Task 2.0: Technology Status Assessment Report

Methane Recovery from Hydrate-bearing Sediments

Prime Recipients	J. Carlos Santamarina Costas Tsouris Carolyn Ruppel	Georgia Tech ORNL/Georgia Tech USGS (no cost)
Agreement Number	DE-PS26-06NT42820	
Project Manager	Timothy Grant NETL	

Hydrate formation permits very high concentration of methane in a given volume. This explains current estimates of carbon resources stored in methane hydrates which exceed the storage of carbon in coal and petroleum combined. Thus, the recovery of methane from hydrate bearing sediments gains great importance in the context of the ongoing unprecedented growth in energy demands worldwide. This is also one of the most challenging issues related to methane hydrates. The state-of-knowledge is summarized next. An annotated bibliography accompanies this review.

CURRENT STATE OF KNOWLEDGE

The review of the current state of knowledge is organized into two parts. First, we explore the different research tools and approaches that have been used to learn about potential production strategies. Then, we organize the existing information into the different production strategies that have been conceived and investigated.

Research Approach

- The study of methane production has been approached using mathematical analysis and models, numerical simulations, laboratory experiments and field experiments. Salient observations extracted from each approach follow.
- *Analytical*. Analytical studies have focused on kinetics and thermodynamic calculations (Jamaluddin et al., 1989; Ullerich et al., 1987). The majority of these studies have emphasized pure hydrate systems.
- *Numerical*. At the fundamental molecular scale, molecular simulations have been conducted to study properties of hydrates (Sean et al., 2005; Sun and Mohanty, 2006), however, there are no molecular-scale simulations for production purposes. At the field scale, most numerical simulations disregard geomechanical effects, yet phenomena such as hydraulic fracture can play a critical role in production, particularly in low-permeability sediments (McGuire, 1982). An annotated bibliography of numerical simulations/models and is presented in *Appendix A*.
- *Laboratory experiments*. Most production studies in the laboratory have been conducted in pure hydrate systems (Circone et al., 2003; Circone et al., 2005a, b; Circone et al., 2004; Stern et al., 2001, 2003). There are very few studies in controlled porous networks, and even fewer in sediments with synthetic hydrates (Handa and Stupin, 1992; Ogasawara et al., 2005; Sakamoto et al., 2005b; Sung et al., 2002; Uchida et al., 2004; Yousif et al., 1991).
- *Field experiments*. One production study has been conducted in the field in the Canadian permafrost region (Carcione and Gei, 2004; Chand and Minshull, 2004; Haberer et al., 2006; Henninges and Huenges, 2005; Kurihara et al., 2005; Moridis et al., 2004; Moridis et al., 2005; Riedel et al., 2006; Wright and Dallimore, 2005). The first production attempt used a heating approach, while the second attempt used a depressurization approach. The experiment had some, albeit limited success. Models (e.g., EOSHYDR2, TOUGH-Fx/HYDRATE) have been calibrated and tested against this test.

• *Experiments using undisturbed pressure cores*. Pressure cores extracted from the Indian ocean and kept within stable pressure and temperature conditions were monitored during controlled depressurization to assess the evolution of the sediment during production (Georgia Tech – JIP preliminary report - Santamarina et al., 2007).

Production Methods

The obvious production approaches involve depressurization, heating and their combinations. However, other production methods are under study. Brief comments follow. A comprehensive annotated bibliography for different production methods can be found in *Appendix B*.

- Depressurization & heating (Appendix B.1 and B.2). Laboratory studies have been conducted on pure hydrate specimens (Circone et al., 2003; Circone et al., 2005a, b; Circone et al., 2004; Stern et al., 2001, 2003). and in sediments with synthetic hydrate (Handa and Stupin, 1992; Ogasawara et al., 2005; Sakamoto et al., 2005b; Sung et al., 2002; Uchida et al., 2004; Yousif et al., 1991). Heating has been implemented by either injecting hot water or heating the chamber (Kamata et al., 2005; Kamath and Holder, 1987; Ogasawara et al., 2005; Sakamoto et al., 2004; Sakamoto et al., 2005b; Ullerich et al., 1987). In all cases, depressurization has involved the pore fluid, therefore, destabilization effects associated with changes in effective stress remain unknown. Multiple studies have explored the beneficial effects of combining heating and depressurization.
- *Chemical methods (Appendix B.3).* There are two approaches based on chemical concepts
 - Chemical substitution: A very promising approach is the substitution of CH₄ for CO₂, thus recovering methane while sequestering carbon dioxide at the same time. The CO₂ can be brought into contact with the methane hydrate in gas phase, liquid phase, or potentially dissolved in the circulating pore water (Ota et al., 2005a; Park et al., 2006). Raman spectroscopy, NMR, and MRI data provide insightful information about the evolution of the substitution (Graue et al., 2006; Gupta et al., 2005; Ota et al., 2005a; Ota et al., 2005b; Sakamoto et al., 2005b; Yoon et al., 2004). Optimal P-T operating conditions and underlying phenomena are reviewed in.
 - 2. Chemical injection Change in stability conditions. Methanol, ethylene glycol, nitrogen and salt brines are inhibitors that depress equilibrium conditions, so that their injection prompts hydrate dissolution and CH4 production; their effect is intimately coupled with the imposed temperature difference (Chatterji and Griffith, 1998; Graue et al., 2006; Haneda et al., 2005; Kamath et al., 1991; Kawamura et al., 2005; Ostergaard et al., 2005; Ota et al., 2005b; Sira et al., 1990; Sung et al., 2003; Sung et al., 2002; Yoon et al., 2004). Two solutions can be injected so that their exothermic reaction destabilizes the methane hydrate, liberating CH₄, while hindering its reformation by altering the fluid chemistry and lowering the phase transformation boundary (Chatterji and Griffith, 1998).

There is some evidence that nitrogen gas combined with heating is more effective than heating alone (Sakamoto et al., 2005b).

• *Other energy forms (Appendix B.4).* Early studies of the role of other forms of energy have been found, including high frequency mechanical vibration(Miura et al., 2006), and microwaves (Li et al., 2006).

LIMITATIONS IN THE CURRENT STATE-OF-THE-ART - NEEDS

The approaches and production methodologies that have been investigated cover a wide range of alternatives. However, there are some salient limitations in the state of knowledge, in particular, lack of knowledge on production-related <u>phenomena in hydrate</u> <u>bearing sediments</u> and limited exploration of <u>other forms of energy</u> including possibly energy coupling effects.

