Geomechanical Performance of Hydrate-Bearing Sediments in Offshore Environments

> Stephen A. Holditch January 19, 2007



# **Objectives**

- Create capability to describe geomechanical behavior of hydrate bearing sediments in the ocean, by
  - Developing a knowledge base and
  - Developing a quantitative predictive capability
- Determine the envelope of hydrate stability under typical oceanic conditions where oil and gas production occurs



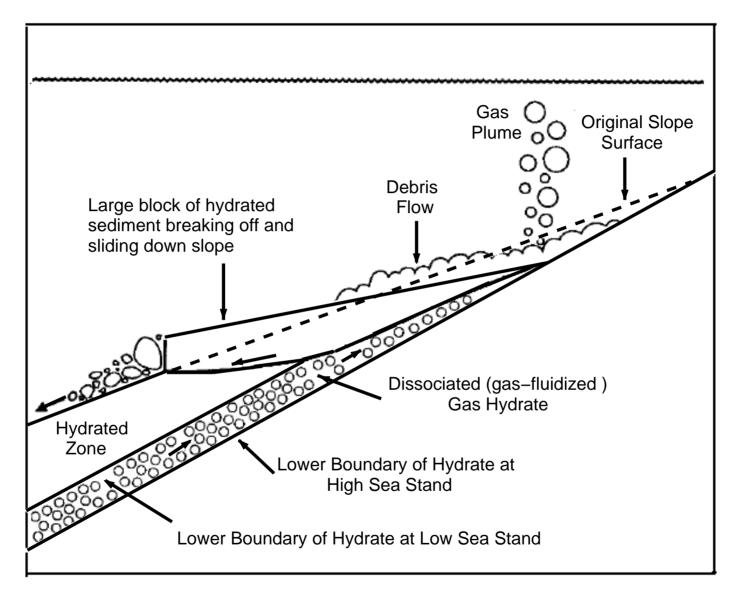



Figure 1. Diagram showing the effects of gas hydrate dissociation on oceanic hill slope failures and gas release. Adapted from McIver (1982).

## **Participating Organizations**

- Texas A&M University (TAMU)
  - Stephen Holditch and Yuri Makogon
- Lawrence Berkeley National Laboratory (LBNL)
  - George Moridis
- University of California at Berkeley (UCB)
  - Ted Patzek and Dmitriy Silin
- Schlumberger (SLB)
  - Dick Plumb and Pat Hooyman



### **Phase I** – Fundamental Studies and Model Development

| Task | Title                                                           | Group |
|------|-----------------------------------------------------------------|-------|
| 1    | Research Management Plan                                        | TAMU  |
| 2    | Technology Status Assessment                                    | TAMU  |
| 3    | Fundamental Studies Part I                                      |       |
| 3.1  | Pore Scale Geomechanics Studies                                 | UCB   |
| 3.2  | Planning for Development of Constitutive Models                 | SLB   |
| 3.3  | Description of hydrate sediments in the ocean                   | TAMU  |
| 3.4  | Methodology to create synthetic hydrate sediment samples in lab | TAMU  |
| 4    | Development of Geomechanics Model                               | LBNL  |

### **Phase I Milestones**

| TAMU | Completion of literature survey on<br>typical sediments containing gas<br>hydrates in the ocean                                                            | Sept<br>2006 | We have completed the literature review. All<br>papers and reports have been found and we<br>have prepared a report summarizing the<br>literature                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TAMU | Completion of recommendations<br>on how to create sediments in the<br>laboratory                                                                           | Sept<br>2006 | The information has been summarized in this report                                                                                                                                                                                                                                  |
| TAMU | Demonstration that typical<br>sediments can be created in a<br>repeatable manner in the<br>laboratory and gas hydrates can<br>be created in the pore space | Nov<br>2006  | This milestone is still in progress although we<br>have made substantial progress. We may not<br>have it completed before we begin Phase II.<br>However, it will be one of the first things we<br>do for Phase II.                                                                  |
| UCB  | Development of a conceptual pore-<br>scale model based on available<br>data and reports                                                                    | July<br>2006 | This milestone has been completed. After<br>trying testing several approaches, we have<br>selected the one based on most<br>comprehensive contact mechanics.                                                                                                                        |
| UCB  | Testing the developed concepts on<br>simple configurations and<br>verification of the result against<br>known measurements and<br>observations             | Sept<br>2006 | The approach has been tested on simple and<br>not very simple configurations of grains.<br>Right now we are in the middle of<br>incorporation of tangential forces. There is a<br>chance that this work will continue into<br>October, subject to obtaining a relevant data<br>set. |

