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EXECUTIVE SUMMARY

Simulation technologies can reduce the time and cost of the development and deployment of
advanced technologies and allow rapid scgiefthesetechnologiedor fossil fuel based energy
systems However, to ensure their usefulness in practice, thelshiggliof the simulations needs

to be established witbincertaintyQuantification(UQ) methods. National Energy Technology
Laboratory (NETL) has been applying nmtrusive UQ methodologies to categorize and quantify
uncertainties in CFD simulations ofggsolid multiphase flows. To reduce the computational cost
associated with gasolid flow simulationgequired for UQ analysisgechniques commonly used

in the area of Artificial Intelligence (Al) and Data Mining (DM) are used to construct smart proxy
mocdels, which can reduce the computational cost of conducting large number of multiphase CFD
simulations.

The feasibility of using Al and machine learning to construct a smart proxy for-soljds
multiphase flow has been investigated by looking at the #od particle behavior in a non
reacting rectangular fluidized bed. NETLOS
generatesimulation data for the rectangular fluidized bed. The CFD data is then used to train a
smart proxy that can reproduttee CFD results with reasonable error (about 10%). MATLAB
neural network toolbox has been used for the current development effort.
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1. INTRODUCTION

Fossil fuel continues to be a reliable source of energy for power generation in the United States
andworldwide. Technologies, such as chemical looping and gasificaionto educe the carbon
emission of éssil fuel based power plantSimulation technologies can reduce the time and cost

of the development and deploymentsoichadvanced technologiesd allow rapid scalap of
thesetechnologies. Simulation can be used to test new designs to ensure reliable operation under
a variety of operating conditions. However, to ensure their usefulness in practice, the credibility
of the simulations needs to bstablished wittuncertaintyQuantification(UQ) methods.To this

end, National Energy Technology LaboratdiyETL) has been applyingionintrusive UQ
methodologies to categorize and quantify uncertainties in CFD simulatigassdlid multiphase

flows, which are encountered in fossil fuel based energy systeris3, 4] Gassolid flows are
inherently highly unsteady and chaotic flows, where sharp discontinuity can exist at the interface
betwea the phases. The challenge in CFD simulation ofsgéid flows is to adequately resolve

the structures that exist at different spatial and temporal scales in an inherently tffmsient
Additionally, in reacting gasolid flow simulations, small timsteps are needed in order to not
only resolve the temporal scales of the flow, but also ensure numerical stability of the s@ution.
rule of thumb for adequate spatial resolution is for the grid spacing to be about 10 times the particle
diameter{5]. The grid requirement for maintaining such a ratio of grid size to particle diameter
for smaller size particles makes such simulations computationally costly and imprpditical
Recent work at NETI[4] has shown the number of simulations, which is required for uncertainty
guantification,can easily exceed many tens of simulatiombe spatial and temporal resolution
requirementsfor multiphase flowsmakes CFD simulations computationally expensive and
potentially beyond the reach of many design analysts.

| t 6 s that 4 paradigm shift in simulation technology is needed in order to make reacting gas
solid flow CFD simulations with appropriate grid resauat more practical for design and
optimization purposes during design scale Tip.accelerate the design and analysis process, high
fidelity surrogate models that can capture the flow behavior of the design under consideration can
be utilized. Surrogatenodels are increasingly used in design exploration, optimization and
sensitivity analysis. Advances in big data analytic and machine learning allows for creation of
datadriven metamodels, which can faithfully duplicate the behavior of the data thasecs$oun

their construction.This new technology has been successfully applied in the upstream petroleum
industry[6] [7] [8] [9]. Smart Pray modeling takes advantage of pattern recognition capabilities
of artificial intelligence and machine learning to build powerful tools to predict the behavior of a
system with far less computational cost compared to traditional CFD simulators.

The goal of this research project is to build a smart proxy model at the cell level, which is
constructed from simulation data generated by high fidelity CFD models to, in effect, replace the
use of computationally expensive CFD for the design space wshady for further analysis,
optimization and uncertainty quantificatioimhe goal of thigortion ofresearch projeciutlined

in this reporisto establish proof of concept for the application of this technology to Computational
Fluid Dynamics. A smartproxy model, which is constructed from simulation data generated by
high fidelity CFD models can in effect replace the use of computationally expensive CFD for the
design space under study and further analysis and optimization. The smart proxy cahtbe use
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perform uncertainty quantification analysis in order to quantify errors and uncertainties that are
inherent in any simulation and to quantify uncertainties in the output variables in the model that
result from the uncertainties in the input variabl@te smart proxy could potentially allow the

user to explore the performance of the design, well beyond the CFD simulation time window. In
other word, few hundred seconds of CFD simulation time can be used to construct a smart proxy,
which can be used &xplore the design performance of the unit after many hours of performance.
The uniqueness of this approach is in:

1. Developing a unique engineeribgsed data preparation technology that optimizes the
training of the neural networks. This innovative tege incorporates supervised fuzzy
cluster analysis to:

a. ldentify the most influential parameters for the training process, and
b. Identify the optimum partitioning of the data for training, calibration and validation.