The following variables and processes require further attention given the potential important role they may play on gas production from hydrate bearing sediments:

- *Molecular-level understanding of substitution*. The molecular evolution of CH₄ hydrate during diffusion/substitution would be revealing with respect to the enhanced understanding of this potential production method. There is no data on the evolution of mechanical properties.
- *Mixed fluid flow*. Gas may be removed dissolved in water (very low solubility), in gas phase in the form of bubbles (get trapped at pore throats, reduce hydraulic conductivity and alter the pore pressure field), or as a percolating phase (a fractal network that converges towards the production well).
- *Hydrate distribution*. The literature on hydrate formation at the pore scale is still controversial, and their impact on gas production is unknown. It is anticipated that percolation effects will depend on and vary with hydrate concentration in pore space, and its spatial distribution including the presence of lenses.
- Underlying mechanism in CH_4 production in sediments Fluid-sediment interaction. There is no study -known to the PIs- that has properly taken into consideration the formation of hydrates in sediments, their dissociation, and related production strategies.
- Innovative production methods that benefit from sediment-hydrates-fluid interaction. Such initiatives could contemplate/benefit from phenomena such as the self prompted formation of hydraulic fractures and the contrasting properties between hydrates and pore fluid (e.g., complex permittivity).
- *Production methods based on other forms of energy*. Mechanical energy applied through the sediment, electromagnetic energy, other chemical substitutions, combinations.
- *Reservoir geometry Spatial variability.* The geometric characteristics of the reservoir can have a major impact on production. Studies must take into consideration hydrates on water, hydrates on trapped gas, inclined pinching layer.

CHALLENGES AND BARRIERS TO OVERCOME

In view of the state of the art, it is anticipated that the main challenges to be faced during the conduction of this research project can be grouped into:

- *Hydrate formation in sediments.* This challenge has been critical to the development of this field. It can be argued that proper simulation approaches are still lacking. Furthermore, while synthetic hydrates (such as THF Yun et al., 2006) have proven most useful for the study of the physical properties of hydrate bearing sediments, they are inadequate for production studies.
- *Monitoring tools* to gain adequate information about the ongoing processes taking place during gas production of hydrate bearing sediments.
- Numerical simulation of the great complexity of underlying physical processes. Combining particle level processes to address reservoir scale production, properly taking into consideration of chemical, mechanical (flow and deformation), thermal and even electrical effects, become a challenge of overwhelming complexity very soon. Thus, we have to identify the governing processes and variables at each scale, without disregarding important phenomena that can play a critical role in the development of viable production strategies.

The evolution of the project, from 1D to 2D and 3D systems, is particularly advantageous from the point of view of these challenges. On the one hand it provides time for the development of the field and gives us the opportunity to incrementally address these challenges.

In the meantime, we can identify alternatives to fall back to. For example, it may be argued that disseminated hydrates formed by techniques such as the ice-seeding method may be adequate to gain relevant information related to chemical, thermal and mechanical (flow and sediment) phenomena during production. We will continuously reassess the state of knowledge as part of this investigation (Task #3).

Appendices:

Annotated Bibliographies

References	Features
Ullerich et al.	 1-D planar semi-infinite system
(1987)	• Moving boundary condition with constant heat flux (heating method) as dissociation begins
	 Implemented with the experimentation (fine-grained snow + methane gas under
	4.1MPa and 274K)
	 Limitation: thermal conduction in sediment
Jamaluddin et	 1-D planar semi-infinite hydrate
al. (1989)	 Constant heat flux at the boundary surface
	 Couple the intrinsic kinetics with heat transfer rate
	 Highlight the heat transfer controlled regime (lower system pressure) and both heat
	transfer and kinetics controlled regime (higher system pressure)
Yousif et al.	 1-D (3 phase) model by isothermal depressurization for Berea sandstone
(1991)	 Implemented with the kinetics of hydrate dissociation in porous media Dudiction of hydrate towards and association in porous media
CSMHyd (Sloan, 1998)	 Prediction of hydrate temperature and pressure with or without methanol, salts (3~4 phase)
()	 Calculation of water content of hydrocarbon vapor or liquid
Ji et al. (2001)	 1-D linearized model for isothermal depressurizing well
	 Variables: well pressure, reservoir temperature, zone permeability
	• Well pressure \uparrow = decomposition front movement and gas production \downarrow
	• Decomposition front \propto time ^{1/2}
	• Reservoir porosity and permeability \uparrow = decomposition front movement \downarrow , gas
	output ↑
Sung et al.	 3-D, multiphase field scale gas hydrate reservoir simulator
(2002)	 Simulate the effect of methanol injection with depressurizing well
	• Limited effect of methanol on the dissociation due to the low permeability of
	hydrate reservoir \uparrow
Wilder and	 Methanol content ↑ = Hydrate decomposition rate ↑ Hertz-Knudsen-Langmuir equation for maximum rate of an endothermic
Smith (2002)	dissociation
5iiiiiii (2002)	• Hydrate particle size \uparrow = required max. heat transfer rate \uparrow
Ahmadi et al.	 1-D model by depressurizing well
(2004)	• Well pressure \downarrow = Gas production rate \uparrow
	 Less effect by reservoir temperature
CSMgem	• Gibbs energy minimization based on hydrate, aqueous, hydrocarbon and pure
(Ballard and	hydrate fugacity models
Sloan, 2004)	User-friendly window version
Moridis et al.	 EOSHYDR2 simulation for Class 1 hydrate accumulation
(2004)	 Modeling site: Mallik, Alaska Demographic field and the second seco
	 Depressurization: promising, but low operating pressure results in hydrate cooling and lower gas release rate due to endothermic.
	 Coupling depressurization with thermal stimulation (for the case of thin hydrate
	and free gas zone): modest gas production
	 Hydrate deposits with very thin gas zone underlain by aquifer: standard
	dissociation approach is not enough. Horizontal well would be better than vertical
	one.
Sun et al.	 Non-isothermal 1-D model by depressurization
(2005)	• Highlight dissociation controlled regime (laboratory-scale) and flow controlled
	regime (field scale)
17	 Minute effect of different temperature boundary condition Thereal stimulation field and a model (Mallik 2002 51, 28 moll)
Kurihara et al.	 Thermal stimulation – field scale model (Mallik 2002 5L-38 well) Variables: 2 phase equilibrium pressure and temperature get seturation
(2005)	 Variables: 3 phase equilibrium pressure and temperature, gas saturation, permeability
	permeability