#### **Phase I Milestones**

| LBNL | Completion of FLAC3D<br>routines                                                                                   | Aug<br>2006  | Completed                                                                                                   |
|------|--------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------|
| LBNL | Completion of TOUGH-<br>Fx/HYDRATE modifications<br>and extensions                                                 | July<br>2006 | Completed                                                                                                   |
| LBNL | Completion of the TOUGH-<br>Fx/FLAC3D interaction<br>interface                                                     | Sept<br>2006 | Completed                                                                                                   |
| LBNL | Component integration and<br>final testing of the coupled<br>geomechanical numerical model<br>TFxH/FLAC3D          | Oct<br>2006  | Completed                                                                                                   |
| SLB  | Demonstration that Petrel can<br>be used to develop an earth<br>model for providing data to the<br>TOUGH-Fx/FLAC3D | July<br>2006 | Surfaces have been exported to FLAC.<br>We have demonstrated that surfaces<br>can be transferred to FLAC 3D |

### **Phase II – Modeling and Laboratory Measurements**

| Task | Title                                                                                            | Group |
|------|--------------------------------------------------------------------------------------------------|-------|
| 5    | Research Management Plan                                                                         | TAMU  |
| 6    | Fundamental Studies Part II                                                                      | UCB   |
| 7    | Laboratory Studies of Basic Rock Properties                                                      |       |
| 7.1  | Thermodynamic and kinetic measurements                                                           | TAMU  |
| 7.2  | Large scale geomechanical and geophysical measurements                                           | LBNL  |
| 7.3  | High P – Low T triaxial cell with simultaneous CT X-ray imaging                                  | LBNL  |
| 7.4  | Determination of the geophysical signature of hydrates in porous media and the effects of stress | LBNL  |
| 4    | Well bore Modeling                                                                               | SLB   |

# Phase III – Integration of Models and Data

| Task | Title                                             | Group    |
|------|---------------------------------------------------|----------|
| 9    | Research Management Plan                          | TAMU     |
| 10   | Predictive Studies                                |          |
| 10.1 | Effect of structure weight near platforms         | UCB/LBNL |
| 10.2 | Effect of heat exchange with wells and pipelines  | UCB/LBNL |
| 10.3 | Effect of gas production from the hydrates        | TAMU     |
| 10.4 | Potential long term damage to wells and pipelines | UCB/LBNL |
| 10.5 | Integration of studies in 10.1 through 10.4       | TAMU     |
| 10.6 | Study of well bore stability                      | SLB      |

# **Research Results at Texas A&M**

- In Phase I, we have documented the literature concerning all public records concerning cores and sediments recovered during gas hydrate, deep water scientific cruises.
- We have also documented the different laboratory experiments where properties of gas hydrates in cores have been made



### **TAMU** Results

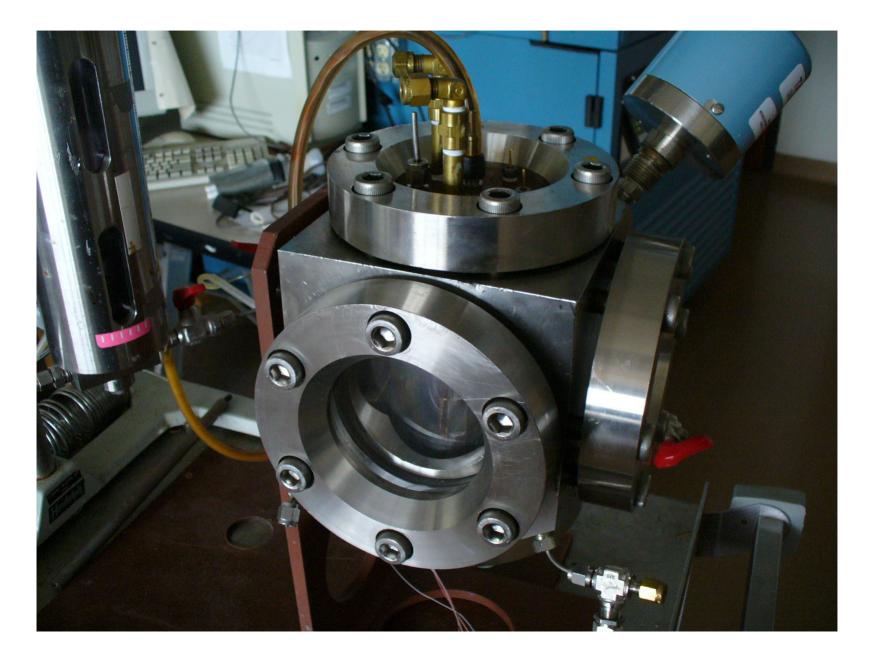
- We have been building equipment for testing cores containing gas hydrates in preparation of Phase II of this project.
- We will be investigating the kinetics of hydrate formation and dissolution in cores, the morphology of the crystals, and the electrical properties of the cores as the hydrates form and dissolve.