2. Usi ng an -bfaesnesdedmbal peplding the $mart pooxybtaking advantage of
multiple neural networks and intelligent agents to accomplish the objectives of the project.

1.1 STRUCTURE OF THE WORK

The research and development concentrating on the CFD Smart Proxy modeling will be presented
in multiple reports. Each report will concentrate on a major portion of the researchamobrk
accomplishmentthat are usefulo thegeneral research community. & heport presented in this
document is regarding the proof of concept of using the Smart Proxy technology for replicating a
CFD simulation model. This report includes four chapters. In chapter one (this chapter), the
problem waglefined,and the final objetive of the research was articulated.

In chapter twoa brief definition of multiphase flow and its governing equations are provided to
lay the groundwork for understanding the engineering and scientific details associate with the CF
model being stud& Also,theliterature abouthe use of Al and Machine Learning related to fluid
dynamicsproblemsis reviewed.

Chapter three discusses the methodology and the machine learning method which is used in this
research. The artificial neural network with #lle required information is introduced in this
chapter. The network architecture with all input and output system are discussed.

Results and discussions are presented in chapter four. The concamsiorecommendations for
the next phase of the reseaesk presented in chapter five
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2. BACKGROUND

This sectionof the reportis dedicated to providing some backgrountbrmation onMFiX
multiphase flonsoftwareand machine learning.

2.1 MFIX

Multiphase flows, both reacting and noeacting, are part of many processes in power generation
and chemical processing industries. As expressed earlier, CFD is a valuable tool in design and
optimization of processes and reactors used in these industtEdd_ has been in the forefront of
developing CFD modeling tools that can help engineers and designers in improving the
performance of processes such as gasification, chemical looping. The MFiX (Multiphase Flow
with Interphase eXchanges) suite of CFOtware [10] is an opersource, general purpose
multiphase CFD software suitable for modeling the hydrodynamics, along with heat transfer and
chemical reaction for a wide spectrum of flow conditions (dilute to dense). Mukifloags can

be modeled either in a continuum (Eulerian) framework or a Lagrangian framework. The two
frameworks can be summarized as fokow

1 Continuum (Eulerian)Both solid phase and gas phase are treated as interpenetrating
continua(Two FluidModel, TFM). Multiple solid phases can be used to describe multiple
solid particles of different sizes and properties (Multi Fluid Model, MF&Hntinuum
approachs computationally lesstensive but it cannot capture all tHew complexities,
especidly in multiphase flow where interaction between particles plays a majoflle

T Discrete Particle (Lagrangian): Track each
motion. This method is more straightforward to applyen in multiphase flow, but the
computational costs is higt1].

There are several approaches to modeling multiplassolid flows. Depending on the
application, either the gas phase or the solid phase or both phasesmaddied in Eulerian or
Lagrangian frameworKL1] [12] [13]. Table2-1 showsthedifferentmodelingapproaches tgas
solid multiphaseflow modeling

In the present work, the MFEXFM is used to model a rectangular 3D fluidized bgdkIX-TFM,

which is based orkinetic theory of granular flow (KTGF) models both the gas phase and
particulate phase as interpenetratomgtinuous phases. The governing equations employed for
the conservation of mass and momentum for each phase (m = g for gas phase and m w s for sol
phase) are
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Where

- is the phase volume fraction

is the phase density

b is the phase velocity vector

'Y is mass transfer between phases
Y is the phase stress tensor

‘O s theinteraction force representinigg momentum transfer between gfeses

The closure terms for the solid phases are obtained through kinetic theory of granular flow.
Detailed information on the constitutive relationships used to model momentum exchange between
the phases along with tle®lid stress model incorporated in MFDEM can be obtained from

MFiX online documentationg 4] [15]. Equation2-1 and2-2 form a system of nonlinear partial
differential equationsAn iterative algorithm is used in MFiX to solve this system of POHgure
2-1lillustrates the solution sequences used in MFiX for solthegequationg-1 and2-2. As itis
discussed in the next section, it is cru¢@follow the same sequence in coansting the smart

proxy.

