing the number of parameters (using Key Performance Indicator) 

2.  Reducing the number of records (focusing on the more important cells using smart sampling) 

3. Reducing the percentage of training (by Intelligent Partitioning). 

 

The size of the optimized training data set is shown in Table 5-2  

Table 5-2 Comparison between Spatio-Temporal database and optimized 

database 

 No. Records No. of Parameters Training Percentage Total data 

Spatio-Temporal Database 118,098 70 100 8,266,860 

Optimized Database 25,827 43 30 333,168 
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Data from time step t is used as the input to the model, while data from time step (t+1) is used as 

the output to the model (since a supervised learning is used).  A model has been trained by using 

the original database.  Blind validation of ANN during the deployment stage (use of data that was 

not used during the training of ANN) demonstrated that the smart proxy is able to predict the entire 

flow regime.  

 

5.1 RECOMMENDATIONS AND FUTURE WORKS 

This study showed that the smart proxy could be a viable tool for predicting gas-solid flow 

behavior is a fluidized bed.  More research is needed for establishing a more efficient methodology 

for including more data from more time steps for training the ANN.  Additionally, to make the 

trained ANN more general, the cascading deployment needs further research in order to minimize 

the error propagation over time. 
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7.  APPENDIX I: GAS VOLUME FRACTION IN EARLY TIME-STEPS, NON-

CASCADING, SINGLE OUTPUT, EXPLICIT 

 

Figure 7-1 to Figure 7-12 show the contour plots for gas volume fraction as a result of non-

cascading deployment at early time steps for a single output.  The location of each cross-sectional 

plane is given in Figure 4-1. 

 

 

 

Figure 7-1 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 103 
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Figure 7-2 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 104 

 

 

Figure 7-3 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 105 
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Figure 7-4 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 106 

 

 

Figure 7-5 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 107 
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Figure 7-6 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 108 

 

 

Figure 7-7 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 109 
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Figure 7-8 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 110 

 

 

Figure 7-9 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 111 
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Figure 7-10 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 114 

 

 

Figure 7-11 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 117 
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Figure 7-12 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 120 
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8. APPENDIX II: OTHER PARAMETERS IN EARLY TIME-STEP, NON-CASCADING, 

SINGLE OUTPUT, EXPLICIT 

 

Figure 8-1 to Figure 8-11 show the contour plots for various flow variables as a result of non-

cascading deployment at early time steps.  The location of each cross-sectional plane is given in 

Figure 4-1. 

 

 

 

Figure 8-1 CFD and smart proxy results for x-component of gas velocity 

at K = 1 cross-sectional plane 
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Figure 8-2 CFD and smart proxy results for x-component of gas velocity 

at K = 14 cross-sectional plane 

 

 

Figure 8-3 CFD and smart proxy results for x-component of gas velocity 

at K = 27 cross-sectional plane 
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Figure 8-4 CFD and smart proxy results for y-component of gas velocity 

at K = 1 cross-sectional plane 

 

 

Figure 8-5 CFD and smart proxy results for y-component of gas velocity 

at K = 14 cross-sectional plane 
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Figure 8-6 CFD and smart proxy results for x-component of solid velocity 

at K = 1 cross-sectional plane 

 

 

Figure 8-7 CFD and smart proxy results for x-component of solid velocity 

at K = 21 cross-sectional plane 
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Figure 8-8 CFD and smart proxy results for y-component of solid velocity 

at K = 1 cross-sectional plane 

 

 

Figure 8-9 CFD and smart proxy results for x-component of solid velocity 

at K = 14 cross-sectional plane 
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Figure 8-10 CFD and smart proxy results for z-component of solid velocity 

at K = 1 cross-sectional plane 

 

 

Figure 8-11 CFD and smart proxy results for z-component of solid velocity 

at K = 21 cross-sectional plane 
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9. APPENDIX III: GAS VOLUME FRACTION IN LATE TIME-STEPS, NON-

CASCADING, SINGLE OUTPUT, EXPLICIT 

 

Figure 9-1 to Figure 9-10 show the contour plots for various flow variables as a result of non-

cascading deployment at late time steps for a single output.  The location of each cross-sectional 

plane is given in Figure 4-1. 

 

 

 

Figure 9-1 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4006 
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Figure 9-2 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4008 

 

 

Figure 9-3 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4010 
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Figure 9-4 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4012 

 

 

Figure 9-5 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4016 
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Figure 9-6 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4022 

 

 

Figure 9-7 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4028 
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Figure 9-8 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4030 

 

 

Figure 9-9 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4036 
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Figure 9-10 CFD and smart proxy results for gas volume fraction at K = 7 

cross-sectional plane and time step = 4040 
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