Appendix A. Annotated Bibliography on numerical models and simulators

 Suggestion of hot fluid invasion into the production zone
 Thermal stimulation – TOUGH-Fx/HYDRATE (Mallik 2002 5L-38 well)
 Suggestion of microfractures generated by gas hydrate dissociation process
 Analytical, numerical and experimental study
 Material: HCFC141B hydrate (no sediment)
 Decomposition phenomena simulated by LGA (lattice gas automation) using Nusselt number and Reynold number
 Proposing gas-lift system for recovery system from ocean using 1D unsteady
compressible 3 fluid model and adopted CFD \rightarrow utilizing recovered CH ₄ gas for the production system to reduce the power consumption
 Numerical simulator (lab scale)
• 4 mass balance (CH ₄ , H ₂ O, methanol, salt) and 1 energy balance
 Depressurization on the production end is immediately conveyed to another end
inducing the entire core dissociation
 Dissociated gas tends to be trapped inside the pore with ice
 Numerical simulation for heating
 Heating affects narrow zone near the well Snowlation of the affect of evolution thermal recovery
Speculation of the effect of cyclic thermal recovery
 FEHM numerical simulator (LANL) for hot water injection and depressurization Hat water injection (20%C injection 2) MBa surgeing well) >> depressurization
 Hot water injection (30°C injection, 2MPa pumping well) >> depressurization Injection water temperature ↑, injection rate ↑, production well pressure ↓, porous
media permeability \uparrow = gas production \uparrow
 Residual water saturation and hydrate re-formation does not affect production
 Non-equilibrium numerical analysis in micro-scale (single CH₄ hydrate particle)
for the estimation of CH_4 hydrate dissociation rate
 Dissociation rate = function (temperature), not pressure and flowing water rate
 Numerical and approximate analytical model for hydrate plug dissociation in
pipeline
 Positive effect of ice formation during dissociation (higher thermal conductivity)
until 262K below which self-preservation effect exists
 SINTEF 1D hydrate plug dissociation model incorporating porosity and
permeability
 Depressurization and mono-ethylene glycol (MEG) simulation
• Equilibrium and kinetic models for hydrate formation and dissociation (up to 4
phases)
 Prediction of hydrate formation conditions of gas and oil mixtures
 Prediction of hydrate formation conditions of gas and oil mixtures Variables: percent water cut, composition by weight water, salts, inhibitors
 Variables, percent water cut, composition by weight water, saits, innotions Calculation of thermodynamic gas hydrate stability curves for produced
 Calculation of thermodynamic gas hydrate stability curves for produced hydrocarbon
 Variables: inhibitors, temperature, pressure
- Variables. Infibitors, temperature, pressure
 Prediction of minimum operation conditions to prevent hydrate formation in plant
facility
 Variables: hydrate former, inhibitors, mol percent

Appendix B. Annotated Bibliography on different production methodology

B.1. Depressurization

References	Features
Kim et al.	 Isothermal depressurization: using a semibatch stirring-tank reactor
(1987)	 Mixture: pure water + methane gas
(• Decomposition rate \propto surface area, pressure gradient
	 Stirring speed ↑ = decomposition rate ↑
	• Decomposition pressure \downarrow = Decomposed gas \uparrow
	 Intrinsic kinetics depend on pressure, temperature and particle surface area.
Yousif et al.	 Isothermal depressurization (2.8MPa) in porous media
(1991)	 Three phase 1D model implemented by experimental results
(1))))	 Material: hydrate bearing Berea sandstone (1.5wt% NaCl solution at ~8MPa,
	273.7K)
	 Key: consideration of water flow in porous media during dissociation
	 Prediction of volume of gas and dissociation front location
	 Resistance
	 Complemented with a numerical model (dissociation reaction rate)
Gudmundsso	 Depressurization under different temperature (-5°C to -18°C)
n et al.	 Pure water + pressurized gas (2-6MPa), magnetic stirrer
(1994)	■ When T <0°C, long term exposure to atmospheric pressure has minute effect (self-
	preservation) if the heat energy is properly hindered for the dissociation.
	 Ice forms a protective coating for the hydrate.
Ji et al.	 1D linearized model by Makogon
(2001)	 Limitation: neglecting heat conduction in reservoir and energy balance at
	dissociation front
Sung et al.	 Hydrate formation in porous rock (sediment)
(2002)	 Constant gas production rate with time controlled
	■ Pressure ↑ sharply whenever dissociated gas reaches to the critical limit
	 Resistance decreases due to the water after dissociation, then increases again due to
	water migration to outlet and gas fills pore
Moridis	 TOUGH2 -> EOSHYDR2 (mass and heat coupled)
(2002, 2003)	• 9 components (hydrate, wter, native CH4, dissociated CH4, native and dissociated
	hydrocarbon, salt, water-soluble inhibitors, heat pseudo-comp) and 4 phases (gas,
	liquid, ice, hydrate) in 3D
	 Prediction of the formation and dissociation and hydrocarbon composition Combined method > thermal simulation > demoscurization
Ji et al.	 Combined method > thermal simulation > depressurization 1D linearized model
(2003)	
(2003)	 Key variable: reservoir temperature and hydrate zone permeability for constant rate gas production
	 Axisymmetric reservoir by depressurization well
	 Pressure reduction with time is needed for constant rate production
Ahmadi et	 ID model in a confined reservoir by depressurization well
al. (2004)	 Heat conduction and convection in hydrate zone (sandwiched hydrate+free gas zone
	between impermeable rock)
	 Simulating about different well pressures, reservoir temperatures, the gas flow, the
	pressure and temperatures conditions
	• Well pressure \downarrow = Gas production rate \uparrow
	 Less effect by reservoir temperature