Table 2-1 Multiphase flow modeling gpproaches[11]

Name Gas Phase| Solid Phase Coupling Scale
1 Discrete bubble model Lagrangian| Eulerian Drag Closurefor bubbles 10m
2 Two Fluid Model Eulerian Eulerian GasSolid drag closure 1m
3 | Unresolved Discrete particle mod¢ Eulerian | Lagrangian Gasparticle drag closure 0.1m
4 | Resolved Discrete particle mode| Eulerian | Lagrangian Boundgry condition at 0.01m

particle surface
5 Molecular Dynamics Lagrangian| Lagrangian Elastic coliisions at particle | <0.001
surface m
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2.2 MACHINE LEARNING

Basedon the definition presentedy Arthur Samuel[16],i Ma c hi n e
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If these three components are present, a successful learning process can be achieved based on the
capability of the learninglgorithm. There are two major type of Machine Learning: supervise
learning and unsupervised learnjid].

2.2.1 Artificial Neural Network

One of the popular machine learning processes is Artificial Neural Network (ANN). The idea of
ANN came from the neurons of the brain and the way they are communicating with each other to
solve aproblem. Each artificial neural network consists of an irlayer, one or more hidden
layers, and an output layer. The numbenefirons (processing elements) in theput andhe
inputlayersare chosen based on thature of theroblembeing solvedand the propeswhich
aregoing to be predictedrigure2-2 showsa typical ANN with three inputeurors and two output
neuronsANN has one or more hidden layers and each laagalspecific number of neurdas].

In order to have a wetrained network, proper parameters should be introduced to the network.
If improper data are used to train the network there is no guarantee to havéraimed network

that lead to correct predictions, ather wordsfi Gar bage i n, InGleruicaing out .
sections of this repara smart way o$electingparameters will be introduced.

][i[l_-:lml

s PN /
."" \___.I__,_.-- /’r‘;-._ — \“‘
| ] A Output
\ I~ —~\ —

0N S A AN
W ,
N/ ==
e Y \-\{", ' i N, )f
Vs Ry oy AN '\ . }
R — . e
I. . ..\_;‘ \,V/ N “:\-“
AN SN
— \f.-\ // o Y ey
,"‘ A \ :. .: ;" L )
NN S SN
By \\ Noe—" )
i " \‘ “;,/
— ‘I_.’ "._l
{ \
II lI
N\ F
s e

Figure 2-2  Artificial Neural Network s chematic

The number of hidden layers and the neurons in each hidden layer depends on the complexity of
the problem, number of parameters, and number of records. Experience alsa ptagsrtant

role in this decisiomaking But generally, there is no solid ruier them. As a rule of thumb,

the number of neurons in the first hi dden |
parameters.

C
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2.2.1.10Dbjective Function

Regardless of the learning method, each machine learning process needs an optimization procedure
that relps the process reduce the error as much as possible. The very common and simple objective
function in supervised learning is the summation of all the differences between predicted values
by the learning method and the actual valuethefoutput. Sincesummation of positive and
negative errors can reduce the size of the overall error, the objective function is defined as the
square of the difference between actual and predicted JaBlss shown by equatidh3.

2-3

During the learning process, the leagnalgorithm tries to assign diffent weights to each of the
connection between neuroimsFigure2-2, in a way that the global error tife objective function
becomesninimum. Also, a blinctalibrationis done simultaneously to stop the learning process.
We will discuss théraining set, calibratioset,andvalidationsetin more depth irsections3.2.4

2.3 PREVIOUS WORK

The idea of using Aificial Intelligencein petroleum engieering was first introduced by
MohaghegrandAmeri [19]. They bok advantage of ANN for predicting the permeability of the
formation based on geological IMegs. Mohaghegh and Amdfi9] showedhat neural network

is capable of making the task of permeability determination automated rather than demg it
and over by log analyst. Theyso sated that neural network can handle far more complex tasks.
Mohagheghet al. [20] used ANN for predicting gas storage well performance after hydraulic
fracture his later investigations.

Alizadehdakhel et a[21] successfullyused ANN to predict the pressure loss of a-plkase flow

in the2-cmdiameter tubeGas ad liquid velocities anthe pressure drop along the pipe were the
three input parameters to ANN, with average presdup being the outputThey utilized 8
different networks withdifferent number of neurons find out the optimum number neurons.
MeanSquaredError and Rsquare were used as a criterion to pick the best network design. They
also obtainedthe most efficient transfer function between t®igmoid, HyperbolieTangent
Sigmoid, and linear.

Shahkarami et a[9] usedANN to model the pressure and saturation distribution in a reservoir
which was used for C{sequesttion. This problem required a large number of time steps for
simulation of CQ injection and storage usirsgcommercial software. They ran 10 different cases
in CMG (commercial reservoir simulator) and then the results were used as input for ANN.
output of the ANN was pressure distribution, water saturation, anch@(® fraction. 80% of the
data coming fromthe CMG simulationrunswere used to train the netwonkile 10% were used
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for thecalibration The remaining 10% of data wased forvalidation process. They have shown
that ANN can be used as a powerful tool for multiphase flow simulation in oil and gas industry.

