Geomechanical Performance of Hydrate-bearing Sediments in Offshore Environments

DE-FC26-05NT42664

Ran Holtzman, Dmitriy B. Silin, and Tadeusz W. Patzek

January 19, 2007
Objectives

- **Motivation**: Quantify the impact of hydrate dissociation on the strength and elastic properties of hydrate-bearing sediments

- **The Task**: Estimate the changes of elastic moduli in order to populate the grid blocks for coupled TOUGH Fx/HYDRATE- FLAC3D simulations
 - **Inputs**: initial elastic moduli, variable pore pressure and hydrate saturation
 - **Tool**: Pore-scale quasi-static equilibrium model
 - **Method**: Verification of the model against available experiments and numerical simulations
Approach

• Saturated sediment is modeled as a granular medium
• The skeleton can be either unconsolidated or cemented
• Some of the pores are filled with gas-hydrates
• Consequences of hydrate dissociation:
 – Increased pore pressure and reduced effective stress
 – Decrease of the skeleton strength by losing hydrate support
 – Possibly, thermal contraction/expansion
Grain Pack Properties

- 3D random heterogeneous grain packing
 - Spherical grains, differ in radii and mechanical properties
 - Each grain is homogeneous, isotropic, and linearly elastic
- To be implemented
 - Adhesion or cement at grain-to-grain contacts
 - Different grain shapes
Contact-Mechanics Model

- Hertz-Mindlin theory of elastic interaction of a grain pair
 - Small deformations localized around a small neighborhood of the contact area
 - Planar circular contact surface
 - Forces and moments at the contact
Normal Contact: Hertzian Model

Contact force:

\[P_{ij} = \frac{4}{3} E^*_ij \sqrt{R^*_ij h^3_{ij}} \]

Elastic strain energy:

\[U_{ij} = \frac{8}{15} E^*_ij \sqrt{R^*_ij h^5_{ij}} \]

where

\[\frac{1}{E^*_ij} = \frac{1-\nu^2_i}{E_i} + \frac{1-\nu^2_j}{E_j} \]

\[\frac{1}{R^*_ij} = \frac{1}{R_i} + \frac{1}{R_j} \]

\[h_{ij} = R_i + R_j - \|r_{ij}\| \]

\[r_{ij} = r_i - r_j \]
Frictional Contact: Mindlin’s Theory

- Linear and rotational displacements introduce tangential tractions and moments
 - Tangential stiffness depends on normal pressure
 - Tangential tractions are path-dependent
 - Partial/complete slip can occur
 - Mindlin theory: normal tractions are not affected by the tangential components

- To eliminate some of these difficulties, we consider:
 - Pre-stressed pack
 - Small deformations
 - Static friction (no slip)
Effective Properties via Simulations

• A grain pack is enclosed in a semi-rigid container
• Boundary conditions = wall displacements
• Macroscopic stress is generated by contact forces
• Quasi-static model: equilibrium configurations
• Equilibrium = minimum total elastic energy
• Conjugate Gradient minimization algorithm
 – Functional to minimize = total energy of the pack
 – Dynamic list of contacts
• Effective moduli using Hooke’s law
Example of Simulation

Parameters of the pack:
- Radii of 0.07-0.13 mm
- Moduli normally distributed
- Mean values: \(E = 100 \text{ GPa}, \nu = 0.15 \)
- Number of grains: 306 (small pack); 2,740 (large)

\(\phi = 43.83\% \quad N = 4.16 \)
Example of Simulation

\[\phi = 22.61\% \quad \text{Mean Coordination No.} = 8.38 \]
Modeling Challenges

Difficulties are in the modeling of grain pairs and packs

• Grain pairs
 – Nonlinearity of force-displacement relations
 – Stress depends on deformation history
 – Slip, partial or complete

• Grain packs
 – Complex contact geometry
 – Number of contacts, orientation and stiffness vary during the deformation
 – Deformation hysteresis even with fully elastic contacts
Creating a Stable Pack: Rearrangement vs Deformation

- The minimum coordination number for a stable pack is 3 (with gravity)
- Pack produced by D.E.M. simulations is unstable, i.e. not in equilibrium
- Our algorithm eliminates most unstable structures, by mere rearrangements (no grain deformations)
- As stresses increase, the pack gets more stable
Non-Linear Response

Local failure in a small pack (306 grains)

- Four consecutive configurations, similar macroscopic strains
- Force chains plotted are the top 10% contact forces
- Line width is scaled with the force magnitude
- Abrupt change from $2 \rightarrow 3$; brown grain is forced through a constriction
Non-Linear Response

• At a particular combination of contact forces, some grains experience large, irreversible (inelastic) displacements:
 – Macroscopic stress is reduced by rearrangements of grain clusters
 – Local phenomenon, affecting only a small neighborhood of each rearranged cluster
 – More pronounced in smaller packs
 – Local failure, followed by stiffening of the pack
 – Similar to strain-hardening in metals
Loading/Unloading Hysteresis

- Elastic response of a single contact
- Inelastic behavior of a grain assembly

Triaxial compression test:
\[\phi = 35.8\sim30.8\% ; \]
\[N = 7.2\sim8.3 \]
Stiffness vs. Compaction

- Bulk modulus K increases with pack density
- Density increases as porosity ϕ decreases and coordination number N increases

\[\sigma_{\text{Mean}} = \frac{(\sigma_X + \sigma_Y + \sigma_Z)}{3} \text{ (MPa)} \]

\[\varepsilon_{\text{Vol}} = \varepsilon_X + \varepsilon_Y + \varepsilon_Z \text{ (-)} \]

Hydrostatic compression tests:
Left: Simulations;
Right: Experiment Vesic & Clough, 1968)
Conclusions

• Granular media exhibit non-linear, path-dependent behavior, even for a frictionless contact model

• Because of grain rearrangement, macroscopic deformation is possible with little deformation of grains

• Hysteretic effects are more pronounced when grain ‘jumps’ occur

• Introduction of frictional contacts increases the path-dependency (hysteretic effects)
Summary: Phase I

- A grain-scale model of rock
 - Hertz-Mindlin contact mechanics
 - Stable equilibrium grain packs
 - Simulation of loading-unloading hysteresis
 - Matching published laboratory measurements
 - Efficient numerical procedure
Summary

• Grain-scale model provides a tool to estimate effective moduli
 – Irreversibility of deformations is captured
 – Stiffening ($K \uparrow$) with compaction is evident
 – Values of K match physical experiments
 – Poisson’s ratio high, due lack of friction, cement, and simplified grain shapes
 – Efficient algorithm based on conjugate gradient method
Next...

• Use the already developed model to
 – Incorporate gas-hydrates and investigate
 ➢ Solid skeleton support
 ➢ Pore pressure and effective stress changes
 – Perform ensemble-averaging and investigate sample size effects

• Enhance the existing model by adding
 – Cementation/adhesion between grains
 – Failure criterion for cement
 – More complex grain shapes
 – Large strains
Thank You!