Moridis et	 Depressurization and hot fluid injection through multiple well
	Depressuizzation and not nata injection through multiple wen
al. (2004)	 Depressurization for free gas underlying hydrate deposit (zone 1) = production 1
	• Depressurization of hydrate underlain by aquifer (zone 2) produce large amount of
	water
	 Thermal simulation for hydrate with no gas, no water
	• S_{hyd} \uparrow , hydrate initial temperature \uparrow , circulating water temperature \uparrow , thermal
	conductivity of system \uparrow at constant pressure = production \uparrow
	 Gas production less sensitive to rock and gas hydrate specific heat and permeability
Circone et	 Hydrate formation: 290K, 30MPa by ice seeding method
al. (2005a)	 At pressure below quadruple points, dissociation follows a thermal boundary just
	below ice/water boundary.
Circone et	 Isothermal depressurization
al. (2005b)	 Pure, porous synthetic methane hydrate with granular ice
	• Pressure \downarrow = dissociation rate \uparrow
	 Thermal self-regulation increases during dissociation
Sun et al.	 Non-isothermal, 1D simulation
(2005)	 Defining "dissociation-flow time scale ratio" to identify 'dissociation controlled (lab
(2005)	scale)' with 'flow controlled (field scale)''
	 Lab scale
	- First stage: fast fluid flow rate after the beginning of depressurization -> quick drop
	of sample inside pressure
	- Second stage: uniform pressure distribution, temperature decrease
	 Field scale
	- Dissociated zone (15% length near production well) // dissociating zone (~ 30%) //
	untouched zone
	- Dissociation occurs only in a narrow region (after 3days, only 20% length lies
	 below equilibrium P.) Minor effect of Temp, boundary condition for both cases
Gerami and	Winter effect of Femp. Soundary condition for both cuses
	 Highlight the invalidity of 'sharp-interface' that divide the reservoir into hydrate
Pooladi-	zone and dissociated zone \rightarrow pressure reduction propagates from interface into
Darvish	hydrate zone, leading to decomposition of hydrate throughout hydrate zone
(2005)	 During non-equilibrium stage, heat transfer from cap- and base rocks has small effect
	on gas production.
	 Heat of decomposition is mainly by the sensible heat of hydrate and its dissociated
	rock.
Okui et al.	Depressurization
(2005)	 Uniform and quick dissociation for lower S_{hyd} (14%)
Mallik	 Gradual dissociation from the surface to the core, self-blocking by hydrates and
	confining pressure
	 Heating: Gas entrapped in the pore space (should be followed by depressurization)
Sun and	 3D kinetic simulator
Mohanty	 Mass, two phase flow, molecular diffusion and heat transfer fully coupled.
(2006)	• 4 component (hydrate, CH ₄ , water, salt) and 5 phases (hydrate, gas, water, ice, salt
	precipitation)
	 Kim-Bishnoi model for kinetics of hydrate + phase equilibrium for water freezing
	and ice melting
	■ Initial temperature ↑ (at constant pressure), salt introduction, pressure ↑, boundary
	temperature \uparrow = hydrate dissociation \uparrow
Sun and	 Depressurization
Chen (2006)	 Hydrate dissociation controlled by gas diffusion through ice when T <0°C (moving
	boundary condition)

B.2. Heating

References	Features
McGuire	 Frontal sweep model (upper bound – higher permeability reservoir)
(1982)	 Fracture-flow model (lower model – lower permeability reservoir)
	 Variables: porosity, bed thickness, injection temperature, facture length
	 Front-sweep model: hot water injected into a central -> dissociated gas flow to
	surrounding production well (using Marx-Langenheim heavy oil recovery equation =
	heat transfer model, not a porous flow model)
	- gas production rate: $G_p = \frac{IB_{hyd}\phi F_{hyd}}{M\Delta T}e^{z^2}erfc(z)$
	- B=produced gas, M=heat capacity, F=S _{hyd} , φ: reservoir porosity
	- Injection temperature \uparrow = production \downarrow (150-250°F)
	- Reservoir thickness, porosity \uparrow = production \uparrow (scale >25ft, porosity > 15%)
	• Fracture-flow model: hydraulic fracture from injection well to production well (using
	Graetz laminar-flow conduction problem)
	- gas production rate: $G_p = B_{hyd} q(L1, L2) \tau \phi / M \Delta T$
	- Fracture length \uparrow = production \uparrow
Kamath and	• Warm water flow over the top surface of the hydrate (constant temperature)
Holder	 Hydrate formation: 274K, 7.6MPa
(1987)	 Constant CH₄ recovery rate with time
	• Formation of thin-film of water on the surface of remaining hydrate \rightarrow induce the
	heat transfer resistance \rightarrow generated gas bubble makes convective heat path (role of
	water)
	 Hydrate recovery rate = power function (ΔT) Granular ice + pressurized gas
	 Oranular ice + pressurized gas Determination of dissociation heat transfer characteristics
	 Water film on hydrate that is being dissociated
Ullerich et	 Heating laboratory chamber
al. (1987)	 Planar, 1D smiinfinite system
ui. (1907)	• Hydrate formation: snow + $CH_4 \rightarrow$ heating chamber radially – no sediment
	 Water formed during dissociation is blown away by the gas produced
Jamaluddin	 1D semi-infinite body: intrinsic kinetic + heat transfer rate
et al. (1989)	• Activation energy in kinetic \uparrow = decomposition rate \downarrow
, , , , , , , , , , , , , , , , , , ,	• Hydrate slab surface roughness \uparrow = decomposition rate \uparrow due to increasing intrinsic
	kinetic rate with surface area)
Handa and	 Hydrate in 70Å-radius silica gel pores (sediment)
Stupin	• After dissociation, hydrate becomes entrapped within pores, ice caps forms at the
(1992)	pore opening making the hydrate stable until pore ice melting point reaches (self-
	healing effect)
	 Higher P condition of hydrate is defined in porous material (more unstable at same
	$condition) \leftrightarrow competing effect when dissociated below ice-melting T due to the ice$
	formation).
Wilder and	• Calculation of required heat to keep system temperature constant during endothermic
Smith	dissociation event by Hertz-Knudsen-Langmuir equation
(2002)	Suggest the maximum dissociation rate for hydrate and required heat
Circone et	 Temperature buffering: slower increase of sample temperature when most gas
al. (2004)	produced • Depending on the boundary temperature, it matters whather is forms during
	 Depending on the boundary temperature, it matters whether ice forms during disconting (role of water)
Uchida et al.	 dissociation (role of water). Step Heating (0.06K/hr)
(2004)	 Step Heating (0.06K/hr) Soils: sand, sandstone, clay (kaolinite and bentonite) and glass bead
(2004)	 Solis. said, saidstole, clay (kaolinite and bencome) and glass beau Saturation: soil-water mixture, soil+granular ice, vapor pressure controlled.
	Sutatution. Son water instate, son Standard fee, vapor pressure controlled.