Esmailiet al.[22] incorporated aewly developed Albased reservoir modeling technology known

as DataDriven Reservoir Modeling23] in order to model fluid flow in shale reservoirsing

detail well logs,completion and production data. By understanding the behavior of the shale
reservoir, conducting the hydraulic fracture could be much easier. Moreover, this method has the
ability to perform the history matching on the production d&alantariDehghani et al[24]
couplednumericalreservoir simulatowith Al methodto develop a shale proxy meldhat is able

to regenerat@umerical simulation results in just a few seconds. They introduced three different
well-based tier systems tolaeve a comprehensive input data for the ANN. another work,
KalantartDehghani et al[25] showed that datdriven proxy models at the hydraulic fracture
cluster level could be used separately as a reservoir simulatariadigps low permeability
reservoir such as shale which has a nonlinear behavior.
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3. METHODS

In thissection of the repaorthesolutionmethodologyboth for MFiX CFD simulations and neural

network trainingwill be discussedh detail. Additionally, the sfps needed to create input to the
neural networkwhich isthe most important step cbmmunicating with the learning algorithms
is discussed

3.1 CFD SIMULATION SETUP

A schematic of the rectangular fluidized bed, used in this study is shoWigure 3-1. The
fluidized bed, which is 0.12 x 0.72 x 0.12 m in X, Y and Z directions has an initial bed b&ight
0.12 m and initial bed voidage of 0.42The bed material has a density of 2000 Kgémd a
diameter of 400 p. Air velocity is set to 0.6 m/s and is uniformly distributed across the inlet.
The spatial grid resolution is 4.4 mm (11 particle diameters) in all directions and is based on a grid
resolution study that was carried out for four different grid levels, as showable3-1. This is

in line with Fullmer and Hreny$] work that a grid spacing as small asgddrticlediameterds
needed for numerical accuracysimulation of the fluidized bed is carried out for 30 seconds.
MFiX outputs all relevant information such as gas and solid velocities, voidage and pressure field
for the entire domainFigure 3-2 shows the instantaneous voidage contours at a point in time,
during the simulation. The outpdatafrom MFiX is used as the inpaind outputdatafor the
training, calibration and validation of the Artificial Neural netwoftN(N). Since MFiX reporg

the results based on the location of each control volume in thelgridrder antheexact location

of each gribecome®xtremelyimportant for ANN In MFiX, each control volume is represented

by its X, Y and Z location (I, J and K indices). An additional single index, IJK, is defined in MFiX
that is unique to eaatontrol volume (which islefined by it I, J and K indicgsFigure3-3 shows

the order at whickhe IJK index is usedMFiX outputsall the data following the 1JK index order.
ParaView, which is an opesource visualization softwais used to extract the required data from
MFiX files at each time step, for use in ANN training.

10
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0.72m

0.12m

Figure 3-1  Geometry and initial condition of the problem

Table 3-1 Different grid size and thenumber of cells

Grid Classification Cell size No. of Cells | No. of Nodes
Coarse 8*48*8 (15 mm) 3,072 3,969
Medium 12*72*12 (10 mm) 10,368 12,337

Fine 18*108*18 (6.6 mm) 34,992 39,349
Very Fine 27*162*27 (4.4 mm)| 118,098 127,792

11
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Figure 3-2  Snap shot of voidage contoupredicted by MFiX

3.2 ARTIFICIAL NEURAL NE TWORK SETUP

Table3-2 shows the 9 MFiX output parameters used for ANN traini@gce the output files of
MFiX are converted to *.csv file they are reorganized to serve as the input for the Bixdy
time-step fas one *.csv filghat contain® columns and 118,098 rows. Each colurapresents
oneoutput parametesind each roveorresponds to one cellhe inputto the ANN is all the data
at timestept while the output will be one or more paramet#rsme-stept+1. In this approach,
the network will learn what the output should bazen a set of input data. When the learning
processs completedthe deployment process (prediction) will be performed.

12
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Figure 3-3

L

MFiX numbering order

X

Table 3-2 MFiX output variables used in ANN training

Symbol

Description

Gas volume fraction

Gas Pressure

Solid Pressure

Velocity of gas in x direction

Velocity of gas in y direction

Velocity of gas in z direction

Velocity of solid in x direction

Velocity of solid in y direction

Velocity of solid in z direction

13
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3.2.1 Tier System

In orderto communicate all the required information wiite ANNso that it can have a reasonable
understanding of the state of the process,taridarn in an effective manner, a tier systeas
developedEach cell is in contact witB6 surrounding cells; 6 of them have the surface contact
with the original cell, 12 have line contact with the original cell, tr@dremaining@ have point
contact with the original cell.

