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Objectives
• Motivation: Quantify the impact of hydrate dissociation 

on the strength and elastic properties of hydrate-bearing 
sediments

• The Task: Estimate the changes of elastic moduli in 
order to populate the grid blocks for coupled TOUGH 
Fx/HYDRATE- FLAC3D simulations
– Inputs: initial elastic moduli, variable pore pressure and hydrate 

saturation
– Tool: Pore-scale quasi-static equilibrium model 
– Method: Verification of the model against available experiments 

and numerical simulations
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Approach

• Saturated sediment is modeled as a granular 
medium

• The skeleton can be either unconsolidated or 
cemented

• Some of the pores are filled with gas-hydrates
• Consequences of hydrate dissociation:

– Increased pore pressure and reduced effective stress
– Decrease of the skeleton strength by losing hydrate 

support
– Possibly, thermal contraction/expansion
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Grain Pack Properties

• 3D random heterogeneous 
grain packing
– Spherical grains, differ in 

radii and mechanical 
properties

– Each grain is homogeneous, 
isotropic, and linearly elastic

• To be implemented
– Adhesion or cement at grain-

to-grain contacts
– Different grain shapes
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Contact-Mechanics Model

• Hertz-Mindlin theory of elastic 
interaction of a grain pair
– Small deformations localized 

around a small neighborhood of 
the contact area

– Planar circular contact surface
– Forces and moments at the 

contact
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Normal Contact: Hertzian Model
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Contact force:

Elastic strain energy:

where
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Frictional Contact: 
Mindlin’s Theory

• Linear and rotational displacements 
introduce tangential tractions and 
moments
– Tangential stiffness depends on 

normal pressure
– Tangential tractions are path-

dependent
– Partial/complete slip can occur
– Mindlin theory: normal tractions are 

not affected by the tangential 
components

• To eliminate some of these 
difficulties, we consider:
– Pre-stressed pack
– Small deformations
– Static friction (no slip) Parallel shear Mutual rotation Torsion
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Effective Properties via Simulations

• A grain pack is enclosed in a semi-rigid container
• Boundary conditions = wall displacements
• Macroscopic stress is generated by contact forces
• Quasi-static model: equilibrium configurations
• Equilibrium = minimum total elastic energy
• Conjugate Gradient minimization algorithm

– Functional to minimize = total energy of the pack
– Dynamic list of contacts

• Effective moduli using Hooke’s law
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Example of Simulation

For frictionless contacts model

Parameters of the pack:
Radii of 0.07-0.13 mm

Moduli normally distributed
Mean values: E = 100 GPa, ν=0.15

Number of grains: 306(small pack); 2,740 (large)
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Example of Simulation

Here is the movie
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Modeling Challenges
Difficulties are in the modeling of grain pairs and packs 
• Grain pairs 

– Nonlinearity of force-displacement relations
– Stress depends on deformation history
– Slip, partial or complete

• Grain packs
– Complex contact geometry
– Number of contacts, orientation and stiffness vary during the 

deformation
– Deformation hysteresis even with fully elastic contacts
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Creating a Stable Pack: 
Rearrangement vs Deformation

• The minimum 
coordination number for 
a stable pack is 3 (with 
gravity)

• Pack produced by 
D.E.M. simulations is 
unstable, i.e. not in 
equilibrium

• Our algorithm 
eliminates most 
unstable structures, by 
mere rearrangements 
(no grain deformations)

• As stresses increase, 
the pack gets more 
stable
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Non-Linear Response
Local failure in a small 

pack (306 grains)
– Four consecutive 

configurations, 
similar macroscopic 
strains

– Force chains plotted 
are the top 10% 
contact forces

– Line width is scaled 
with the force 
magnitude

– Abrupt change from 
2→3; brown grain is 
forced through a 
constriction



14

Non-Linear Response

• At a particular combination of contact 
forces, some grains experience large, 
irreversible  (inelastic) displacements:
– Macroscopic stress is reduced by 

rearrangements of grain clusters
– Local phenomenon, affecting only a small 

neighborhood of each rearranged cluster
– More pronounced in smaller packs
– Local failure, followed by stiffening of the pack
– Similar to strain-hardening in metals
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Loading/Unloading Hysteresis
• Elastic response of a single contact
• Inelastic behavior of a grain assembly
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Stiffness vs. Compaction
• Bulk modulus K increases with pack density
• Density increases as porosity φ decreases and coordination number N

increases
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Conclusions
• Granular media exhibit non-linear, path-

dependent behavior, even for a frictionless 
contact model

• Because of grain rearrangement, 
macroscopic deformation is possible with 
little deformation of grains 

• Hysteretic effects are more pronounced 
when grain ‘jumps’ occur

• Introduction of frictional contacts increases 
the path-dependency (hysteretic effects)
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Summary: Phase I

• A grain-scale model of rock
Hertz-Mindlin contact mechanics
Stable equilibrium grain packs
Simulation of loading-unloading hysteresis
Matching published laboratory measurements
Efficient numerical procedure
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Summary

• Grain-scale model provides a tool to 
estimate effective moduli
– Irreversibility of deformations is captured
– Stiffening (K↑) with compaction is evident
– Values of K match physical experiments
– Poisson’s ratio high, due lack of friction, 

cement, and simplified grain shapes
– Efficient algorithm based on conjugate 

gradient method
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Next...
• Use the already developed model to

– Incorporate gas-hydrates and investigate
Solid skeleton support
Pore pressure and effective stress changes

– Perform ensemble-averaging and investigate sample 
size effects

• Enhance the existing model by adding
– Cementation/adhesion between grains
– Failure criterion for cement
– More complex grain shapes
– Large strains
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Thank You!
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