	 Pore size determines the decomposition condition: decomposition temperature
	decreases as pore size decreases while the swelling clay (bentonite) indicates the
	higher decomposition temperature.
	 Surface texture and mineral composition: no affect on decomposition temperature
	 Continuous heating method indicates the similar results as step heating method
Sakamoto et	 Hot water injection
al. (2004)	• Hydrate formation: saturated sand $(200\mu m) \rightarrow CH_4$ injection \rightarrow cooling \rightarrow
	formation \rightarrow CH ₄ injection \rightarrow hot water (21°C) from the top
	• 3 zones within sample: dissociated zone at top - dissociating zone (narrow) -
	untouched zone
	 4 stages during dissociation
	1) gas displacement by hot water (no dissociation)-pressure building
	2) T lower than equilibrium T, dissociation starts, pressure peaks
	3) Temperature \cong equilibrium T during dissociation
	4) dissociation completed.
	• $S_{hvd} \downarrow$ = faster dissociation (lower energy needed)
Sakamoto et	 Hot water injection
al. (2005b)	 Physical model: porosity and permeability varies while hydrate dissociated,
ui. (20050)	migration of gas and water, temperature / enthalpy changes due to the heat
	generation and mass flow
	 Mass and energy conservation + regressed expressions for water and gas saturation +
	regressed gas and water permeability
	 100m x 100m site, 45m distance between injection well and production well
	assuming that pure hydrate layer is sandwiched by impermeable layer
Sakamoto et	
al. (2005)	• Hydrate formation: sand saturated with water \rightarrow CH ₄ flown through cell \rightarrow cooling
al. (2003)	 Formation sequence
	- Crystallization begins at the water-sand interface
	 Growth toward inside of pore water (investigated by Raman spectroscopic) Disposition accuracy (heating heth)
	 Dissociation sequence (heating bath) Start from and hydrate interface and groups to nore space
	- Start from sand-hydrate interface and grows to pore space.
	 Modification of Kim (1987) model which considers the driving force as a change of fugarity between methans in three phase equilibrium and in free ges assuming the
	fugacity between methane in three phase equilibrium and in free gas assuming the
	hydrate coating sand grain.
~ 1	• Heat transfer controlled at first stage \rightarrow mass transfer controlled at second stage
Sakamoto et	 Nitrogen and hot water injection
al. (2005a)	 Material: sands with CH₄ hydrate
Norway	 Production: Nitrogen+hot water > nitrogen > hot water
Liang et al.	 Decomposition kinetic behavior below ice melting point to see ice-shielding
(2005)	mechanism
	 Hydrate formation in 5cm³ porous wet activated carbon (sediment)
Kamata et	 Hot brine water injection (30°C)
al. (2005)	 Material: wet Toyoura sand with brine water with CH₄ hydrate
Norway	 Temperature and pressure fluctuated between stability region and decomposition
	region
Ogasawara	 Warming water injection
et al. (2005)	 Material: sand and glass bead with CH₄ hydrate
Norway	 Estimation of CH4 flow rate
Gupta et al.	 Heating with NMR and Raman spectroscopic study
(2005)	 No difference in decomposition kinetic rate between large and small cages in hydrate
Norway	
2	

B.3. Chemical Injection

References	Features
Sira et al.	 Methanol and Glycol injection
(1990)	 Hydrate formation: 274K, 8.3MPa
	 By given concentration and injection rate, the inhibitor contacts the top of hydrate
	surface (same as Kamath 1989) while pressure keeps constant.
	• Injection rate, inhibitor concentration \uparrow = gas production \uparrow
	• Hydrate dissociation rate = power function (ΔT) representing α , β
	(No control of inhibitor temperature. Injection rate \uparrow = keep warm)
Kamath et	 Brine injection and depressurization
al. (1991)	• $\Delta T \uparrow =$ gas production \uparrow at given salinity
un (1991)	• Salinity \uparrow = hydrate dissociation rate \uparrow by factor of 4.
	• Brine injection rate effect << temperature driving force ΔT
	Brine injection rate \uparrow = dissociation rate \uparrow (salinity effect > brine injection rate)
	 Brine injection rate + – dissociation rate + (samily effect > office injection rate) Porous hydrate formed under 8.3 MPa and 274K
Sung et al.	 Methanol injection (with depressurization)
(2002)	 Kim-Bishinoi kinetic theory + thermodynamic equilibrium
× /	 Limited effect of methanol injection near the well (due to low permeability)
	 Possible impact of sharp increase of pressure by methanol injection
	 Sensitive factor = methanol content
Sung et al.	 Methanol injection (30 wt% with 0.5ml/min for 22min - 6.3% of pore volume)
(2003)	 Methanol injection increases equilibrium pressure to 21MPa against 5.5MPa system
`	pressure \rightarrow immediate dissociation \rightarrow sudden pressure drop \rightarrow increased gas
	production
Yoon et al.	 CO₂ injection
(2004)	 Reduced replacement rate of CO2 with time due to the surface shielding of CO2
	hydrate formed in outer layer (retardation phenomena)
	• Water produced during replacement \rightarrow presumably improve production rate due to
	higher diffusion resistance
Ota et al.	• CO ₂ injection
(2005a)	• Temp: $271.2 - 275.2 \text{ K} / \text{ pressure: } 3.25 \text{MPa}$
(Raman spectroscopy through high pressure optical cell
	• Amount of CH ₄ hydrate decomposition \cong CO ₂ hydrate formation
	 Replacement mechanism
	- When CO_2 contacts CH_4 hydrate, CH_4 hydrate undergoes surface replacement.
	- Surface reaction \rightarrow diffusion limited process for CO ₂ hydrate formation
	- CH_4 hydrate close to CO_2 hydrate becomes unstable / decomposed
	- CO_2 molecules diffuses / penetrate into remaining hydrogen bond structure
	- CH_4 gas \leftrightarrow gaseous CO_2
Ota et al.	 Liquid CO₂ injection
(2005b)	 Temp: 273.2K / within stable pressure
(20000)	 Hydrate formation: magnetic agitator
	 Raman spectroscopy through high pressure optical cell
	 Kanan spectoscopy through high pressure optical cent Kinetic model for replacement
	 Higher decomposition rate of medium cage (M-cage) in CH₄ hydrate than that of
	small cage (S-cage)
Ostergaard	 Injection method correlation
et al. (2005)	 Injection method conclusion 1:1 increase of temperature suppression with increasing inhibitor mole (%) fraction
et ul. (2003)	 At low C, dT increases with C regardless of the types (methanol, ethylene glycol).
	• Mole fraction of electrolyte $\uparrow = dT \uparrow (CaCl2 > NaCl > methanol)$
	1 - 1000 mathematical of the energy $t + -0.1 + (CaCl 2 - 10aCl - 100000)$