Figure 3-4  The tier system with the 6 cellin surface contact with the focal
cell

Like any numecal method, the value of each variableemch cellis correlated to the variable
value inthe surrounding blocks. With that idea in mind, the ANN will not only learn from the 9
parametersTable 3-2) in a cell, it will also learn from the surrounding cells which are called

A T i eellsoEach cell has several tiers. Tier 1, tier 2 and tier 3 are the surrounding cells that are
in surface contact, line contact and point contact respectively. Depending on the complexity of
the problem, different tier system will be used as input to ANjure3-4 shows a tier 1 structure,
where the main (focal) cell is surrounded by its 6 neighboring cells. For this case, the 9 parameters
of the original cell and §arameters of thtier 1 cells make 6@8arameter$(6+1) * 9), which are

the input for the ANN. Depending on the complexity of the problem and spatial and temporal
correlations between different tiers and the center cell more or less input parametersemight
required.

3.2.2 Input Matrix

It is not enough to consider only the values of each parametdoaalacell andtherelated tiers

in the input matrix, but for the network to learn the behavior of the process and perform pattern
recognition, the location agach cell in the geometry is also crucial. Adding the location as an
input helps the system understand the spatial correlation between different parameters, as well.
On the other hand, wall(boundary conditions) havenportant impact on the flow pattern
therefore, thdocation of walk withrespect to the focal cedhouldalsobe somehow included into

14
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the inputs for the training dhe ANN. To accommodate these ideas, six different distances to the
wall confinements (top, bottom, east, west, north,ssmdh) are considered orderto define the

exact location of eactocal cell andthe parameters associated with each cdly adding these 6
distances to the previous 63 parame(@rparameters of 7 celisthe focal cell plus six tier one
cells), the total number of parameters used as input becomeastéhown irFigure 3-5. So, the
dimension of input matrix is 69 by 118,098 (i.e., number of parameters multiply by the number of
cells).

Location of Cell;

pu ]

De

J

Cell;j, and 6 tiers

P | B | uy

Vg | Wy | Us | Vs | W

Figure 3-5 69 parametersof ANN

3.2.3 Neural Network Architecture

Each artificial neural network consists of an input layer, one or more hidden layers, and an output
layer. The input and outpytarametersre chosen based on the nature of the problem and the
property which is going tbe predicted. In the last sectiohwas described howhe number of

input parameteraereselected to be 69. The output of the ANN could bearmaoreparametes.

There will be different scenarios to compare different ANN with different number otioutp
parameters. There is no clear guideline on how many hidden layers and neurons are required at
each layefor a given problem. A rule of thumbdicates thathe number of neurons in the first

hi dden | ayer shoul dnét b anetere Rostheffirbt&ryponethidden n u mb e
layer with 100 neurons onsideredvhere69 parameterare usea@s input and only one parameter

is selectedis outputas shown imTable3-3. The networkcharacteristics arghown inTable3-4.
Feedforward back propagation method iseddor the training. The transfer function fehe

hidden layer and the outplayer was chosen to be TANSIG, as showRigure3-6.

Table 3-3 Important numbers in Neural Network Model
Number of Inputs 69
Number of hidden layers 1

Number of Hidden Neurons| 100

Number of records 118,098

Number of Output 1

15



Data Driven Smart Proxfor CFD, Part One: Proof of Concept

Table 3-4 Neural Network characteristics

Network Type Feedforward Back propagatiot
Training Function LevenbergMarquardt
Adaption Learning Function LEARNGDM
Performance Function MSE
Transfer Function TANSIG
a

a = tansig(n)

Figure 3-6  Nueral Network transfer function (TANSIG)

3.2.4 Data Partitioning

A good ANN is a model that learns the pattern in the givenskdtavhile it is able to predict the
behavior of a new given dghtacs.etl,f tthhes AMNN edod:
pattern in the data verfyi twe.l Il ft hteh enocAINN |i esa rcma:
data very well with a very small error but it is not able to predict the behaaan@fgiven data

set the model isacl | e d-f i D e-fittikhnodcers for so many reasons such as lack of
information (the model should have more parameters and more examples). Overfitting occurs
when the network learns to mimic almost all the data points exagtlyvhen it comes to ¢éh

prediction, the model perfornmoorly for a new given data, in other words the model memorizes

all the data pointdrigure3-7 shows these 3 states of training.

16



Data Driven Smart Proxfor CFD, Part One: Proof of Concept

X X
Underfitting Just right! overfitting

Figure 3-7  Underfitting and overfitting of the data

To overcome the overfitting probleomly a portion of the data is used to train the network and the

rest of data is kept outside of the training as a criteria to stop the training process when the model
is AJust Righto. The remaining data meessnts wh
arefurther divided into two sub groupsalibration and validation.