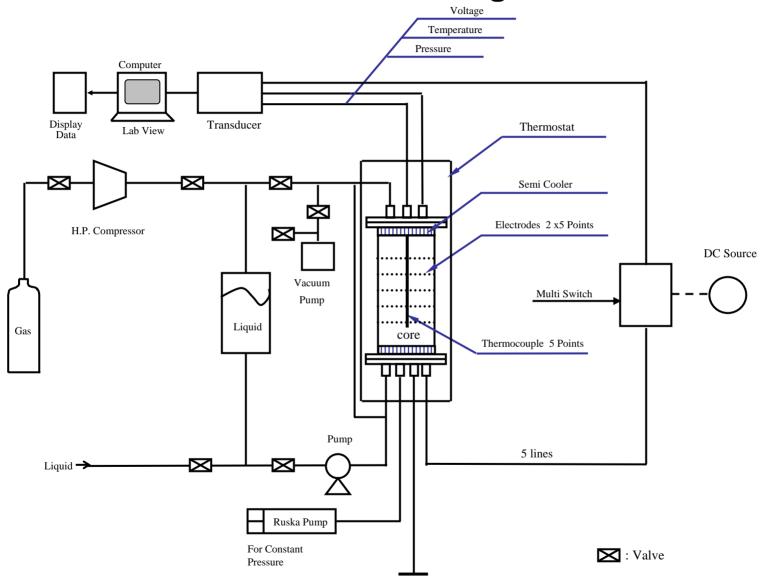
### TAMU – Phase II

- Complete task to finalize recipes and demonstrate sample preparation
- Conduct laboratory testing with samples
- Continue literature review to keep information updated
- Begin making runs using the Petrel ToughFx – FLAC3D combined model to start our evaluation of continental slope




#### **Cell for study micro morphology of crystals.** P=350 bar



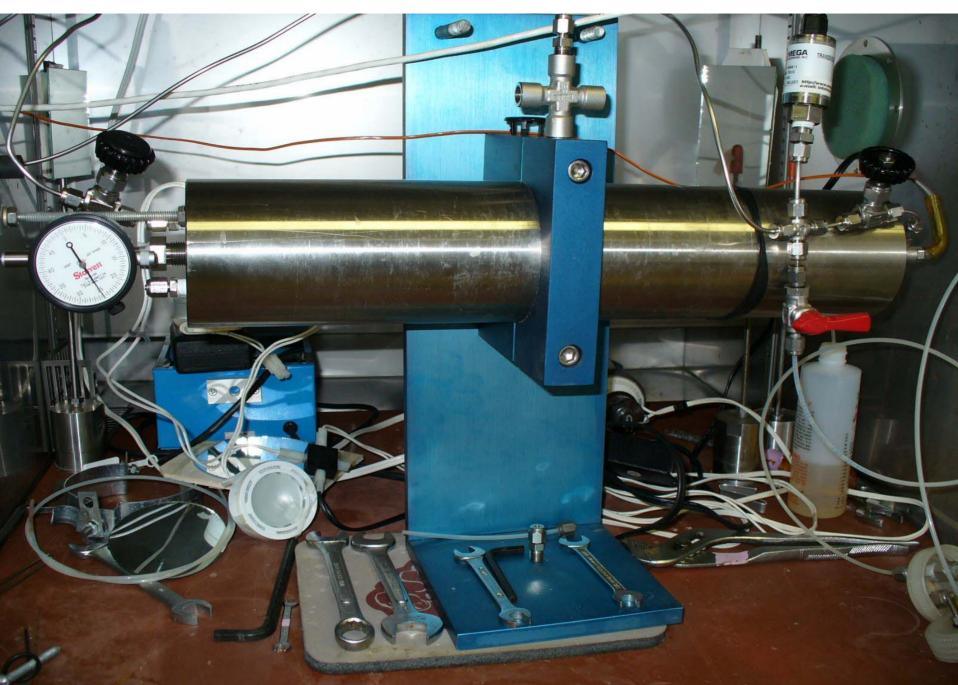

#### Cell for study hydrates in porous media. P=300 bar



#### **Cell for study hydrates in the porous media. P=300 bar**



#### Cell for study hydrate in porous media -Schematic Diagram




Drain or Safety Valve

#### Cell for study gas solubility in solutions. P=400 bar



#### Cell for study hydrate properties in porous media. P=500 bar



## Thank you !