Graue et al. (2006)	 CO₂ injection Material: porous sandstone (sediment) / MRI Hydrate formation: CH₄ introduce → H₂O → cooling Conversion of methane hydrate into CO2 hydrate in sandstone takes place without adding heat No water phase during exchange
Chatterji and Griffith (1998)	 Chemical injection Hindering its reformation by altering the fluid chemistry and lowering the phase transformation boundary
Haneda et al. (2005) Norway	 Nitrgjen injection (inhibitor) Injecting air makes the phase equilibrium shifted to dissociate hydrate
Kawamura et al. (2006)	 Chemical injection with depressurization Pressurized gas + ice (271.2K, 8.5-10MPa) Ethylene glycol: become dilute solution near the reaction surface Silicone oil: produce the thin water film on the reaction surface, lose the contact between MH and chemical.

B.4. Other Energy Forms

References	Features
Miura et al.	 Ultrasonic wave underwater (frequency = 28kHz)
(2006)	 Material: dry ice and CH4 hydrate
	 Ultrasonic wave makes the more gas production at given time, less elapse time and
	lower dissociation time
	 Heat may be transferred to methane hydrate by ultrasonic wave
Li et al.	 Microwave heating and water bath heating
(2006)	 Microwave: up to 750 watt / frequency = 2.45GHz
Norway	 Material: CH₄ hydrate
	 Rate of dissociation = power function (microwave power)
	 Microwave is more effective than water bath heating

References

- Ahmadi, G., C. Ji, and D. H. Smith (2004) "Numerical solution for natural gas production from methane hydrate dissociation," *Journal of Petroleum Science and Engineering*, Vol. 41, No. 4, pp 269-285.
- Ballard, A. L., and Jr E. D. Sloan (2004) "The next generation of hydrate prediction: Part III. Gibbs energy minimization formalism," *Fluid Phase Equilibria*, Vol. 218, No. 1, pp 15-31.
- Bondarev, E. A., and V. V. Popov (2005) "Theoretical and experimental simulation of gas production in permafrost regions accumpanied by hydrate formation and dissociation," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Carcione, Jose M., and Davide Gei (2004) "Gas-hydrate concentration estimated from P- and Swave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada," *Journal of Applied Geophysics*, Vol. 56, No. 1, pp 73-78.
- Chand, S., and T. A. Minshull (2004) "The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada," *Geophysical Research Letters*, Vol. 31, No. 14, pp L14609 14601-14604.
- Chatterji, J., and J.E. Griffith (1998) "Methods of decomposing gas hydrates," U.S. Patent 5713416, p 6.
- Circone, S., L. A. Stern, S. H. Kirby, W. B. Durham, B. C. Chakoumakos, C. J. Rawn, A. J. Rondinone, and Y. Ishii (2003) "CO2 Hydrate: Synthesis, Composition, Structure, Dissociation Behavior, and a Comparison to Structure I CH4 Hydrate," pp 5529-5539.
- Circone, Susan, Stephen H. Kirby, and Laura A. Stern (2005a) "Direct measurement of methane hydrate composition along the hydrate equilibrium boundary," *Journal of Physical Chemistry B*, Vol. 109, No. 19, pp 9468-9475.
- Circone, Susan, Stephen H. Kirby, and Laura A. Stern (2005b) "Thermal regulation of methane hydrate dissociation: Implications for gas production models," *Energy and Fuels*, Vol. 19, No. 6, pp 2357-2363.
- Circone, Susan, Laura A. Stern, and Stephen H. Kirby (2004) "The role of water in gas hydrate dissociation," *Journal of Physical Chemistry B*, Vol. 108, No. 18, pp 5747-5755.
- Gerami, Shahab, and Mehran Pooladi-Darvish (2005) "Hydrate decomposition by the depressurization method: Effect of the sharp-interface assumption," *American Chemical Society, Division of Petroleum Chemistry, Preprints*, Vol. 50, No. 1, pp 16-18.
- Goel, N, and Naval (2006) "In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues," *Journal of Petroleum Science & Engineering* Vol. 5, No. 3-4, pp 169-184.
- Graue, A., B. Kvamme, B.A. Baldwin, J. Stevens, J. Howard, G. Ersland, J. Husebo, and D.R. Zomes (2006) "Magnetic resonance imaging of methane – carbon dioxide hydrate reactions in sandstone pores," 2006 SPE Annual Technical Conference and Exhibition, pp 24-27.
- Gudmundsson, J. S., Mahmut Parlaktuna, and A. A. Khokhar (1994) "Storing natural gas as frozen hydrate," *SPE Production & Facilities*, Vol. 9, No. 1, pp 69-73.
- Gupta, A., S. F. Dec, C. A. Koh, and E. D. Sloan (2005) "NMR and remain investigations of the methane hydrate dissociation mechanism," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*