Training is an iterativgprocess where each iteration the optimization algorithm tries to move
toward the lower error. Calibration degat is used while the training Ieing cariied out. The
error in both training data set and calibration datasetlly decreassat the beginning of the
training processhoweversomewherealong the training procesthe error in calibration data set
stopsdecreamg while the error continuesto decreas in the training data set. The model at this
point isusuallythe best model becausdés provided the lowest possible effiarthe calibration
data set (blind data set) amttile it has an acceptable error for the training data set.

The \alidation data set is used upon the completion of the training process when the best ANN is
achieved. Although both calibration and validation data sets are blind but having an ANN model
with a low calibration error does not mean that the ANN is a goatdigioe (because the best
model is already picked when the calibration error is minimum) unless the ANN error in validation
data set is also acceptabl&he percentage of the data partitioning used for the preliminary study

of this project is shown ifable 3-5. It is important to mention that this partitioning is the
preliminary one and a deeper study will be conducted on the percentage of the data as it will be
descibed in the upoming sections of this report.

Table 3-5 Original data partitioning

Data Training Calibration | Validation

Percentage of dat&%) 70 15 15

17
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3.3 SPATIO-TEMPORAL DATA BASE

MFiX simulation resultsof the rectangular fluidized bed describedsection3.1is used as the
training, calibration andsalidation data tdouild a SpatieTemporal data base ftie construction
of fluidized bedsmart proxy(Figure3-8).

Raw Data from Spatio-Temporal Optimized
CFD Runs :> Database :> Data Base

Figure 3-8  Spatio-Temporal Database and optimized database

Initially, the SpatieTemporal database was created based on the data from one single time step.
This database included the location and the properties (list€dbie 3-2) of each cell and the
properties of tiers (totally 69 parametetsjter in this repor(section3.4.5, additional time steps

will be addedto the database to have a general model for all the time Jtepslapsed time

should be also added to the data base as paametertherefore the total number of parameters
becomes 70The SpatieTemporal database treats each cell as a separatd,rec the model has
118,098 records which is equal to the number of cells. This database is then optimized for a more
efficient storage and access.

3.4 SOLUTION SCENARIOS

Different scenarios are considetiacbrderto reach the final goal of thgart of heproject which

is to illustrate the feasibility of constructing a smart proxy for a fluidized bed, based on data
generated from CFDThe termii Di f f er e ot r ®d e mgdiffarensinpudand output
structures and also using different tisteys for the trainingpf ANN, while the training technique

is kept the same.

Each scenario has two partssf is the training process asdcond is the deployment process. A
pair of timesteps is used in the training process. The training process stgusdraiser defined
criteria This criterion could be the total number of iteration, the total time of training, or the
number ofcalibrationfailure or & is the case in this work, the termination criteriaderabination

of all of the aboveThe learnig algorithm is such that the network learns nadter each iteratign

so to prevenbverfitting or memorizationgalibrationerror is always checked. If thalibration

error increases for a predefined number of iterations, the training stops. Most of the time,
calibrationis the criterion which makes the training stop.

As mentioned in theection3.2.2 at a given time stef89 parameters are used as inpuANN
during the training stageAdditionally, therearealso9 CFD parametes, Table 3-2, a the next

18
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time stepin CFD, which should be included as additional input parameters to ANN during the
training stage. We can train the ANN with either one or multiple CFD parameters at the next time
step.l t 6s i mportant to reiterate that 1in the tr:
ANN is being trained for, are input to ANN, along with the static paramg@tegscted inFigure

3-9).

o) — [ ANN Jo— (o

Figure 3-9  Training stage flow chart

The trained network is then ready for the deploynseade where data at a given time step is used
as input and thrained network providesrediction at the next timgep(Figure3-10). The input

of the ANN for each deployment could come from the CFD directly or from the ANN. itself
Cascading and necascading deployment are defined based on what type of input is usiee for

network and it will be discussed in detail in the following sections.

[torut Js [ ANN |—> [ 0000

Figure 3-10 Deploymentstage flow chart

As it was stated earlier, this phase of the current research aims to show the feakibility
constructing a smart proxy, based on CFD results for a fluidized bed. As susbettarios

outlined below showhe systematic steps, which has been taken from the least complex scenario
to the more complex scenarios, where more input parametarseatdor training of the ANN.

The scenarios followed in order of complexity are:

1 ANN training with 69 input parameters at a given time step during the initial stage of
fluidization and during th&ater time, sectio.4.1

1 ANN training with 69 input parameters at a given time step, using a cascading and non
cascading processection3.4.2
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1 ANN training with 69 input parameters at a given time step and one output parameter
compare to multiple output parametessction3.4.3

1 ANN training with 69 input parameters at a given time step with explicit temporal
approach compared to implicit temporal approaeistion3.4.4

f ANN training at multiple time steps which requires 70 input paramestecspn3.4.5

1 Reducimg the size of th&0 input parameter data set, usedXdiN training, section
3.4.6

3.4.1 Early Time versusLate Time

Gassolid flow in afluidized bed is highly unstelg and chaotic. The ga®lid flow initially
behaves like a slug flow, before instabilities set in and fluidization bage$ater timgas shown

in Figure3-11. As time goes by, changes in flow regimecur and flow becomes more chaotic
and heterogeneous. It is therefore necessary to investigate how well an ANN can be trained, when
the degree of heterogeneity in the flow increag®s.ANN is trained based on flow encountered
at the early stage of fluidized bed operatidigure3-12, and an ANN is trained based on the flow
conditions at a latedime, Figure3-13. In both caseghe 69 inputs come frotmme-stept and the
CFD outputis from time-stept+1 in Figure3-12 and time step+2 in Figure3-13. The larger time
step used irFigure 3-13 is for expediting the training processhe CFD output could be one
parametefas is the case iRigure3-14) or multiple parametsr Each time step used for training
represents 1 millisecond of simulation time.
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Figure 3-11 Gas volume fraction distribution initially in the bed (left) and
later whenit is fully fluidized (right)
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Figure 3-12 Input at time step 100 andCFD output at time step 101 used
for training (early time , startup)
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Figure 3-13 Input at time step 4000 andCFD output at time step 4002 used
for training (later time, fully fluidized bed)
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&g ‘ P ‘ K ‘ Ug | Vg ‘ Wy ‘ Us ‘ Vs ‘ W Cellj at time step (t + 1)

Figure 3-14 Input and CFD output parametersusedfor training

The purpose of this analysis e show that the ANN is capable of capturing all the physics
involved in different timesteps(different flow regimes)In the nextsection complete results of
this analysis will be presented and discussed in detail.

3.4.2 Cascading \ersus Non-cascading

Cascading and netascading refer tthe sourceof inputthatis used for the deployment process.
If the input comedglirectly from the CFDsimulation modefor each deployment stagien the
processis called finon-cascading, shown inFigure 3-15. If the input of the ANN for each
deployment stage comes from the output of previous deployrttent, the process called
ficascading, shown inFigure 3-16. Although the norcascading deployment has littenefit
since it requires it from CFD solveat every time stept should always be studied in order to
confirm that the trainé network is working properly. Eventually, every parameter should be
predicted by cascading methdobweverfirst noncascadingraining should be performedn the
following sections, the results from both reaiscading and cascading deployment prosékbe
shown forearly and late time frames.
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Input

101 e | - output
from CFD — & ﬂ/@l_i.lio' ;‘QH‘?"C’__] 102

69 1

100

Neural Network

Hidden Layer Output Layer .
102 Input o= ‘ > _'d ] Output
AL~ 103
from CFD — T9§: ;}@/ T :}@E}o OT" 103
100 1

Figure 3-15 The process of norcascading deployment
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Figure 3-16 The process of cascading deployment

3.4.3 Single OutputversusMultiple O utput

As discussed earlier, ANN can have one outpuhare multiple outputsat the same time
Obviously, having multiple outputs simultaneously increases the training time, furthermore, the
network has to fit multiple outpsitwith the same weights, so the network has less flexibility to
learn from data However, sometime$etter resultsare obtainedespeciallyif there are
correlatiors and dependenciegtween the outpytarametes. This is a problem dependent issue
that must be studied and decided upBigure3-17 andFigure3-18 show the input and output of

the ANN when only one outpaind 3 outputs are useespectively.

g
Location of Cell;j or
seoolon] [ ANN [—Co
or
Cellji and 6 tiers at time step n
g | P | B | ug | vg | wg | Us | Us | W Cell;j at time step (t + 1)

Figure 3-17 Traning with one output (one component of gas velocity)
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Figure 3-18 Traning with multiple outputs (3 components of gas velocity

As another advantage of this approach, it should be stated that having multiple outputs at the same
time would reduce the number of neuraiwaks. As mentioned in the last section, there are total

nine different ANN needed for cascading deployment, this number could be reduced to three if
each network has three outputs at the same time. The result of this approach is also available in
upcomirg sections of this report

3.4.4 Explicit versus Implicit

Regardless of the training scenario, the training process needs a pair of data; input and output
(time-stept and timestept+1). An explicit method is wheall the input data come from time

stept andthe output data come from tirstept+1, as shown irFigure3-18. It is also possible to

have the combination of data from tirstept andt+1 as input and have tirsgept+1 as the

output

Implicit training is whernthe parameterthat have been used as infraim timestept+1 will not

be used fooutput Figure3-19 shows one of examples of implicit training. The input consists of
gas volume fraction, pressures, and gas velocity vector frorrstiepein addition to solid velocity
vector from timestept+1. The output is gas velocity vector from tisept+1.