- Haberer, Raingard M., Kai Mangelsdorf, Heinz Wilkes, and Brian Horsfield (2006) "Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)," Organic Geochemistry, Vol. 37, No. 5, pp 519-538.
- Hamaguchi, R., Yuki Nishimura, Yosuke Matsukuma, and Masaki Minemoto (2005) "A fluid dynamic study on recovery system of methane hydrate," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Handa, Y. Paul, and Dmitri Stupin (1992) "Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica gel pores," *Journal of Physical Chemistry*, Vol. 96, No. 21, p 8599.
- Haneda, H., Y. Sakamoto, T. Kawamura, and T. Komai (2005) "Experimental study on dissociation behavior of methane hydrate by air," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Henninges, J., and E. Huenges (2005) "In situ thermal conductivity of gas hydrate bearing sediments of the JAPEX/JNOC/GSC et al. Mallik 5L-38 well," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Hong, Duc Nguyen, Frederic Gruy, and Jean-Michel Herri (2006) "Experimental data and approximate estimation for dissociation time of hydrate plugs," *Chemical Engineering Science*, Vol. 61, No. 6, pp 1846-1853.
- Jamaluddin, A. K. M., N. Kalogerakis, and P. R. Bishnoi (1989) "Modelling of decomposition of a synthetic core of methane gas hydrate by coupling intrinsic kinetics with heat transfer rates," *Canadian Journal of Chemical Engineering*, Vol. 67, No. 6, pp 948-954.
- Ji, C., G. Ahmadi, and D. H. Smith (2001) "Natural gas production from hydrate decomposition by depressurization," *Chemical Engineering Science*, Vol. 56, No. 20, pp 5801-5814.
- Ji, C., G. Ahmadi, and D. H. Smith (2003) "Constant rate natural gas production from a well in a hydrate reservoir," *Energy Conversion and Management*, Vol. 44, No. 15, pp 2403-2423.
- Kamata, Y., T. Ebinuma, Masaki Ota, H. Minagawa, H. Narita, Y. Masuda, and Y. Konno (2005) "Decomposition experiment of methane hydrate sediment by thermal recovery method," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Kamath, V. A., and G. D. Holder (1987) "DISSOCIATION HEAT TRANSFER CHARACTERISTICS OF METHANE HYDRATES," *AIChE Journal*, Vol. 33, No. 2, pp 347-350.
- Kamath, V. A., P. N. Mutalik, J. H. Sira, and S. L. Patil (1991) "Experimental study of brine injection and depressurization methods for dissociation of gas hydrates," SPE Formation Evaluation, Vol. 6, No. 4, pp 477-484.
- Kawamura, T., Y. Yamamoto, M. Ohtake, Y. Sakamoto, T. Komai, and H. Haneda (2005) "Experimental study on dissociation of hydrate core sample accelerated by thermodynamic inhibitors for gas recovery from natural gas hydrate," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Kawamura, Taro, Yasuhide Sakamoto, Michika Ohtake, Yoshitaka Yamamoto, Takeshi Komai, Hironori Haneda, and Ji-Ho Yoon (2006) "Dissociation behavior of pellet-shaped methane hydrate in ethylene glycol and silicone oil. Part 1: Dissociation above ice point," *Industrial* and Engineering Chemistry Research, Vol. 45, No. 1, pp 360-364.

- Kim, H. C., P. R. Bishnoi, R. A. Heidemann, and S. S. H. Rizvi (1987) "Kinetics of methane hydrate decomposition," *Chemical Engineering Science*, Vol. 42, No. 7, pp 1645-1653.
- Komai, T., Y. Yamamoto, and K. Ohga (2000) "Dynamics of reformation and replacement of CO2 and CH4 gas hydrates," *Annals of the New York Academy of Sciences*, Vol. 912, pp 272-280.
- Kurihara, M., H. Ouchi, T. Inoue, T. Yonezawa, Y. Masuda, S.R. Dallimore, and T.S. Collett (2005) "Analysis of the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate thermalproduction test through numerical simulation " Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Geological Survery of Canada Bulletin 585, Edited by Dallimore, S.R., and Collett, T.S.
- Larsen, Ross E., and Benjamin J. Schwartz (2006) "Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full Configuration Interaction (CI) excited-state relaxation dynamics of hydrated dielectrons," *Journal of Physical Chemistry* B, Vol. 110, No. 19, pp 9681-9691.
- Li, Jinping, Deqing Liang, Kaihua Guo, Ruzhu Wang, and Shuanshi Fan (2006) "Formation and dissociation of HFC134a gas hydrate in nano-copper suspension," *Energy Conversion and Management*, Vol. 47, No. 2, pp 201-210.
- Liang, Minyan, Guangjin Chen, Changyu Sun, Lijun Yan, Jiang Liu, and Qinglan Ma (2005) "Experimental and modeling study on decomposition kinetics of methane hydrates in different media," *Journal of Physical Chemistry B*, Vol. 109, No. 40, pp 19034-19041.
- Masuda, Y., Y. Konno, M. Kurihara, H. Ouchi, Y. Kamata, T. Ebinuma, and H. Narita (2005) "Validation study of numerical simulator predicting gas production performance from sediments containing methane hydrates," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- McGuire, Patrick L. (1982) "METHANE HYDRATE GAS PRODUCTION BY THERMAL STIMULATION." Calgary, Alberta, Can: Natl Research Council of Canada, Assoc Committee on Geotechnical Research, Ottawa, Ont, Can, pp 356-362.
- Miura, Hikaru, Makoto Takata, Daisuke Tajima, and Kenichirou Tsuyuki (2006) "Promotion of methane hydrate dissociation by underwater ultrasonic wave," *Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers*, Vol. 45, No. 5 B, pp 4816-4823.
- Moridis, G. J. (2002) "Numerical Studies of Gas Production from Methane Hydrates." Calgary, Alta., Canada: Society of Petroleum Engineers (SPE), pp 531-544.
- Moridis, G. J. (2003) "Numerical studies of gas production from methane hydrates," *SPE Journal*, Vol. 8, No. 4, pp 359-370.
- Moridis, G. J., T. S. Collett, S. R. Dallimore, T. Satoh, S. Hancock, and B. Weatherill (2004) "Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada," *Journal of Petroleum Science and Engineering*, Vol. 43, No. 3-4, pp 219-238.
- Moridis, G.J., T.S. Collett, S.R. Dallimore, T. Inoue, and T. Mroz (2005) "Analysis and interpretation of the thermal test of gas hydrate dissociation in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well " Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories,

Canada. Geological Survery of Canada Bulletin 585, Edited by Dallimore, S.R., and Collett, T.S.

- Ogasawara, K., A. Yamasaki, F. Kiyono, C. Kato, and M. Kawamura (2005) "Development of new apparatus for measuring dissociation rate of a methane hydrate under flow condition of water," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Okui, T., T. Uchida, Y. Masuda, T. Munakata, and T. Kawasaki (2005) "Laboratory analysis of gas hydrate dissociation in cores from the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: observation and experimental investigations using X-ray computed tomography " Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Geological Survery of Canada Bulletin 585, Edited by Dallimore, S.R., and Collett, T.S.
- Ostergaard, Kasper K., Rahim Masoudi, Bahman Tohidi, Ali Danesh, and Adrian C. Todd (2005) "A general correlation for predicting the suppression of hydrate dissociation temperature in the presence of thermodynamic inhibitors," *Journal of Petroleum Science and Engineering*, Vol. 48, No. 1-2, pp 70-80.
- Ota, M., Yuki Abe, Masaru Watanabe, R. L. Jr. Smith, and H. Inomata (2005a) "Methane recovery from methane hydrate using pressurized CO2," *Fluid Phase Equilibria*, pp 228-229.
- Ota, Masaki, Kenji Morohashi, Yuki Abe, Masaru Watanabe, Richard Lee Smith Jr, and Hiroshi Inomata (2005b) "Replacement of CH4 in the hydrate by use of liquid CO2," *Energy Conversion and Management*, Vol. 46, No. 11-12, pp 1680-1691.
- Park, Y.J., D.Y. Kim, J.W. Lee, D.G. Huh, Park. K.P., J.Y. Lee, and H. Lee (2006) "Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates," *Proceeding of the National Academy of Sciences of the United States of America*, Vol. 103, No. 34, pp 12690-12694.
- Pawar, R., G. Zyvoloski, N. Tenma, Y. Sakamoto, and T. Komai (2005) "Numerical simulation of gas production from methane hydrate reservoirs," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Riedel, M., G. Bellefleur, S. R. Dallimore, A. Taylor, and J. F. Wright (2006) "Amplitude and frequency anomalies in regional 3D seismic data surrounding the Mallik 5L-38 research site, Mackenzie Delta, Northwest Territories, Canada," *Geophysics*, Vol. 71, No. 6, pp B183-B191.
- Sakamoto, Y., T. Komai, Y. Kawabe, N. Tenma, and T. Yamaguchi (2004) "Gas hydrate extraction from marine sediments by heat stimulation method.," *International Offshore and Polar Engineering Conference Toulon, France, May 23-28, 2004.*
- Sakamoto, Y., T. Komai, Y. Kawabe, N. Tenma, and T. Yamaguchi (2005a) "Experimental study on modification of permeability in a methane hydrate reservoir and gas production behavior by the stimultaneous injection of nitrogen and hot water," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Sakamoto, Y., T. Komai, T. Kawamura, N. Tenma, and T. Yamaguchi (2005b) "Field scale simulation for effect of permeability distribution and anisotropy on dissociation and gas production behavior in marine sediments with gas hydrate." Seoul, South Korea: International Society of Offshore and Polar Engineers, Cupertino, CA 95015-0189, United States, pp 386-391.

- Santamarina, J.C., T.S Yun, and D. Fratta (2007) "Study of hydrate bearing sediments from India's Krishna-Godawari Basin, JIP preliminary report," *Georgia Institute of Technology*.
- Sean, W., T. Sato, A. Yamasaki, and F. Kiyono (2005) "Development of dissociation model of methane hydrate based on numerical and physical experiments," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Sira, J. H., S. L. Patil, and V. A. Kamata (1990) "Study of hydrate dissociation by methanol and glycol injection," *Society of petroleum engineers*, pp 977-984.
- Sloan, E.D. (1998) "Clathrate hyrates of natural gases " 2nd Ed. New York: Marcel Dekker.
- Stern, L. A., S. Circone, S. H. Kirby, and W. B. Durham (2001) "Preservation of methane hydrate at 1Atm," *American Chemical Society*, Vol. 15, No. 499-501.
- Stern, L. A., S. Circone, S. H. Kirby, and W. B. Durham (2003) "Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates," *Canadian Journal of Physics*, Vol. 81(1/2), pp 271-283.
- Sun, Chang-Yu, and Guang-Jin Chen (2006) "Methane hydrate dissociation above 0°C and below 0°C," *Fluid Phase Equilibria*, Vol. 242, No. 2, pp 123-128.
- Sun, X., N. Nanchary, and K. K. Mohanty (2005) "1-D modeling of hydrate depressurization in porous media," *Transport in Porous Media*, Vol. 58, No. 3, pp 315-338.
- Sun, Xuefei, and Kishore K. Mohanty (2006) "Kinetic simulation of methane hydrate formation and dissociation in porous media," *Chemical Engineering Science*, Vol. 61, No. 11, pp 3476-3495.
- Sung, Wonmo, Hoseob Lee, Sunjoon Kim, and Hyun Kang (2003) "Experimental investigation of production behaviors of methane hydrate saturated in porous rock," *Energy Sources*, Vol. 25, No. 8, pp 845-856.
- Sung, Wonmo, Hoseob Lee, Huen Lee, and Chulsoo Lee (2002) "Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection," *Energy Sources*, Vol. 24, No. 6, pp 499-512.
- Uchida, T., S. Takeya, E. M. Chuvilin, R. Ohmura, J. Nagao, V. S. Yakushev, V. A. Istomin, H. Minagawa, T. Ebinuma, and H. Narita (2004) "Decomposition of methane hydrates in sand, sandstone, clays, and glass beads," *Journal of Geophysical Research*, Vol. 109, No. B5, p 12 pp.
- Ullerich, J. W., M. S. Selim, and E. D. Sloan (1987) "Theory and measurement of hydrate dissociation," *AIChE Journal*, Vol. 33, No. 5, p 6.
- Wilder, Joseph W., and Duane H. Smith (2002) "Upper limits on the rates of dissociation of clathrate hydrates to ice and free gas," *Journal of Physical Chemistry B*, Vol. 106, No. 24, pp 6298-6302.
- Wright, J. F., and S. R. Dallimore (2005) "The influences of salinity on gas hydrate stability Mallik gas hydrate reservoir, N.W.T. Canada," *Proceedings of the Fifth International Conference on Gas Hydrates, June 12-16, Tronheim, Norway.*
- Yoon, J. H., T. Kawamura, Y. Yamamoto, and T. Komai (2004) "Transformation of methane hydrate to carbon dioxide hydrate: In situ raman spectroscopic observations," *American Chemical Society*, Vol. 108, pp 5057-5059.

- Yousif, M. H., H. H. Abass, M. S. Selim, and E. D. Sloan (1991) "Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media," *SPE Reservoir Engineering*, Vol. 6, No. 1, pp 69-76.
- Yun, T.S., C. Ruppel, and J.C. Santamarina (2006) "Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate," *Journal of Geophysical Research: B-Solid Earth.*