Location of Cell;
Dy | D, | Dy| Dy | Ds | Dy

= o]

Hg

Celly, an 6 tiers at time step t ; ANN vy

gg | P | B |y | vy | wy

Wy

Cellij, an 6 tiers at time stept + 1

Cellyjj at time step (t + 1)

Figure 3-19 Traning implicitly with multiple outputs
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This approach is very common in the numeri cal

speed.Ilmplicit approach iexpected tdave a lower error

3.4.5 Training with Multiple T ime-steps

The techniquesoutline so far uses a single time step for input and output of the ANN. This is
illustrated byFigure3-20. However, as discussed in sect®4.], the gassolid flow undergoes a
regime change, from a gjging flow at the beginning to a fluidized regime as time goesTing

ANN trained with the data from when the flow field is slugging does not have the predictive
capability of capturing the flow dynamics, when the bed is fully fluidized. In orderitoama
ANN, which has a wider range of applicability, the input and output of the ANN must be trained
on data from multiple time step, capturing mangraies taking place in the flow.

1,2,3,.....69 inputs 1 OQutput
Time step ANN —— | Time step
200 202

Figure 3-20 Input and output pair for the training with single time -step

Figure3-21 showsthe input and output paior the training with three different tirgeps when

the flow is stigging at first (time step of 200), then transitioning (time step 1000) and finaly
fluidizing stage(time step 4000)Figure3-22 shows the voidage contours in the CFD simulations
at time steps 20(D.2 sec elapsed time)000(1 sec elapsed timand 40004 sec elapsed time).

70 Input
" 1 Output
1,2,3,.....69 Time (s)
Time Step Time Step
0.2261
200 202
—| ANN |—
Time Step Time Step
1.0261
1000 1002
Time Step Time Step
4.0263
4000 4002
Figure 3-21 Input and output pair for the training
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Time step 200 Time step 1000 Time step 4000
(0.2261 s) (1.0261 s) (4.0263 s)

Figure 3-22 Three different time-steps with different flow characteristics

The quality of the ANN is characterized by the square root of mean squareasrd®fined by
equ.3-1.

144 r T GO g g™

3.4.6 Reducing the Size of the ystem

In thiswork, the input training data consists @ parameter@ata columns) and 118,098 records
(data rows}hat produce a total mber of 8,266,860 data points #given timestep Reducing
the data size will not only reduces the storage and data handling aljetfaéso couldeduce the
computational cost.

3.4.7 Reducing Number of Records

One can remove cells (records) from the training data set randomly, or remove cells from the
regions of fluidized bed, where thidormationis notas crucial to the maigoal of theconstructing

an ANN for the bed. For example, the gas flow in the freeboard region of the fluidized bed does
not affect the gasolid behavior in the bed greatly, and therefore can be dropped from
consideration.Figure 3-23 shows the voidage contours at tistep 4000 (4 seconds of elapsed
time). It can be seen iRigure 3-23 that there are no solids present above the blue line in the
freeboard and therefore, all the cells above the blue line can be removed from the training data set.
This will reduce thesize of thedata set by more than one half, as sedfignre3-24.
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Figure 3-23 Gas volume fractioncontours at time-step 4000
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Figure 3-24 The keysection of the fluidized bedused for training ANN
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3.4.7.1Reducing Number of Rarameters (KPI)

In order to reduce the number of parameters, sensitivity analysis should be performed to quantify
how sensitive the output is to various input parametdns.process is calledientification of the

Key Performance Indicator (KPI) and our effortcencentrated ofinding the most influential
parameters that impact the output more than the other parameters.

To perform KPlall the weights associated wiparametes shouldbe obtained. Every parameter
has several weights assigned to it to communicate with the hiddandayit is depicted iRigure
3-25. If all the weights assigned to one parameder {0 8) are integrated to one valué (),

that value will represent the total weight and show the priority of that particular pararheteitw
compares to all the other total weight&fter obtaining all the total weights of the parameters, the
tornado chart of each ANN could pitted,and the key parameters could be determined.

Figure 3-25 Network schematic with its weights

3.4.7.2Changing the Data Partitioning

According toTable3-5, 70% of the data used for training, 15%f datais used for thealibration

and the other 15%f datais used for thevalidation Sincetraining of the network is the most
computationalf intensive part of the entire process, reducing the amount of training will accelerate
the process of constructing an ANN.
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